Чаще всего говорят о наукастинге развития конвективных (кучево-дождевых) облаков и связанных с ними опасных метеорологических явлений (ОЯ) — ливневых осадков, гроз, града, шквалов, смерчей.
Метеоролог и я
Это стало возможным благодаря технологии наукастинга — краткосрочного гиперлокального прогноза осадков. наукастинг – сроком до двух часов. Наукастинг осадков по данным ДМРЛ на 2 часа. Есть такое понятие как наукастинг – текущий прогноз погоды на срок до трех часов. "Сейчас в Москве прошел дождь, он был интенсивный, летний, всего за час выпало от 8 до 11 миллиметров осадков. Прогноз осадков на 2 часа (наукастинг). На портале "Метеовести" центра погоды "Фобос" сообщается, что на Москву надвигается новая холодная и дождливая волна.
Глава Гидрометцентра: Никогда прогноз погоды не будет точным на 100%
Прогноз осадков на 2 часа (наукастинг). Прогноз погоды и погодные новости от ФОБОС. В Москве с 17 октября среднесуточная температура воздуха станет устойчиво отрицательной, что характерно для метеорологической зимы. Фото: Владимир Астапкович / РИА Новости. Кратковременный дождь с грозой и порывами ветра до 11-18 м/с выпадает на последнее воскресенье апреля.
Navigation Menu
- Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым
- осадки в Европе
- Поиск в поисковиках:
- Космическая гидрометеорология - прогноз погоды по данным со спутников | Пикабу
- Telegram: Contact @yandex
Главные новости
- ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК
- Погода: история наблюдений - Активный возраст
- Telegram: Contact @yandex
- Как мы отказались от нейросетей, а затем вернули их в прогноз осадков Яндекс.Погоды / Хабр
- meteoinfo ru [delete] [delete]
- Онлайн-словарь отраслевых терминов
Как узнать, будет ли дождь, гроза? Смотрим карту осадков!
During the nineteenth century, the first modern meteorologists were using extrapolation methods for predicting the movement of low pressure systems and anticyclones on surface maps. The researchers subsequently applied the laws of fluid dynamics to the atmosphere and developed the NWP as we know it today. However, the data resolution and parameterization of meteorological primitive equations still leave uncertainty about the small-scale projections, in time and space. The arrival of remote sensing means, such as radar and satellite, and more rapid development of the computer, greatly help to fill that gap. For instance, digital radar systems made it possible to track thunderstorms , providing users with the ability to acquire detailed information of each storm tracked, since the late 1980s. They are first identified by matching precipitation raw data to a set of preprogrammed characteristics into the system, including signs of organization in the horizontal and continuity in the vertical. In 2017, the arrival of passive sensing means, such as wireless networks, helped progress nowcasting even further.
Экстази может стать лекарством Кейсы Наукастинг работает на основе данных сети метеорологических радиолокаторов Росгидромета в этом году Яндекс получил официальный доступ к измерениям, которые на них проводятся и позволяет описывать текущую погоду с точностью до небольшого микрорайона. Радиолокатор работает следующим образом: примерно раз в 10 минут он строит трехмерный снимок атмосферы в радиусе 200 километров от своего местоположения по горизонтали и до 10 километров по вертикали. По принципу действия радиолокатор очень похож на авиационный радар, только на снимке видны не самолеты, а области атмосферы, где есть капли воды размером более 50 микрометров. Если такие капли и правда есть, то, скорее всего, из облака, в котором они находятся, выпадают осадки. В России радиолокаторы установлены в наиболее населенных и интересных с метеорологической точки зрения регионах.
