Просмотр содержимого документа «презентация к уроку "Додекаэдр"». Додекаэдр Подготовила Рочева Александра ученица 10 класса МБОУ «Мохченская СОШ» 2015 г. Платон поставил додекаэдр в соответствие с Целым, потому что это твердое тело больше всего напоминает сферу. Видеоуроки являются идеальными помощниками при изучении новых тем, закреплении материала, для обычных и факультативных занятий, для групповой и индивидуальной работы. Они содержат оптимальное количест Смотрите видео онлайн «Додекаэдр | Стереометрия. Римский додекаэдр ставит археологов в тупик более 200 лет. Додекаэдр составлен из двенадцати равносторонних пятиугольников.
Додекаэдр - это...
ДОДЕКАЭДР — один из пяти правильных многогранников, так называемое Платоновское тело. Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. Именно такое вмещение единства двух Начал содержалось и в учении Пифагора о числах, когда он рассматривал цифру 12, одну из составляющих додекаэдр.
Содержание
- Додекаэдр — большая загадка римской истории
- Похожие файлы
- Тайна римских додекаэдров - Цивилизации - додекаэдр, артефакт - Паранормальные новости
- Что такое додекаэдр? - Генон
- Кругосветка по додекаэдру
Додекаэдр. Развертка для склеивания, распечатки а4, шаблоны
Двенадцать пятиугольных граней придают особое своеобразие этому многограннику. Я изготовила календарь в форме додекаэдра. Приложение Звёздчатый додекаэдр малый Чтобы изготовить модель звёздчатого додекаэдра, надо привести его к этой форме. Под приведением к звёздчатой форме понимается процесс построения многогранника из другого многогранника путём расширения его граней. Для этого через грани исходного многогранника проводятся плоскости и рассматриваются всевозможные рёбра, полученные в результате пересечения этих плоскостей и выбираются подходящие. Развёртка пирамиды, таких нужно сделать 12 штук. Двенадцать пирамид, надстроенных над каждой из граней исходного додекаэдра, создают пространственную 3D-звезду - первую звездчатую форму додекаэдра.
Другое название - малый звездчатый додекаэдр. Приложение Звёздчатый додекаэдр большой Гранью многогранника является правильный звёздчатый многоугольник, который состоит из правильных треугольников. Форма грани имеет следующий вид: Многогранник состоит из 60-ти треугольных граней. Развёртка икосаэдра Звёздчатый додекаэдр большой Заключение В ходе работы я изучила информацию, представленную в интернете. Я узнала, что существует большое множество различных звёздчатых многогранников. Собрала информацию по данной теме, познакомилась с понятием додекаэдр, узнавла о его звёздчатых формах и изготовила модели додекаэдра и малого звёздчатого додекаэдра.
Исходя из всего выше изложенного, я считаю, что достигла поставленой цели, а также выполнила все задачи. Считаю свою работу интересной, полезной и содержательной. При работе над проектом, я получила бесценный опыт: узнать что-то новое, ранее незнакомое. Я получила огромное удовольствие от проделанной мною работы. Моя работа может быть использованы на уроках геометрии, на различных конкурсах и как иллюстративный материал, может помочь расширить знания ребят по теме «Многогранники». Этим проектом хотелось бы расширить представления о мире многогранников и доказать, что многогранники - слагаемые прекрасного.
Также рекомендую ознакомиться со своей работой тем сверстникам, которые хотят знать о математике больше, чем рядовой школьник. Литература и интернет-ресурсы М. Веннинджер Модели многогранников.
Вместо замкнутого многогранника появится открытая геометрическая система 5-ти ортогональностей.
Или симметричное пересечение 5-ти 3-х мерных пространств. Дополнительные материалы по теме: Додекаэдр.
Элементы симметрии додекаэдра Додекаэдр имеет центр симметрии и 15 осей симметрии. Каждая из осей проходит через середины противолежащих параллельных ребер. Додекаэдр имеет 15 плоскостей симметрии.
Любая из плоскостей симметрии проходит в каждой грани через вершину и середину противоположного ребра. Связь со сферическим замощением.
