Новости биологический термин организм без ядра

Кроссворд на тему клетка по биологии 5 класс 10 вопросов с ответами. Определения из сканвордов слова ПРОКАРИОТ. организм, не обладающий клеточным ядром. организм без ядра в клетке. Организмы в биологии: понятие, виды и особенности. Прокариоты, организмы, клетки которых, в отличие от эукариот, не имеют ограниченного мембраной ядра; к их числу относятся бактерии и археи. Цель исследования: исследовать важность присутствия ядра на процессы жизнедеятельности клетки и одноклеточного организма в целом.

организм без ядра в клетке

Поэтому половой процесс представители простейших используют чаще в неблагоприятных условиях, пытаясь приспособиться к ним путем получения новых свойств. Еще один интересный вариант полового процесса встречается у жгутиковых и споровиков. Копуляция — слияние двух клеток, с объединением их генетической информации. Дело в том, что на определенном этапе своей жизни клетка некоторых одноклеточных делится с образованием двух не обычных клеток, а аналогов половых — с половинкой набора генетической информации. Такие клетки называются гаметами. При их слиянии копуляции получающаяся новая особь будет иметь половину наследственных свойств от одного, половину от другого «родителя».

Это повышает возможности животного приспосабливаться к условиям окружающей среды. Почему половой процесс наступает только при неблагоприятных условиях? В трудной жизненной ситуации мы зачастую начинаем менять стратегию поведения, понимая, что наши прошлые привычки уже не работают. Точно так же ведет себя и любое одноклеточное животное: если условия стали неблагоприятными, значит, нужно попробовать приспособиться к ним. Но почему бы не использовать такую стратегию всегда, даже при неменяющихся условиях?

Во-первых, вновь приобретенные признаки могут оказаться и вредными… Не стоит рисковать и перетруждаться, если вы и так хорошо приспособлены. А во-вторых, копуляции предшествует процесс образования гамет, который является очень энергозатратным. Подробнее об особенностях полового процесса и видах гамет вы можете прочитать в статье «Размножение и развитие организмов. Поэтому нет никаких веских причин для полового процесса при нормальных условиях окружающей среды. Вот мы и разобрали общую характеристику всех простейших.

Но некоторые виды имеют свои отличительные черты. Самое время познакомиться с некоторыми из них поближе. Особенность животного в том, что оно перемещается в пространстве с помощью псевдоподий ложноножек , о чем мы уже упоминали выше. Как работают ложноножки? Помните цикл фильмов о трансформерах?

Эти существа могли сначала быть машинами, а потом собираться в большого робота, который передвигался уже совсем по-другому. По такому же принципу происходит движение амёбы. Помогает в этом цитоскелет — каркас клетки, который находится в цитоплазме. Он включает в себя тонкие нитевидные белковые структуры — актиновые филаменты, с помощью которых амёба способна передвигаться. Как это происходит?

При необходимости передвижения актиновые филаменты цитоскелета разбираются на части и с током цитоплазмы движутся в нужном направлении, образуя своеобразное выпячивание клетки. Затем части снова собираются в цитоскелет, который поддерживает форму клетки. По типу питания эвглена является миксотрофом. Она может питаться автотрофно благодаря наличию в клетке хлоропластов , а также гетеротрофно, за счет поглощения готовых органических веществ. Малярийный плазмодий Малярийный плазмодий — представитель типа Апикомплексы, вызывающий малярию.

Это заболевание человека, при котором происходит разрушение эритроцитов. Малярия сопровождается лихорадочными приступами, анемией снижением уровня гемоглобина в крови , слабостью и может привести к летальному исходу. Такие простейшие называются паразитами, потому что при их попадании в организм человека они начинают приносить ему вред, при этом используя ресурсы организма для жизнедеятельности. У многих паразитов есть основной хозяин и промежуточный хозяин. Малярийный плазмодий не является исключением.

Основной хозяин — это организм, в котором происходит половой процесс паразита. Цель этого процесса, как мы уже упоминали выше, — появление новых признаков, перераспределение генетической информации, и, как следствие, повышение приспособленности к условиям среды. Промежуточный хозяин — это организм, в котором происходит бесполое размножение паразита. Цель данного размножения — увеличение численности особей и площади их расселения. Это позволяет паразитам избегать внутривидовой конкуренции: стадии питаются разной пищей и живут в разных организмах.