Такие карты составляют основу прогнозов погоды. Задача подготовки синоптических карт на постоянной основе включает в себя сбор и анализ огромного количества данных наблюдений, полученных с множества метеорологических станций. Первую карту погоды составил французский математик, директор Парижской обсерватории Урбен Леверье 19 февраля 1855 года. Этот процесс отнял немало времени. Ее составили на основе данных, полученных по телеграфу из нескольких городов Европы. Разносторонний Леверье также известен тем, что на основании его расчетов была открыта планета Нептун. На основе тщательного изучения метеорологических карт на протяжении многих лет были сформулированы определенные эмпирические правила. Эти правила помогают метеорологам оценить скорость и направление движения погодных систем. Например, когда известен тип погоды, создаваемой вдоль фронта, а также скорость и направление движущейся бури, можно сделать довольно точный прогноз погоды для выбранной местности. Но из-за внезапных изменений в циклонической системе эти прогнозы действительны на протяжении лишь короткого периода времени, скажем, в течение нескольких часов или дня. Прогнозирование на более длительный период уже затруднительно. Численный метод включает в себя много математики. Он также называется «гидродинамическим» и основан на построении математических моделей атмосферы и моделей взаимодействия атмосферы и океана. В нем решаются уравнения гидро- и термодинамики и используются основные физические законы. Газы атмосферы подчиняются ряду физических принципов, и если известны текущие условия атмосферы, то известные физические законы могут использоваться для прогнозирования будущей погоды. С конца 1940-х годов наблюдается устойчивый рост использования математических моделей в прогнозировании погоды. Эти процедуры стали возможны благодаря продвижению в формулировании математических моделей. Математические уравнения применяются для разработки теоретических моделей общей циркуляции атмосферы. Они также используются для прогнозирования изменений в атмосфере с течением времени. В них учитываются параметры определенных элементов погоды, таких как воздушные течения, температура, влажность, испарение, облачность, дождь, снег и взаимодействие воздушных потоков с поверхностью суши и океанов. В разработке численного метода прогнозирования погоды решающие шаги были сделаны советским ученым, академиком А. Обуховым и американским ученым Дж. Именно они довели этот метод до практической реализации, ставшей возможной с появлением ЭВМ. Когда мы рассматриваем постоянно меняющуюся атмосферу, необходимо учитывать большое количество переменных. Это очень сложная задача. И для ее решения были подготовлены численные модели, которые игнорируют некоторые переменные в предположении, что некоторые аспекты атмосферы не изменяются со временем. Это позволяет снизить требования к производительности компьютеров, но одновременно снижается и качество прогноза. Статистические методы используются наряду с численным прогнозом погоды. Этот метод часто дополняет численный метод. Статистические методы используют прошлые записи метеорологических данных, исходя из предположения, что в будущем погода будет повторяться. Основная цель изучения прошлых метеорологических данных — выяснить те аспекты погоды, которые являются хорошими показателями будущих событий. Но таким образом можно делать прогноз погоды с большим шагом по территории. Это особенно полезно при проектировании только одного аспекта погоды за раз. Например, это имеет большое значение для долгосрочного прогнозирования максимальной температуры в течение дня в определенном месте. Процедура заключается в сборе статистических данных, касающихся температуры, скорости и направления ветра, количества облачности, влажности конкретного сезона года.
