2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками.
Применение искусственного интеллекта в московском здравоохранении
Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями. по использованию алгоритмов искусственного интеллекта для решения научных и прикладных задач в области офтальмологии. Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. Применение искусственного интеллекта в медицине уже сегодня позволяет серьезно повысить точность диагностики, облегчить жизнь пациентам с различными заболеваниями, а с развитием технологий сделает реальным появление сверхэффективных персональных. Использование искусственного интеллекта (ИИ) для анализа данных в целях фармаконадзора.
Чем так хорош искусственный интеллект в медицине?
- Собянин: Цифровые технологии спасают жизни и повышают качество лечения москвичей
- Какие есть препятствия на пути внедрения ИИ в медицину?
- Перспективы применения ИИ
- Читайте также:
- Лечат рак и эпилепсию: как искусственный интеллект помогает врачам и спасает жизни
Искусственный интеллект в медицине: главные тренды в мире
Эти факторы только повысят спрос на высококвалифицированных медицинских работников и усложнят доступ к медицинской помощи. Поэтому инновационные технологии должны содержать в себе искусственный интеллект и базу знаний в предметной области. Так они освободят врачей от рутинных повседневных задач: внесение информации в медкарту, детальный анализ большого массива данных из истории болезней и т. Благодаря этому медработники сконцентрируют время и усилия на решении серьезных диагностических вопросов и выборе лечения. Современные ИИ-технологии могут помочь системе здравоохранения повысить удовлетворенность пациентов и медицинского персонала, снизить стоимость медицинских услуг и улучшить качество медицинской помощи. Онлайн-консультации Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов. Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников.
Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности.
Однако говорить об использовании роботов-хирургов пока рано. Причина кроется в большом количестве алгоритмических частей, с помощью которых можно создать конечный продукт.
При этом они могут быть не связаны напрямую с медицинскими показателями. К примеру, автопилот распознает препятствия на дороге, но не имеет доступа к управлению машиной. Польза для каждого Применение ИИ выгодно как для врача, так и для пациента — то есть, для всей системы здравоохранения в целом.
Качество диагностики выходит на совершенно другой уровень. Однако с развитием технологий появляются и опасения у людей — некоторые пациенты сейчас склонны не доверять искусственному интеллекту. Но дело в том, что за весь процесс полная ответственность все также остается на враче — именно он выносит окончательное решение о диагнозе и лечении.
ИИ лишь помогает ему собрать все нужные данные воедино и указывает на сигналы, которые могут свидетельствовать об отклонении. Сама технология рассматривается только в качестве СППВР-сервиса — системы поддержки принятия врачебных решений. ИИ анализирует информацию о пациенте, и только врач определяет, что и как делать дальше.
Искусственный интеллект не менее полезен для Министерства здравоохранения, например, при массовом медицинском осмотре — скрининге. Для примера возьмем норматив — двойной повторный пересмотр маммографических исследований на рак молочной железы. В этом случае мы снимаем с врачей обязанность проводить первичный или второй просмотр карты пациента и поручаем это искусственному интеллекту.
Благодаря алгоритму, большой системный процесс автоматизируется, у врачей появляется свободное время — его можно уделить более тщательной диагностике, которую пока нельзя доверить технике. Этика применения ИИ Расширение участия ИИ в медицине поставило перед специалистами ряд этических вопросов, связанных, в том числе, с его использованием без контроля врача. Речь идет о вероятности самостоятельного применения инструментов пациентом.
Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист.
Задачи: Найти информацию о том, как используется искусственный интеллект в медицине Опробовать доступность сервисов искусственного интеллекта для ранней диагностики заболеваний пациентов. Выяснить перспективы использования искусственного интеллекта в медицине. ГЛАВА 1 Медицинские сервисы с использованием технологий ИИ Медицинские технологии — молодая, но быстроразвивающаяся отрасль науки и бизнеса, основной целью которой является повышение качества, удобства и безопасности оказываемых медицинских услуг. Сегодня в медицинской практике активно используются нейросети — модели, которые построены на основе человеческой нервной системы. Нейросети активно применяются в рентгенологической практике, помогая врачу-рентгенологу поставить диагноз на раннем этапе. Например, нейросеть может проанализировать сотни обезличенных снимков, сравнить их со снимками здоровых пациентов и подсветить врачу наличие или отсутствие опасной патологии.