Такая особенность позволяет паразитам быть практически неуловимыми. Так, основным хозяином Малярийного плазмодия является комар рода Anopheles, проживающий в тропиках. Давайте рассмотрим жизненный цикл Малярийного плазмодия. Когда комар кусает человека, в ток крови попадает спорозоит, образовавшийся в организме самки комара. Спорозоит — это стадия в жизненном цикле Малярийного плазмодия — маленькая веретеновидная по форме похожая на веретено клетка, длиной 10—15 микрометров.

Спорозоиты вместе с током крови распространяются по организму человека и попадают в клетки печени, где начинается шизогония. В результате образуются мерозоиты — подвижные клетки, которые способствуют распространению инфекции по организму. Когда шизогония завершается, наступает разрушение клеток печени, в результате чего из них выходит множество мерозоитов. Мерозоиты попадают в эритроциты — красные клетки крови человека, где снова идет шизогония. Снова образуется множество мерозоитов, но они немного другие — мелкие овальные клетки диаметром около 2 микрометров.

В этот момент оболочка эритроцита лопается, и мерозоиты попадают в плазму крови. В момент выхода мерозоитов из клеток печени и разрушения эритроцитов происходит резкий подъем температуры, после чего температура также резко спадает, тем самым организм человека истощается.

Важной вехой в понимании этих давних событий стало открытие асгардархей, то есть «архей из Асгарда».

Асгард — огороженный город богов в скандинавской мифологии. Такие археи представляют собой ближайших родственников эукариот и имеют с ними общие черты. Отдельные группы этих «кузенов» эукариот назвали в честь скандинавских богов Локи, Тора, Одина и Хеймдалля.

В центре внимания нового исследования японских ученых оказались одинархеи — часть одноклеточного Асгарда, названная в честь Одина — верховного божества, шамана и мудреца. Авторы статьи в Science Advances сосредоточились на одном из белков одинархеи, живущей в черных курильщиках, — тубулине Одина.

Жизнедеятельность клетки требует кислорода, который обеспечивает ее энергией.

Молекула кислорода, как известно, состоит из двух атомов и обозначается знаком О2. В таком виде кислород не слишком реакционно способен. У них, выражаясь образно, атомы кислорода не держатся друг за друга, а имеют одну или две свободные руки валентности , готовые «схватить за руку» любой другой атом.

Но при воздействии радиации, некоторых ядов, четыреххло-ристого углерода, печально известных диоксинов, при вирусных заболеваниях и некоторых нарушениях обмена веществ и т. В этом случае они начинают окислять совсем не то, что требуется, в частности внешние и внутренние оболочки клеток. Как полагают многие исследователи, окислительные процессы провоцируют возникновение таких заболеваний, как склероз, гипертония, снижение иммунитета, рак, слабоумие.

Окисление мембраны клеток дезорганизует работу ферментов, затрудняя проникновение в клетку ионов и питательных веществ, что ведет к невероятной путанице в согласованности работы клеточных механизмов и в конечном итоге заканчивается гибелью клетки. Существует еще один вариант программируемой клеточной гибели, так называемая «кальциевая смерть». Она имеет много причин, но суть ее сводится к тому, что избыток ионов кальция, находящийся в межклеточной жидкости, по тем или иным причинам поступает в протоплазму клетки, активирует там ряд ферментов, что ведет сначала к нарушению обмена веществ, а затем и распаду клетки.

Термин «апоптоз» был предложен в 1972 году американским исследователем Дж. Керром для описания программируемой гибели клетки. Слово это происходит от греческих слов «апо» — завершенность и «птоз» — падение и может быть переведено как «опадание листьев».

Суть термина подчеркивает его естественность, фи-зиологичность в отличие от некроза — смерти от повреждения. Проходит жизненный цикл, и падают плоды, опадают листья. Апоптоз — принципиально новое фундаментальное понятие в клеточной биологии.

Керр и его сотрудники сформулировали основные признаки апоптоза. Во-первых, при апоптозе распад клетки начинается с ядра — оно сморщивается и распадается на отдельные фрагменты. Во-вторых, апоптирующая клетка уменьшается в объеме и как бы отделяется от соседей.