Если мы хотим прогнозировать погоду на несколько ближайших часов, мы должны иметь очень густую сеть наблюдений. До сих пор этого не удавалось добиться. Теперь в рамках обсуждения Московской мэрии и Росгидромета удалось прийти к пониманию. Эти локаторы будут расположены примерно в радиусе 200 км от центра Москвы. Дальность видимости этих локаторов около 150 км. Поэтому можно ожидать, что если на удалении около 350 км зарождается опасное явление смерч, шквал или очень сильный дождь , то его с помощью этих радаров можно будет диагностировать. Это очень важно, что уже на дальних подступах к Москве можно будет увидеть это явление. Дальше предполагается создать еще одну эшелонированную наблюдательную систему с радиусом примерно 90 км от центра Москвы: сеть автоматических станций, расположенных на вышках операторов мобильной связи с шагом примерно 10—15 км друг от друга. На этих вышках будет так называемая система градиентных наблюдений. По высоте: один датчик примерно на высоте 5—10 м этой вышки, другой на высоте 20—30 м, третий — на 50—60 м. Они будут фиксировать изменения, которые происходят в приземном слое воздуха. Локатор так устроен, что не может "видеть" процессы, которые находятся ниже 200 м от поверхности земли. Если на удалении около 350 км зарождается опасное явление смерч, шквал или очень сильный дождь , то его с помощью этих радаров можно будет диагностировать Еще один аналогичный "редут" — в 40—50 км от центра Москвы. Затем на МКАДе. Примерно четыре десятка станций будут расположены в тех местах, где наблюдений мало. Сейчас наблюдательная сеть небольшая совсем, есть пробелы. Они будут заполнены. Таким образом, предполагается, что количество станций увеличится примерно на полторы сотни. Это очень много. А это очень важно. Когда на удалении сначала прогнозируешь, а затем при перемещении видишь, совпадают или не совпадают расчеты с фактом, можно изменить модель, увидеть, в чем ее несоответствие. Кроме того, эту систему будут разрабатывать не "вообще", а конкретно для Москвы. Получив хороший результат мы очень надеемся на это , можно будет транслировать этот опыт на другие города-миллионники. Конфигурация зданий, улиц, отражение солнечных лучей от крыш домов — все это влияет на атмосферные процессы в городе. В той или иной ситуации, скажем, когда воздушные массы перемещаются с севера или с юга, совершенно по-разному могут развиваться события: либо будет интенсификация опасных явлений, либо, наоборот, структура города будет препятствовать воздушному потоку, энергия будет рассеиваться. Есть кустарники, деревья, в которых происходят свои процессы. Все эти многочисленные факторы нужно описать в модели. Я встречался много раз с тем, что люди считают, что воздух нагревается от солнца. Это глубокое заблуждение. Солнечные лучи падают на подстилающую поверхность, нагревают землю, почву, и за счет турбулентности, за счет конвекции это тепло передается в атмосферу. В городе, где много зданий, не только подстилающая поверхность нагревается, но и стены домов. В том числе и изнутри. Создается дополнительная тепловая энергия, которая трансформируется в кинетическую энергию. Поэтому если наблюдаются условия для быстрого перемещения воздушных масс вверх, то в городе, как правило, этот процесс усугубляется. Нормальные процессы становятся опасными. Мы предполагаем, что будет функционировать прогностическая модель с шагом менее 1 км.
Классификация современных прогнозов погоды
12 самых точных сайтов прогноза погоды | За полтора часа в центре Москвы выпала почти треть апрельской нормы осадков, заявила в беседе с РИА Новости ведущий сотрудник Гидрометцентра России Марина Макарова. |
GISMETEO: осадки в Европе, прогноз осадков на карте Европы | Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. |
Риски в виде осадков. Большое интервью с доктором географических наук Андреем Шиховым | В отдельных районах менее чем за час выпало свыше 70% месячной нормы осадков. |
Как узнать, будет ли дождь, гроза? Смотрим карту осадков! | Прогноз осадков на 2 часа (наукастинг). Согласно прогнозу, который озвучил ведущий специалист центра погоды «Фобос» Евгений Тишковец, первый весенний месяц будет холодным – усилятся морозы, будет идти снег. |
Роман Вильфанд: вопрос использования "больших данных" обсуждается во всем метеорологическом мире
Прогноз осадков на 2 часа (наукастинг) | Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений. |
Роман Вильфанд: вопрос использования "больших данных" обсуждается во всем метеорологическом мире | Метеорологическая карта прогноза осадков в Европе. |
Карты погоды в Спутнике | точный и подробный прогноз погоды в любом уголке мира на сегодня, завтра и неделю. |
☔ТОП самых точных сайтов прогноза погоды на 2024 год
Если для смерча созданы условия, значит, в атмосфере существует сильная неустойчивость. Мгновенно все метеорологи должны насторожиться. Но вдруг снимки — фейк? У нас страна огромная. Есть регионы, где в принципе нет наблюдений — нет людей. Есть труднодоступные станции: забрасывается группа на полгода, живет там, передает информацию. Это очень значимо. Но если наблюдения приходят от оленеводов или волонтера, работающего в золотодобывающей партии, как относиться к таким данным?