Именно такие системы активно интегрируются в системы поддержки принятия врачебных решений. Система поддержки принятия врачебных решений СППВР — это сервис на основе искусственного интеллекта, который позволяет врачу получить рекомендацию при лечении, диагностике и мониторинге состояния пациента. При этом такие системы включают в себя не только искусственный интеллект, но и электронные справочники, системы проверки безопасности терапии, системы контроля качества и системы скрининга врачебных лекарственных назначений. Можно легко представить ситуацию: на приём к врачу пришёл пациент с сахарным диабетом. Как правило, у таких пациентов, помимо диабета, есть много сопутствующих заболеваний, о которых врачу также необходимо помнить. И главная задача врача в таком случае — вылечить пациента, учитывая все особенности его анамнеза. В этом врачу помогает СППВР: она видит всю историю болезни и в своих рекомендациях основывается на анализе всех имеющихся данных.
Представим, что врач назначил препарат, который противопоказан пациенту по какому-то из имеющихся у него заболеваний. При сахарном диабете второго типа СД-2 часто назначают метморфин. Если врач назначит пациенту с хронической сердечной недостаточностью такое лекарство, программа подскажет врачу, что это лекарство лучше заменить, а также предложит ему список более подходящих препаратов. И врач, в свою очередь, может скорректировать план лечения с учётом этих рекомендаций. Однако важно понимать, что такие системы являются вспомогательными. В российской практике законодательно закреплено, что такое программное обеспечение не может самостоятельно ставить диагноз: это может сделать только врач! Чтобы разработать такую систему, необходима высокая медицинская технологическая экспертиза, а также очень большое количество медицинских данных, потому что именно на них алгоритмы обучаются ставить диагнозы.
На сегодняшний день существует несколько видов подобных сервисов — СППВР, симптомчекеры, а также сервисы, работающие в режиме реального времени и помогающие врачам при диагностических исследованиях. Симптомчекер представляет собой анкету с перечнем симптомов. Такие анкеты могут заполняться пациентом либо перед приёмом, либо непосредственно на самом приёме совместно с врачом. В российской практике, чтобы избежать самолечения со стороны пациентов, внедряется предварительное заполнение таких анкет, но без демонстрации пациентам возможных диагнозов: их видит только врач. Симптомчекеры особенно актуальны в случаях, когда к начинающему врачу приходят пациенты с обширной или размытой симптоматикой — в этих случаях программа может подсказать врачу не только диагнозы, которые наиболее вероятны при определённой клинической картине, но и рекомендации по лечению, а также направления на дополнительные исследования или на приём к узкоспециализированному врачу. В более продвинутых медицинских сервисах могут использоваться технологии компьютерного зрения. Например, такие технологии применяются при процедурах гастроскопии.
В классической практике врач с помощью камеры эндоскопа исследует слизистые оболочки органов и самостоятельно ищет отклонения. В силу сложности данного исследования врач может упустить детали, важные для постановки верного диагноза. Компьютерное зрение помогает врачу замечать такие детали. Работа сервиса выглядит следующим образом: к камере эндоскопа подключается специальный алгоритм на базе искусственного интеллекта. На специальном мониторе он подсвечивает врачу области с возможными отклонениями и даёт рекомендации дополнительно сфотографировать и исследовать выделенные области. После обследования врач загружает снимки в СППВР, которая помогает подтвердить или скорректировать ранее поставленный диагноз. Анализ такого снимка занимает у врача от одного до нескольких часов, что связано со сложностью данного вида исследований.