Отметим, что поскольку все грани - равные правильные многоугольники, то все ребра правильного многогранника равны. Вам уже известны примеры некоторых правильных многогранников. Например, куб. Все его грани - равные квадраты и к каждой вершине сходится три ребра. Также нам уже знаком правильный тетраэдр. Заметьте, что правильный тетраэдр и правильная треугольная пирамида — это различные многогранники!
Напомним, что пирамида называется правильной, если в основании лежит правильный многоугольник, а основание высоты совпадает с центром многоугольника. Таким образом, в правильной треугольной пирамиде боковые ребра равны друг другу, но могут быть не равны ребрам основания пирамиды, а в правильном тетраэдре все ребра равны. Правильных многогранников существует всего 5. Перечислим их. Каждая его вершина является вершиной трех треугольников, значит сумма плоских углов при каждой вершине равна 180. Рисунок 1 - Правильный тетраэдр Правильный октаэдр — многогранник, составленный из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырех треугольников, значит, сумма плоских углов при каждой вершине равна 240. Рисунок 2 - Правильный октаэдр Куб гексаэдр — многогранник, составленный из шести квадратов.
Каждая вершина куба является вершиной трех квадратов, значит, сумма плоских углов при каждой вершине равна 270. Рисунок 3 - Куб Правильный икосаэдр — многогранник, составленный из двадцати равносторонних треугольников. Каждая вершина икосаэдра является вершиной пяти треугольников, значит, сумма плоских углов при каждой равна 300.
Правильные многогранники
Некоторые додекаэдры появлялись на рынке древностей и, следовательно, не имеют археологического контекста. ДОДЕКАЭДР — один из пяти правильных многогранников, так называемое Платоновское тело. Например, обнаруженный в Бельгии бронзовый додекаэдр был изготовлен более 1600 лет назад. ДОДЕКАЭДР в искусстве На картине художника Сальвадора Дали «Тайная Вечеря» Христос со своими учениками изображён на фоне огромного прозрачного додекаэдра. Значение слова додекаэдр. Додекаэдр (от др.-греч. δώδεκα — «двенадцать» и εδρον — «грань») — один из пяти возможных правильных многогранников. Около сотни подобных додекаэдров было найдено на территории различных стран, от Англии до Венгрии и запада Италии, но большинство найдено в Германии и Франции.
Додекаэдр в природе и жизни человека
Например, в окрестностях Женевы в Швейцарии был найден маленький литой свинцовый додекаэдр с гранями 15 миллиметров, покрытый снаружи пластинками из серебра с латинскими зодиакальными знаками. То, что он был маленький по размеру, серебряный и украшенный знаками, говорит, что его владелец был богатый человек и позволял себе пользоваться тонкими быстро сгорающими, дорогими свечами. Люди не меняются со временем и в наше время стараются приукрасить свой быт, используя дорогие бытовые вещи — тоже делали и раньше. Додекаэдр, находясь на свече, от пламени фитиля становился горячим. Поэтому, чтобы его можно было брать голыми руками и много раз переворачивать — на вершинах додекаэдра не всегда, но часто были сделаны шарики, которые нагреваются меньше. Это своего рода полезное дополнение к световому прибору. Додекаэдр был не очень легким, вес его был достаточным, чтобы нагреваясь, плавить воск толстой свечи. Меняя диаметр отверстий, поставленных на свечу, можно было регулировать яркость её пламени и освещенность помещения.
Например, если поставить додекаэдр на свечу маленьким отверстием, то пламя свечи будет маленьким. Свеча будет медленнее гореть и меньше давать света, так как расплавленный воск будет больше напирать и топить фитиль, не давая ему разгореться. Меньший диаметр отверстия ставился на свечу, а на противоположной грани для выхода пламени было отверстие чуть большего диаметра — это позволяло додекаэдру не так сильно разогреваться. Если поставить наоборот, то додекаэдр будет больше греться и плавить свечу. Если на свечу ставилась грань с большим отверстием, то она будет гореть быстрее, так как пламя фитиля будет больше и выше. Размером отверстия регулировали высоту пламени, скорость горения и освещенность. В общем и целом этот нехитрый предмет имел много полезных свойств.