С одной стороны, с благодарностью, с другой — с осторожностью. Сейчас разрабатываются методы, как с помощью двойного, тройного контроля все-таки использовать эти данные. Да, в рамках метеорологического общества, когда оно будет создано, я думаю, это будет один из действительно очень значимых вопросов, на который сейчас нет ответа. Но общество будет, конечно, решать гораздо больше проблем. Программа по защите от селевых потоков создаст эффективную систему мониторинга в КБР — В принципе, идея такого общества витала в воздухе уже достаточно давно. С моей точки зрения, это очень хорошая, продуктивная идея. У нас сейчас метеорологи, синоптики — специальность редкая, даже "редкостная".
Она разбросана по разным ведомствам, регионам. В общем-то, все они мало связаны. Общество позволит объединить всех людей, которые заинтересованы в развитии метеорологии. На самом деле, все люди в душе немножко метеорологи. Но, конечно же, предполагается, что это будет более-менее профессиональное сообщество. Общество сможет выработать позиции, которые необходимо реализовать государству либо социуму, понять, что нужно сделать, чтобы климатические исследования нашли значимое применение, чтобы химический состав воздуха определялся повсеместно, чтобы прогнозы стали лучше. Когда выступает Росгидромет и говорит, что необходимо развитие наблюдательной сети, финансирование того или другого направления, это же выступают все-таки люди государственные.
И отношение к ним одно. А когда существует сообщество людей, у которых разные точки зрения, но которые в результате дискуссии, общения пришли к консенсусу, то это совершенно по-другому воспринимается органами исполнительной власти, структурами государства. Кроме того, сообщество может корректировать и позиции тех людей, которые профессионально занимаются метеорологией. Почему не делается какая-то работа? Нужно доказать, обосновать, потому что разговор идет с профессионалами, людьми, имеющими образование соответствующее. В общем, это то, что сейчас принято называть "мягкой силой". Таких обществ много за рубежом.
Американское метеорологическое общество — очень уважаемая организация. Русское географическое общество как воспринимается? Это же действительно настоящая интеллектуальная мощь. Какие интересные задачи ставятся и решаются по изучению истории, по этнографии. Государство никогда бы не смогло организовать экспедиции в труднодоступные регионы. Общество решает задачу, находит спонсоров. Это здорово.
Просмотры: 36658 Youtube - Образование. Обучение - Znaika TV. Погоды 6 лет назад. Прогноз осадков на два часа — Алексей Преображенский 5 декабря 2016 года команда Яндекс. Погоды запустила алгоритм, предсказывающий осадки на ближайшие два часа.... Просмотры: 3123 карта осадков в реальном времени карта осадков яндекс.
Первый ведущий, Джорж Коулинг, пять минут рассказывал о том, что ждет людей за окном в ближайшее время.
В 70-ых годах прошлого столетия такие передачи стали появляться и на экранах тогда еще жителей Советского Союза. Первая ведущая — Екатерина Чистякова. Программа так понравилась зрителям, что в скором времени она стала обязательной частью передачи «Время». Случилось это в 1971 году. В 90-ые годы появилась корпорация «Метео-ТВ». С тех пор она занималась подготовкой программы с прогнозом погоды. Любопытный диалог состоялся в свое время у Сталина и метеорологической службы.
Сталин: «Какой процент точности ваших прогнозов? Сталин: «Тогда вам стоит говорить наоборот, и результат будет более точным». Критерии выбора источника прогнозов Благодаря современной науке мы можем узнать холодно или тепло на улице и брать ли с собой зонт, не выходя из дома, какую одежду надевать. Самые точные предсказания — те, что составлены на ближайшие три дня. Если прогнозируемый срок выше трех дней, то можно более-менее точно сориентировать по температуре воздуха, но не по осадкам. При поиске сайта стоит обратить внимание на: Период прогнозирования.