Программа же выдаёт результат практически мгновенно, анализируя изображение по заданным алгоритмам. Врач видит уже размеченный снимок, на котором подсвечены опасные зоны, а также предварительные диагнозы, поставленные на основе анализа этого снимка. Главная ценность таких программ состоит в том, что они значительно сокращают время рутинных задач врача. Это позволяет сделать диагностику пациента более персонализированной и быстрой: СППВР ранжирует пациентов по степени тяжести, что также позволяет врачам своевременно реагировать на эти данные и оказывать помощь в первую очередь тем, кто нуждается в ней больше всего. Как создать медицинский сервис с использованием ИИ Как происходит разработка медицинских сервисов с использованием ИИ — с момента постановки задачи до выхода готового продукта в клиническую практику? Сбор данных. В первую очередь следует начать со сбора огромного массива данных реальных пациентов из тех медицинских учреждений, в которых они когда-либо проходили лечение.
Для этого понадобится: выявить проблему и определить диагноз, с которым вы хотите работать; найти группы врачей, которые помогут вам валидировать вашу модель; собрать группу разработки, которая сможет выстроить эту модель и «обучить» её. Прежде чем обработать данные, предстоит подготовить их. Для этого их нужно обезличить: в ходе этого процесса пациент получает код, а также убираются персональных данных ФИО, номер паспорта и т. При этом год рождения и диагноз, не обезличиваются. Разметка данных. После того, как данные прошли процедуру обезличивания, они передаются врачам на разметку. Прежде чем приступить к разметке данных, врачи определяют методологию, по которой они будут работать с разметкой.
Они определяют диагноз, симптоматику, а также зоны и маркеры, с которыми они будут работать. Только после этого врачи вручную размечают снимки. Сегодня разметка данных, как правило, происходит с помощью программ, где врач в специальном интерфейсе очерчивает необходимые зоны.
Процесс может включать в себя удаление несущественной информации, нормализацию и стандартизацию данных.
Затем, выбирается подходящая нейросетевая архитектура и проводится обучение. Этот этап включает в себя передачу данных через различные слои нейросети, где каждый слой проходит через процесс вычисления, используя свои веса и функции активации, для получения вывода. Обучение происходит при помощи алгоритмов обратного распространения ошибки, которые корректируют веса нейронов в соответствии с приближением к оптимальным значениям функции ошибки. После обучения нейросеть тестируется на тестовых данных, чтобы определить точность ее работы.
При достаточно высоких показателях, она может быть использована для анализа новых данных пациентов и предоставления рекомендаций врачам. Развитие ИИ-медицины в России Как и во всем мире, в России существуют различные проекты и инициативы, связанные с использованием искусственного интеллекта в медицине. Некоторые из них уже демонстрируют успешные результаты в областях, таких как диагностика и алгоритмизация лечения. Однако, можно сказать, что в целом Россия не является лидером в развитии ИИ-медицины в мире.
Ведущие страны, такие как США и Китай, вкладывают большие ресурсы исследований и разработок в эту область. В России важным фактором сдерживания развития ИИ-медицины, является недостаток финансирования, ограниченный доступ к высокотехнологичному оборудованию, а также недостаточная масштабность проектов. Тем не менее, Россия продолжает развивать эту сферу и прилагает усилия для преодоления препятствий. Вместе с тем, нужно отметить, что эта область относительно новая и ее развитие может занять много времени и усилий.
Риски использования ИИ и нейросетей в области здравоохранения ИИ может «подсказать» неправильный диагноз, особенно если модель была обучена на неполных или неточных данных. Если искусственный интеллект используется неправильно или алгоритмы машинного обучения неправильно обучены, то они могут привести к опасным ошибкам, которые нанесут вред пациентам.