В-третьих, меняются свойства ее мембраны, в результате чего она легко распознается макрофагами пожирателями клеток. В-четвертых, сохраненные мембраны образуют на месте погибшей клетки живые капельки с функционирующими органеллами, которые поглощаются клетками-соседями или макрофагами. На месте погибшей клетки ничего не остается.

Апоптоз запрограммирован генетически. Пока гены, инициирующие самоубийство, неизвестны. Скорее всего, гены-«убийцы» спят, но под влиянием каких-либо сигналов «просыпаются», подготавливая клетку к самопроизвольной гибели.

Факторов, которые могут подстегнуть клетку к самоубийству, очень много.

Когда тромбоциты активизируются, то есть переходят в новое состояние, они принимают форму сферы с выростами псевдоподиями , при помощи которых сцепляются друг с другом или сосудистой стенкой, закрывая тем самым её повреждение. Отклонение количества тромбоцитов от нормы может приводить к различным заболеваниям. Так, уменьшение количества кровяных пластинок повышает риск кровотечений, а их увеличение приводит к тромбозу сосудов, то есть появлению сгустков крови, которые в свою очередь могут стать причиной инфарктов и инсультов, эмболии лёгочной артерии и закупорке сосудов в других органах. Образуются тромбоциты в костном мозге и селезёнке. Корнеоциты Некоторые клетки кожи человека также не содержат ядер.

Из безъядерных клеток состоят два верхних слоя эпидермиса — роговой и блестящий цикловидный. Оба состоят из одинаковых клеток — корнеоцитов, которые представляют собой бывшие клетки нижних слоев эпидермиса — кератиноциты. Эти клетки, образовавшись на границе наружного и среднего слоев кожи дермы и эпидермиса , поднимаются по мере "взросления" все выше, в шиповатый, а затем и в зернистый слои эпидермиса. В кераноците накапливается вырабатываемый им белок кератин - важный компонент, который отвечает за прочность и упругость нашей кожи. В итоге клетка теряет ядро и практически все органеллы, поэтому большую её часть составляет белок кератин. Получившиеся корнеоциты имеют плоскую форму.

Плотно прилегая друг к другу, они образуют роговой слой кожи, служащий барьером для микроорганизмов и многих веществ — его чешуйки выполняют защитную функцию. Переходным от зернистого к роговому служит блестящий слой, также состоящий из потерявших ядра и органеллы кератиноцитов. По сути, корнеоциты — это мертвые клетки, так как никаких активных процессов в них не происходит. Безъядерные клетки в трансплантологии Для клонирования клеток нужных тканей в трансплантологии используются искусственно созданные безъядерные клетки. Так как генетическую информацию у эукариотических организмов хранит именно ядро, путём манипуляций с ним можно воздействовать на свойства клетки. Как бы фантастически это ни звучало, но можно заменить ядро и таким способом получить совершенно другую клетку.

Для этого ядра удаляются или разрушаются различными способами — хирургическим, с помощью ультрафиолетового излучения или центрифугирования в сочетании с воздействием цитохалазинов. В полученную безъядерную клетку пересаживают новое ядро.

Бесклеточные

и гетеротроф используют в отношении других элементов, которые входят в состав биологических молекул в восстановленной форме (например азота, серы). Океан населяли организмы, являющиеся прокариотами (одноклеточные организмы без ядра в клетке), гетеротрофами (не умели производить органическое вещество из неорганического самостоятельно, как растения, но вынужденные питаться органическим веществом, как. прокариоты — ПРОКАРИОТЫ — организмы, которые лишены морфологически оформленного ядра и др. типичных клеточных органелл.

Популярное

  • «Как вы считаете, может ли клетка существовать без ядра?» — Яндекс Кью
  • Первые шаги к пониманию
  • Организмы без ядра. Безъядерные клетки человека
  • Отгадайте загадку:
  • Поиск ответов на кроссворды и сканворды
  • Организм без клеточного ядра

Найдено первое животное без митохондриальной ДНК

Подобные случаи обычно свидетельствуют о какой-нибудь патологии. Как написать хороший ответ? Написать правильный и достоверный ответ; Отвечать подробно и ясно, чтобы ответ принес наибольшую пользу; Писать грамотно, поскольку ответы без грамматических, орфографических и пунктуационных ошибок лучше воспринимаются. Мореплаватель — имя существительное, употребляется в мужском роде. К нему может быть несколько синонимов. Старый моряк смотрел вдаль, думая о предстоящем опасном путешествии; 2. На аргонавте были старые потертые штаны, а его рубашка пропиталась запахом моря и соли; 3. Опытный мореход знал, что на этом месте погибло уже много кораблей, ведь под водой скрывались острые скалы; 4. Морской волк. Старый морской волк был рад, ведь ему предстояло отчалить в долгое плавание. Различные формы окрашивающихся включений у бактерий а , спирохет б и сине-зеленых водорослей в , описываемые в качестве ядер.