Поэтому в конечном итоге мы пришли к нейронной сети. Сейчас нейронная сеть работает и выдает предсказания, схематически ее архитектура изображена здесь. Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта.
Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно. Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат. Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения. Обученная часть — дельта от обучаемой части, изменение тензора. Мы берем запомненное состояние, с помощью деконволюции делаем из него какую-то карту выпадения осадков, складываем их с облаками и двигаем их. Такова нынешняя архитектура сети.
Она работает, предсказывает, и результаты получаются довольно хорошими — вы их можете увидеть на сайте. Но они довольно хорошие с точки зрения метрик data science, ROC AUC и F1-меры, а бизнесу интересны не абстрактные циферки и кривые, которые мы рисуем. Бизнесу интересна точность этих предсказаний, точность текста о том, что дождь закончится через 10 минут 20 секунд. Перед нами сейчас стоит другая задача. Сейчас нейросеть обучается с какой-то функцией потерь. Она максимизирует вероятность правильной классификации с помощью бинарной энтропии. А на самом деле надо улучшать другие, бизнесовые метрики — не правильность классификации, а правильность определения времени начала и прекращения осадков. Исследования о том, как из бизнесовых метрик получить loss-функции для обучения нейросетей, — очень важны и интересны. Мы продолжаем развиваться в нужном направлении. Помимо бизнесовых требований, у нас еще есть довольно много планов по развитию текущего решения.
Например, в данный момент мы используем только снимки, но у нас есть огромное количество информации. Самое интересное — радиальная скорость. Радар по доплеровскому эффекту определяет не только наличие частиц в воздухе, но и их скорость. По длине отраженной волны он понимает, с какой скоростью движутся, к радару или от него. Результаты тоже можно использовать для прогнозирования векторного поля. Но к несчастью, у нас есть только радиальная скорость и только в местах, где реально находятся какие-то частицы, осадки. Можно подмешивать векторные поля из метеомоделирования. Там есть ветра, а можно добавлять и еще что-то — например, температуру. В городах осадки ведут себя по-другому, чем над огромным Балтийским морем. Они над ним пролетают и выпадают уже в Питере.
ГИДРОМЕТЦЕНТР РОССИИ: О ПОГОДЕ - ИЗ ПЕРВЫХ РУК
Наукастинг. Прогноз текущей погоды – детализированный прогноз погоды на ближайшие часы (до 2-6 часов).Продолжительность жизненного цикла некоторых погодных явлений (например, шквалов, ливней и т.д.) варьирует от минут до десятков минут. Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. Мы предсказываем на два часа вперёд с шагом 10 минут. Наукастинг. Прогноз текущей погоды – детализированный прогноз погоды на ближайшие часы (до 2-6 часов).Продолжительность жизненного цикла некоторых погодных явлений (например, шквалов, ливней и т.д.) варьирует от минут до десятков минут. Новости. Телеграм-канал @news_1tv.
Цветные осадки: дождь с песком придет на Южный Урал
Цветные осадки: дождь с песком придет на Южный Урал | Раньше карта осадков давала прогноз на два часа вперед с десятиминутным интервалом. |
Прогноз наукастинга для городов запустил Казгидромет | это.> Анимация текущих данных радарных наблюдений. |
Как узнать, будет ли дождь, гроза? Смотрим карту осадков! | По прогнозу ведущего научного сотрудника центра погоды «Фобос» Михаила Леуса, в российской столице в четверг, 17 августа, ожидается переменная облачность, без осадков, воздух прогреется до + 29 °C, передаёт РИА Новости. |
10 самых точных сервисов прогноза погоды | Метеорологическая карта прогноза осадков в Европе. |
Композитная карта | Прогноз осадков на 2 часа (наукастинг). На портале "Метеовести" центра погоды "Фобос" сообщается, что на Москву надвигается новая холодная и дождливая волна. |
Яндекс научился предсказывать осадки на ближайшие 2 часа
Это наглядный пример полуавтоматического наукастинга опасных конвективных явлений для локальной территории. Составление долгосрочных прогнозов погоды является одной из важнейших задач метеорологии, которая, к сожалению, так и не получила окончательного разрешения на сегодняшний момент. Общепринятой методики их подготовки до сих пор не существует, а уже созданные являются ненадёжными. Тем не менее применение последних даёт некоторые практические результаты. Среди прогнозистов и потребителей наиболее востребованными в данной категории являются прогнозы на месяц и сезон. Мы часто можем видеть заголовки в СМИ о том, какая будет зима или когда выпадет первый снег. Но точность и практическая значимость подобных прогнозов всё ещё оставляет желать лучшего, несмотря на стремительный прогресс численного моделирования и усовершенствование материально-технической базы. На данный момент широко распространён метод аналогов. Он основывается на предположении, что если в текущем месяце или сезоне установился определённый характер общей циркуляции атмосферы и аналогичная ситуация уже наблюдалась в прошлом, то сходное развитие синоптических процессов последует в будущем. Недостаток данного метода заключается в субъективности выбора аналогов и в том, что даже малое отклонение фактической обстановки от аналога может привести к составлению неверного прогноза.