В старейшем городе Тонгерен в Бельгии, известном ещё в I веке до нашей эры, так были взволнованы тайной «римского додекаэдра», что сделали ему памятник. В музее города Тонгерен есть найденный там в 1937 году за стенами древнего города , додекаэдр: материал бронза, высота без шариков - 66 мм. Диаметр отверстий по парам на противоположных гранях: 10,6 - 13,0; 13,8 - 14,0; 15,6 - 17,8; 20,3 — 20,5; 23,0 -26,3; 25,2 — 27,0 мм. Это размеры музейного образца. Памятник додекаэдру в городе Тонгерен в Бельгии Каменный «римский додекаэдр» Бронзовый «Римский додеакаэдр» в музее города Тонгерен в Бельгии На бронзовом бельгийским додекаэдре нет никаких концентрических окружностей и рисунков на гранях, и это нисколько не мешало ему выполнять свою функцию. Концентрические окружности на гранях додекаэдра помогали мастеру ровно изготовить пятиугольные пластины, для последующего их соединения, правильно его собрать, чтобы были отверстиям разного диаметра, а при его использовании окружности помогали легче увидеть какой гранью поставить.
Получили три уравнения с тремя неизвестными, которые будем сейчас решать, чтобы получить в чистом виде зависимость от составляющих символа Шлефли: Такую систему уравнений удобно решить, воспользовавшись параметризацией через некое t. Остается в целых числах решить соответствующее неравенство: Не только лишь все натуральные числа при умножении дают результат, меньший 4, поэтому у нас не так много работы: А теперь вспомните рисунок с символами Шлефли для платоновых тел! Как видите, мы получили одно и то же с помощью решения обычной системы уравнений! Алгебраизация - один из самых мощных способов исследования окружающего нас мира. Морфоэдр Эта фигура которая состоит из последовательно вложенных друг в друга платоновых тел. Пораженный концепцией такого изысканного тела, великий астроном Иоганн Кеплер предположил, что расстояния между известными тогда стык 15 и 17 веков шести планетами - Меркурием, Венерой, Землей, Марсом, Юпитером и Сатурном выражаются через размеры пяти правильных выпуклых многогранников. Между каждой парой небесных сфер, по которым, согласно его гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел, в результате чего получилась композиция, которая известна в науке как "Космический кубок Кеплера": Спасибо за внимание, и пусть ваш земной кубок будет более простым! Много интересного — в Telegram «Математика не для всех» Эта статья поддерживается командой vStack vStack — гиперконвергентная платформа для построения виртуальной инфраструктуры корпоративного уровня. Продукт входит в реестр российского ПО.
Геометрические свойства правильного додекаэдра Рассмотрев вопрос о том, что такое додекаэдр, можно перейти к характеристике основных свойств правильной объемной фигуры, то есть образованной одинаковыми пятиугольниками. Поскольку рассматриваемая фигура является объемной, выпуклой и состоит из многоугольников пентагонов , то для нее справедливо правило Эйлера, которое устанавливает однозначную зависимость между числом граней, ребер и вершин. Углы между соседними гранями этой платоновской фигуры являются одинаковыми, они равны 116,57o. Математические формулы для правильного додекаэдра Ниже приведем основные формулы додекаэдра, который состоит из правильных пятиугольников. Объем правильного додекаэдра, как и его суммарная площадь граней, однозначно определяется из знания стороны пятиугольника. Описанную окружность проводят через 20 вершин правильного додекаэдра. Симметрия правильного додекаэдра Как видно из рисунка выше, додекаэдр — это достаточно симметричная фигура. Для описания этих свойств в кристаллографии вводят понятия об элементах симметрии, главными из которых являются поворотные оси и плоскости отражения. Идея использования этих элементов проста: если установить ось внутри рассматриваемого кристалла, а затем повернуть его вокруг этой оси на некоторый угол, то кристалл полностью совпадет сам с собой. То же самое относится к плоскости, только операцией симметрии здесь является не поворот фигуры, а ее отражение. Современное использование додекаэдра В настоящее время геометрические объекты в форме додекаэдра находят применение в некоторых сферах деятельности человека: Игральные кости для настольных игр. Так как додекаэдр — это платоновская фигура, обладающая высокой симметрией, то объекты этой формы можно использовать в играх, где продолжение событий имеет вероятностный характер.