Но при известных условиях, напр. Такое диффузное состояние хроматина, который в своей совокупности образует своего рода эквивалент клеточного ядра, последними авторами приравнивается к т. Однако, по отношению к последним этот взгляд в наст. Подобные эквиваленты ядра в виде зерен, сетей, спиралей и т. Однако, у этих организмов определение ядерного вещества опиралось до сих пор лишь на признак его окрашиваемости основными красками и, отчасти, на реакции его растворения ферментами. Эти доказательства не имеют абсолютного значения, так как, кроме заведомого ядерного вещества, т. Опыты с перевариванием пепсином и трипсином не решают вопроса, поскольку они посят не специфический, но групповой характер. Вопрос вступил в новую фазу с момента выработки нуклеальной реакции Feulgen и Rossenbeck, 1924 г. Эта реакция блестяще оправдалась на ядрах всех многоклеточных организмов и очень многих Protozoa; однако, первоначальные попытки применить ее к бактериям и спирохетам дали отрицательный результат, что, казалось, служило лишним подтверждением их безъядерности. Однако, новейшие наблюдения указывают на возможность положительной нуклеальной реакции также и у бактерий Муратова, 1928 г.

Это позволяет думать, что систематические исследования как существа нуклеальной реакции, так и пределов ее применимости, помогут окончательно разрешить вопрос о безъядерных организмах. Bakterien, Jena, 1912; Gotschlich E. Kolle W. Uhlenhuth P. I, Jena, 1927 ; Hartmann M. Rossenbeck H.

В некоторых случаях нуклеоид бактерий содержит от 9 до 18 кольцевых ДНК. Также есть данные, полученные лабораторным путем, что далеко не все ДНК, которые содержатся в прокариотах, имеют кольцевую структуру. Так, например, ДНК спирохеты бореллия Borrelia burgdorferi , возбудителя клещевого спирохетоза, имеет линейное строение.

Все основные параметры нуклеоида, который содержит наследственную информацию бактерии, активно изучаются, и сегодня этот клеточный органоид характеризуется как: кольцевая структура имеются исключения в виде линейных макромолекул ; одиночная хромосома имеются исключения. Репликация молекулы дезоксирибонуклеиновой кислоты напрямую связана со способом упаковки и хранения наследственной информации. Выделяют три основных вида: консервативный без раскручивания спирали ; полуконсервативный родительская спираль раскручивается, и обе части являются матрицами для синтеза дочерних макромолекул ; дисперсивный родительская ДНК распадается на множество фрагментов, которые и берутся за основу для синтеза дочерних макромолекул. В бактериальной клетке репликация идет по полуконсервативному пути. Раскручивание родительской молекулы происходит в результате воздействия ферментов, а по завершении процесса репликации и оформления двух нуклеоидов в теле бактериальной клетки, процесс деления входит в свою самую активную фазу. Митохондрии Обеспечение живой клетки энергией — ответственная миссия. Если она будет провалена, никакой речи о делении и наследстве идти не будет. В бактерии, в которой отсутствуют специальные органеллы митохондрии для синтеза АТФ, энергия производится непосредственно в цитоплазме и потребляется всеми клеточными структурами.