Другой методикой является прогноз по первой декаде. Суть его заключается в том, что тенденция развития синоптических условий в первой декаде месяца определяет то, каким в итоге окажется месяц в целом. К примеру, численные модели показали, что в первые 10 дней месяца будет наблюдаться аномально тёплая погода, а значит и весь месяц в целом с высокой степенью вероятности может выйти теплее нормы. Но в этой методике не учтены дальнейшие процессы в атмосфере, которые могут кардинально поменяться во второй половине месяца. В последние годы появилось множество прогностических климатических моделей, которые дают весьма неплохие результаты на месяц вперёд. Среди продукции данных моделей помимо температуры воздуха, рассчитываются также аномалии количества осадков, приземного давления и высотных полей геопотенциала. Анализ таких данных позволяет выделить ориентировочные факторы и процессы, которые будут обуславливать погодные условия в определённой местности на ближайший месяц.
Мониторинг метеорологических условий и состояния поверхности дорог Контроль качества данных Формирование и передача сообщений в ИТС Контроль состояния поверхности дорог коэффициент сцепления Специализированный прогноз зимней скользкости на 4 часа Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Подготовка рекомендаций по количеству внесения реагента Прием данных от прогностических центров Расчет статистических характеристик на основе архивных данных Наукастинг осадков по данным ДМРЛ на 2 часа Мониторинг состояния автомобильных дорог, рекомендации по обработке Наукастинг осадков по данным ДМРЛ на 2 часа Специализированный прогноз зимней скользкости Для специализированного прогноза зимней скользкости используются: Численная гидротермодинамическая модель пограничного слоя атмосферы Данные дорожных метеостанций.
Он самостоятельно определяет по приземным и высотным картам погоды, откуда в его зону ответственности придёт воздушная масса и какие изменения претерпит она на своём пути. Здесь синоптику помогает личный опыт и опыт его коллег, обобщённый в виде региональных методик прогнозирования. Метеоролог может применять климатические данные, чтобы оценить вероятность получившегося сценария развития погодных процессов. Практика показывает, что такие уточнения численного прогноза могут быть очень полезными. Также опыт специалиста помогает ему определить, какие из множества прогностических моделей лучше всего «работают» по его региону прогнозирования. К примеру, одна модель замечательно прогнозирует ход температуры, другая с высокой точностью «видит» туманы, третья хорошо просчитывает максимальные порывы ветра и т. Прогноз текущей погоды наукастинг является особой, совершенно самостоятельной ветвью прогностической метеорологии. Заблаговременность такого прогноза, как правило, не превышает 2 часа. Следовательно, синоптику приходится иметь дело с быстро протекающими атмосферными процессами. Чаще всего говорят о наукастинге развития конвективных кучево-дождевых облаков и связанных с ними опасных метеорологических явлений ОЯ — ливневых осадков, гроз, града, шквалов, смерчей. Основными потребителями прогнозов текущей погоды являются авиация, морской флот и противоградовые службы, но иногда такая информация доводится и до гражданского населения. Основная задача наукастинга — выявлять на картах погоды первые признаки развития опасных явлений, а затем отслеживать их перемещение. Для этого используются данные плотной сети метеостанций, а также спутников, метеорологических радиолокаторов МРЛ и систем грозопеленгации. В настоящее время получили широкое применение доплеровские МРЛ, которые позволяют не только наблюдать за эволюцией облачности, но и мгновенно оценивать скорость и направление её перемещения на основании эффекта Доплера , быстро определять зоны конвективных ОЯ. Сведения обновляются каждые 5—15 мин, чего достаточно для своевременной выдачи штормового предупреждения. Термин «наукастинг» от англ. Браунингом при описании технологии экстраполирования последовательности радарных изображений для прогноза осадков.