Великая формула Эйлера Одно из самых известных открытий великого математика - это формула, которая связывает количество вершин, ребер и граней всякого многогранника, топологически эквивалентного сфере: Обратите внимание, что речь идёт не только о правильных многогранниках, а вообще о всех телах, которые можно получить непрерывными преобразованиями из сферы то есть гомеоморфными ей. Эйлерова характеристика, т. Тор можно получить "приклеив" к сфере одну ручку, значит его Эйлерова характеристика равна 0, если приклеить две ручки - получим двойной тор с характеристикой "-2": Подводя краткие итоги: мы будем классифицировать правильные двумерные многогранники двумерные - в смысле, что их поверхность двумерна, но вложены они всё-таки в трехмерное пространство. Их эйлерова характеристика равна 2. Для примера рассмотрим тетраэдр и попытаемся выяснить зависимость. У тетраэдра 4 грани, в каждой из которых три угла. Если умножить 4 вершины на 3 грани получим 12 чего-то там, что в два раза больше количества ребер их так же считали дважды В качестве упражнения можно посчитать для куба. Получили три уравнения с тремя неизвестными, которые будем сейчас решать, чтобы получить в чистом виде зависимость от составляющих символа Шлефли: Такую систему уравнений удобно решить, воспользовавшись параметризацией через некое t. Остается в целых числах решить соответствующее неравенство: Не только лишь все натуральные числа при умножении дают результат, меньший 4, поэтому у нас не так много работы: А теперь вспомните рисунок с символами Шлефли для платоновых тел! Как видите, мы получили одно и то же с помощью решения обычной системы уравнений!
Додекаэдр - Что это такое, определение и понятие
Додекаэдр составлен из двенадцати равносторонних пятиугольников. Пра́вильный додека́эдр — один из пяти возможных правильных многогранников. Додекаэдр составлен из двенадцати правильных пятиугольников, являющихся его гранями. "что такое додекаэдр?", можно дать следующее определение: "Додекаэдр это геометрическое тело из двенадцати граней, каждая их которых - правильный пятиугольник". ДОДЕКАЭДР — один из пяти правильных многогранников, так называемое Платоновское тело. Обнаруженный додекаэдр представляет собой пустотелый многогранник из 12 пятиугольников.
Рекомендуемые статьи
- Додекаэдр – это... Определение, формулы, свойства и история — OneKu
- Что такое додекаэдра объяснение свойства и примеры
- Значение слова «додекаэдр»
- Додекаэдр – это... Определение, формулы, свойства и история — OneKu
- Кругосветка по додекаэдру
- «Римский додекаэдр» - древний мистический артефакт и его назначение
Кругосветка по додекаэдру
Каждая вершина додекаэдра является вершиной трех правильных пятиугольников. РИА Новости, 1920, 07.02.2024. В этом уроке мы повторим, что такое октаэдр, додекаэдр и икосаэдр. Узнаем интересные факты о платоновых многогранниках. В этом уроке мы повторим, что такое октаэдр, додекаэдр и икосаэдр. Узнаем интересные факты о платоновых многогранниках. небольшой полый бронзовый или каменный предмет геометрической формы с двенадцатью плоскими гранями они украшены маленькими шарами в каждом углу пятиугольника. Мол, благодаря форме и круглым отверстиям додекаэдр определял угол падения солнечных лучей, и в результате римляне выясняли конкретный день, когда нужно приступать к посевам сельскохозяйственных культур.
Додекаэдр.
это многогранник, состоящий из 12 граней, каждая из которых является правильным пятиугольником. Додекаэдр составлен из двенадцати равносторонних пятиугольников. Римский додекаэдр датируется II-м или III-м веком нашей эры. геометр. многогранник, имеющий двенадцать граней; двенадцатигранник Вокруг орбиты Земли можно описать 12-гранник или додекаэдр, где каждая грань ― правильный пятиугольник.