Такой жизненный цикл и в целом диплоидность для прокариот не характерны. Третье, пожалуй, самое интересное отличие, — это наличие у эукариотических клеток особых органелл, имеющих свой генетический аппарат, размножающихся делением и окружённых мембраной. Эти органеллы — митохондрии и пластиды. По своему строению и жизнедеятельности они поразительно похожи на бактерий. Это обстоятельство натолкнуло современных учёных на мысль, что подобные организмы являются потомками бактерий, вступившими в симбиотические отношения с эукариотами. Прокариоты характеризуются малым количеством органелл, и ни одна из них не окружена двойной мембраной. В клетках прокариот нет эндоплазматического ретикулума, аппарата Гольджи, лизосом. Ещё одно важное различие между прокариотами и эукариотами — наличие у эукариот эндоцитоза, в том числе у многих групп — фагоцитоза. Фагоцитозом дословно «поедание клеткой» называют способность эукариотических клеток захватывать, заключая в мембранный пузырёк, и переваривать самые разные твёрдые частицы. Этот процесс обеспечивает в организме важную защитную функцию. Впервые он был открыт И. Мечниковым у морских звёзд. Появление фагоцитоза у эукариот скорее всего связано со средними размерами далее о размерных различиях написано подробнее. Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники. Большинство бактерий имеет клеточную стенку, отличную от эукариотической далеко не все эукариоты имеют её. У прокариот это прочная структура, состоящая главным образом из муреина у архей из псевдомуреина. Строение муреина таково, что каждая клетка окружена особым сетчатым мешком, являющимся одной огромной молекулой. Среди эукариот клеточную стенку имеют многие протисты, грибы и растения. У грибов она состоит из хитина и глюканов, у низших растений — из целлюлозы и гликопротеинов, диатомовые водоросли синтезируют клеточную стенку из кремниевых кислот, у высших растений она состоит из целлюлозы, гемицеллюлозы и пектина. Видимо, для более крупных эукариотических клеток стало невозможно создавать клеточную стенку из одной молекулы высокую по прочности. Это обстоятельство могло заставить эукариот использовать иной материал для клеточной стенки. Другое объяснение состоит в том, что общий предок эукариот в связи с переходом к хищничеству утратил клеточную стенку, а затем были утрачены и гены, отвечающие за синтез муреина. При возврате части эукариот к осмотрофному питанию клеточная стенка появилась вновь, но уже на другой биохимической основе. Разнообразен и обмен веществ у бактерий. Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные фототрофные используют энергию солнечного света, хемотрофные используют химическую энергию. Эукариоты же либо сами синтезируют энергию из солнечного света, либо используют готовую энергию такого происхождения.

Артёмка19052004 27 апр. Илья1372 27 апр. Василёчек555 27 апр. Очень срочно? Zhannuruvygy 27 апр. Natashagrant 27 апр. Oksanaminenko777 27 апр.

Организм без ядра в клетке.

Под таким понятием как "прокариоты" имеются ввиду именно те организмы, которые не имеют в своей структуре ядра, они являются одноклеточными. Спасибо, что посетили нашу страницу, чтобы найти ответ на кодикросс Одноклеточный организм без ядра. Организмы в клетках которых есть ядро.

САМОУБИЙСТВО КЛЕТОК

В их организме осталось всего три типа клеток, а на некоторых стадиях развития они представляют собой одну большую многоядерную клетку, из-за чего их долгое время вообще не признавали многоклеточными. Этот термин ввел в 1866 году Эрнст Геккель для всех организмов без ядра. Отсутствие ядра в клетках эпидермиса обусловлено необходимостью их специализации на защиту организма от внешних воздействий, таких как ультрафиолетовое излучение, травмы и инфекции.

Почему у прокариотических клеток нет ядра?

Постараемся найти среди 775 682 формулировок по 141 989 словам. Оцени полезность материала: 5 голосов, оценка 4. Организм без клеточного ядра вирусы, бактерии. Организм, клетки которого не имеют оформленного ядра.

Размеры прокариотических клеток несоизмеримо меньше, и поэтому в процессе эволюционного развития эукариот у них возникла проблема снабжения организма большим количеством пищи. Как следствие среди эукариот появляются первые настоящие, подвижные хищники.

Большинство бактерий имеет клеточную стенку, отличную от эукариотической далеко не все эукариоты имеют её. У прокариот это прочная структура, состоящая главным образом из муреина у архей из псевдомуреина. Строение муреина таково, что каждая клетка окружена особым сетчатым мешком, являющимся одной огромной молекулой. Среди эукариот клеточную стенку имеют многие протисты, грибы и растения. У грибов она состоит из хитина и глюканов, у низших растений — из целлюлозы и гликопротеинов, диатомовые водоросли синтезируют клеточную стенку из кремниевых кислот, у высших растений она состоит из целлюлозы, гемицеллюлозы и пектина.