Будет облачно, осадков не прогнозируется. Узнать подробнее Читайте также:.
Прогноз наукастинга для городов запустил Казгидромет
Региональные краткосрочные прогнозы. Прогноз осадков на 2 часа (наукастинг). Наукастинг представляет собой детализированный прогноз погоды на ближайшие время (до 2-6 часов), основанный на численном решении системы уравнений гидротермодинамики с учетом процессов в атмосфере. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг).
Search code, repositories, users, issues, pull requests...
В Москве выпало рекордное за 145 лет количество осадков 14:03, 04. Дерево Фото: sogard с сайта Pixabay За 12 часов в столице выпало 10,7 мм осадков, что стало рекордом. По предварительным данным, больше всего снега выпало в центре Москвы В Москве 3 декабря выпало рекордное количество осадков за сутки. Высота сугробов превысила норму 34 см в два раза — 69 сантиметров.
В центральной и северной части города 15-18 мм дождя. По югу Санкт-Петербурга 10-14 мм», — рассказал Колесов. Синоптик отметил, что утром произошёл перерыв в осадках, но совсем скоро тыл циклона подстроится, и в город вновь придут дожди.
На метеорологической станции города N в течение года наблюдали за количеством осадков. По результатам наблюдений метеорологи построили диаграмму выпадения осадков по месяцам. Рассмотрите диаграмму выпадения осадков и ответьте на вопросы.
Воскресенье может стать самым дождливым днем в Москве за последние 75 лет. Больше всего осадков выпадало только в 1951 году. Следующую ступень по количеству ежегодных осадков занимает город Хокитика, который располагается вдоль реки Кропп.
Этот новозеландский городишко страдает от дождей практически каждый день. Однажды за 48 часов на его территории выпало около 1000 мм воды. Больше всего Солнца в уходящем году увидели жители Краснодара 116 дней и Уфы 115 дней.
Сентябрь в Москве побил 141-летний рекорд по наименьшему количеству осадков "Атмосфера": 14 градусов ожидается в столице вечером 8 февраля. Синоптики предупредили москвичей о резком похолодании 9 февраля. Сентябрь в Москве перевыполнил месячную норму осадков Также можно рассчитать самый дождливый город в мире по общему количеству осадков, выпадающих в нем за год.
С помощью этого метода отслеживать количество осадков может быть немного сложнее, но информация помогает метеорологам и инженерам планировать. В Москве установлен суточный рекорд по количеству осадков - Парламентская газета Лето же достаточно влажное и дождливое. Сумма осадков за год составляет 864 мм.
В городе Анива выпадает больше всего осадков — 990 мм. Он уже накрыл Москву и направляется к городам Поволжья Циклон «Ольга» придет в Центральную Россию Воскресенье может стать самым дождливым днем в Москве за последние 75 лет Рейтинг заснеженности городов России Погода в январе. Яндекс Погода Мавсинрам, Индия: самый высокий средний годовой уровень осадков Как называется самое дождливое место на земле?
Прогноз дождей и снегопадов на ближайшие 14 дней. Прогноз погоды для Европейской части России. Пик расположен в округе Полк к западу от город Далласа.