Видимо, для более крупных эукариотических клеток стало невозможно создавать клеточную стенку из одной молекулы высокую по прочности. Это обстоятельство могло заставить эукариот использовать иной материал для клеточной стенки. Другое объяснение состоит в том, что общий предок эукариот в связи с переходом к хищничеству утратил клеточную стенку, а затем были утрачены и гены, отвечающие за синтез муреина. При возврате части эукариот к осмотрофному питанию клеточная стенка появилась вновь, но уже на другой биохимической основе. Разнообразен и обмен веществ у бактерий.

Вообще всего выделяют четыре типа питания, и среди бактерий встречаются все. Это фотоавтотрофные, фотогетеротрофные, хемоавтотрофные, хемогетеротрофные фототрофные используют энергию солнечного света, хемотрофные используют химическую энергию. Эукариоты же либо сами синтезируют энергию из солнечного света, либо используют готовую энергию такого происхождения. Это может быть связано с появлением среди эукариотов хищников, необходимость синтезировать энергию для которых отпала. Ещё одно отличие — строение жгутиков.

У бактерий жгутиками являются полые нити диаметром 15—20 нм из белка флагеллина. Строение жгутиков эукариот гораздо сложнее. Они представляют собой вырост клетки, окруженный мембраной, и содержат цитоскелет аксонему из девяти пар периферических микротрубочек и двух микротрубочек в центре. В отличие от вращающихся прокариотических жгутиков жгутики эукариот изгибаются или извиваются. Две группы рассматриваемых нами организмов, как уже было сказано, сильно отличаются и по своим средним размерам.

Диаметр прокариотической клетки составляет обычно 0,5—10 мкм, когда тот же показатель у эукариот составляет 10—100 мкм. Объём такой клетки в 1000—10 000 раз больше, чем прокариотической. Рибосомы прокариот мелкие 70S-типа. Клетки эукариот содержат как более крупные рибосомы 80S-типа, находящиеся в цитоплазме, так и 70s-рибосомы прокариотного типа, расположенные в митохондриях и пластидах. Видимо, различается и время возникновения этих групп.

Первые прокариоты возникли в процессе эволюции около 3,5 млрд лет назад, от них около 1,2 млрд лет назад произошли эукариотические организмы.

Большие клеточные конструкции не могут себе позволить пустить на самотек процесс обеспечения всех своих составляющих энергией. Именно для этих целей служит своеобразная энергетическая станция — митохондрия. Строение митохондрии и ее роль в большой клетке с ядром — еще одно подтверждение в пользу эволюционного симбиоза бактерий, которые общими усилиями создали эукариотическую клетку. Митохондрия также содержит ДНК с наследственной информацией, и так же, как в бактерии, эта ДНК не упакована в оформленное ядро, а покоится внутри митохондрии, в качестве двуспиральной кольцевой макромолекулы. Независимо от того, какая деятельность по передаче наследственной информации происходит в ядре эукариота, митохондрия самостоятельно осуществляет процесс репликации собственной ДНК.

Выработка АТФ митохондрией происходит по тому же пути, что и у бактерий: при окислительно-восстановительных реакциях; в результате работы мембранного речь идет о мембране митохондрии АТФ-синтетазного комплекса. Именно эти процессы являются основными при снабжении бактерии энергией, и митохондрия эукариота их дублирует. Работаю врачом ветеринарной медицины. Увлекаюсь бальными танцами, спортом и йогой. В приоритет ставлю личностное развитие и освоение духовных практик. Любимые темы: ветеринария, биология, строительство, ремонт, путешествия.

На заре эволюции, более 2,7 миллиарда лет назад, начался один из самых важных и устойчивых симбиозов. Тогда некоторые бактерии поселились внутри крупной археи, став ее митохондриями позднее также хлоропластами растений — так и возникли первые ядерные клетки. Выходит, все животные и растения «населены» древними микробами, ставшими их неотъемлемой частью.

Важной вехой в понимании этих давних событий стало открытие асгардархей, то есть «архей из Асгарда». Асгард — огороженный город богов в скандинавской мифологии. Такие археи представляют собой ближайших родственников эукариот и имеют с ними общие черты.

Похожие новости:

Оцените статью
Добавить комментарий