В 1997 году он был признан самым влажным местом в Орегон, а в 1996 году он установил абсолютный календарный год осадки рекорд для смежных Соединенных Штатов с 204,04 дюйма 5, 182,6 мм.
Такие условия отмечаются в северной половине Европейской части, которую заморозил Арктический 05. Массы студеного арктического воздуха, проникшие на территорию России, продолжают выхолаживаться в условиях континента и большой продолжительности ночи и удерживают значительную отрицательную аномалию температуры. Подробнее 05.
Погода научилась показывать , будут ли осадки в ближайшие два часа. Среди докладчиков в тот день был Алексей Преображенский — разработчик из команды Яндекс. Алексей рассказал о нашем алгоритме наукастинга и сверточной нейросети, лежащей в основе этого алгоритма. Под катом — расшифровка лекции и слайды. Меня зовут Алексей Преображенский, я никакой не метеоролог, а разработчик, и рассказывать буду про технические вещи, про анализ данных. Сколько людей здесь занимаются анализом данных — участвуют в соревнованиях на Kaggle, например? А кто участвует в тренировках Яндекса по машинному обучению? Столько же, отлично. Мой доклад организован примерно как тренировка. Вас ждет рассказ о том, как мы в команде Яндекс. Погоды построили наукастинг, какие алгоритмы применяли, какие данные использовали, как проводили измерения и что у нас получилось. Что такое наукастинг, наверное, знают все, кто смотрел фильм «Назад в будущее 2». Когда док Браун выходит из машины и говорит, что дождь закончится через 5 секунд, это наукастинг. Но это наукастинг в фильмах. Наукастинг в реальной жизни — по крайней мере, в головах менеджеров — выглядит либо как уведомление человеку в виде текста или пуш-нотификации, либо как карта осадков, которая движется со временем. Задача была именно в том, чтобы разработать продукт, который бы совмещал в себе и уведомления, и карту осадков. Требовался прогноз осадков на будущей карте, плывущие облачка. Полтора года назад, когда мы начинали, у нас не было ничего, кроме данных. В отличие от участников на Kaggle, у нас не было никакой фиксированной метрики, никаких baseline-решений. Единственное, что было, — постоянная гонка технологий, в которой мы хотели обогнать сами себя. Первое решение — просто День сурка. Обогнать прогноз, решить, что завтра будет то же самое, что и вчера. А следующая модель должна улучшать показания предыдущей. Что нужно для прогноза осадков? Нужны данные, радарные снимки. Нужно понимать, как в атмосфере движутся частицы, какие ветра дуют и как применять это движение к частицам. Расскажу про все три составляющих прогноза. Первое — радарные снимки. Они бывают очень разных форматов и поступают от очень разных поставщиков. Это и просто отдельные картинки в PNG, с договоренностью, что цветом с таким-то кодом обозначается такая-то интенсивность отраженного сигнала. Либо — научный формат NetCDF. Радары сильно отличаются по частоте обновления. Бывают радары, которые обновляются раз в 10 минут, раз в 15 минут. Самое ужасное, что данные с радаров — в отличие от относительно чистых данных для соревнований — содержат артефакты.
Далее расскажем о том, как мы наконец обошли optical flow и сделали более качественный прогноз с использованием нейросетей. Авторы добавили вход для пространственной памяти обозначение в статье и расширили output gate, чтобы научиться её учитывать рисунок 3. Утверждается, что это помогает лучше запоминать пространственные изменения в последовательности кадров видеоряда. Рисунок 3. Только для изображений из будущего, которые мы пока не знаем. В качестве функции потерь использовали ставшую классической сумму кросс-энтропии и dice: где — пример из обучающей выборки, а — предсказанное значение. Результаты При сравнении новой модели с предыдущей мы смотрели как на стандартные метрики для задач сегментации и классификации F1, IoU , так и специально построили метрики, которые отражают пользовательское ощущение прогноза например, доля идеальных прогнозов. Это помогло улучшить в том числе и то, что видят в прогнозе наши пользователи, и как они получают информацию из него.