ИСКУССТВЕННЫЙ ИНТЕЛЛЕКТ В МЕДИЦИНЕ. ПЕРСПЕКТИВЫ РАЗВИТИЯ В РОССИИ
Начались клинические испытания первого лекарства, целиком разработанного искусственным интеллектом (ИИ), сообщает CNBC. Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований. Искусственный интеллект (ИИ) сделают базовой медицинской технологией, эта задача вошла в Стратегию развития московского здравоохранения до 2030 года. Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов.
Применение искусственного интеллекта в медицине
Почти все они были зарегистрированы в Росздравнадзоре в 2021 году. На сегодня не было ни одного неблагоприятного события, связанного с их применением. Но вместе с тем, так как мы относим эти программные продукты к высокому классу риска, до февраля 2022 года все производители должны предоставить подробные отчеты об их применении в медицинской практике, чтобы мы могли аккумулировать данные и понять, как развивается эта технология». Здравоохранение — лидер по применению искусственного интеллекта Эксперт по искусственному интеллекту «Центрального научно-исследовательского института организации и информатизации здравоохранения» Минздрава России Александр Гусев отмечает: «Сейчас сфера искусственного интеллекта является мировым рекордсменом в мире по размеру инвестиций, вливаемых в программные продукты с использованием технологий ИИ, и по количеству сделок. Здравоохранение — это та отрасль, где инвесторы имеют максимальные надежды на то, что эти продукты будут востребованы и популярны».
По словам А. Это абсолютный рекорд по сравнению с другими отраслями. А по размеру привлеченных средств у здравоохранения второе место — 2,766 млрд. Впереди только транспорт и логистика.
Но, несмотря на эти рекорды, с прошлого года все острее становится дискуссия о доверии и ответственном отношении всех участников сферы ИИ. Слишком много спекуляций. Большая часть ни к чему плохому не привела, однако 18 процентов причинили вред разной степени тяжести, в том числе были зафиксированы 4 смертельных случая. Будет доказанная безопасность, будет и доверие.
Стандарты — залог доверия По мнению Дмитрия Павлюкова, которое он высказал на форуме, в условиях формирования доверия ключевую роль играет стандартизация в области применения ИИ. Как отмечает его председатель Сергей Гарбук, в области здравоохранения стандартизация ИИ наиболее актуальна. С одной стороны, высок уровень технологической зрелости, с другой — не менее высок уровень ответственности, связанной с рисками для граждан в результате некорректной работы системы. Поэтому стандарты — это инструмент нахождения компромисса между безопасностью системы новой технологии для людей и простотой продвижения новых технологий на практике.
Это мобильное приложение, которое задаёт человеку вопросы, а тот — описывает симптомы, после чего Ada ищет информацию о проблеме и даёт рекомендации. Существуют похожие сервисы, способные указать на заболевания, и даже на сахарный диабет. Для людей, которые выписались из больницы разработано специальное приложение Sense. Набирает популярность генетический анализ с помощью сервиса Sophia Genetics.
Так, анализ ДНК даёт возможность выявить предрасположенность человека к некоторым заболеваниям: диабету, язве желудка и другим. Проект MedClueRx позволяет определить, какие лекарственные препараты могут помочь при депрессии, эпилепсии, заболеваниях нервной системы. Сервис ИИ MedWhat способен заменить личного врача — это приложение для мобильного телефона со встроенной функцией распознавания речи. Приложение способно интересоваться самочувствием человека и отвечать на разные вопросы, например: «Как избавиться от головной боли?
В ближайшем будущем планируется дать доступ сервису MedWhat к историям болезней пациентов и к генетической информации. Обработка огромных объёмов информации ИИ способен обрабатывать несколько тысяч страниц в секунду при поиске необходимой информации. Примерно каждые двадцать минут в мире появляется новая статья по медицине. В помощь медикам недавно была создана система поддержки по принятию решений — CDSS на основе ИИ, которая объединила информацию и данные о показателях здоровья пациентов и их истории болезни.
Автоматизация и улучшение Бывает, что пациент отменяет визит к врачу, и это несёт клинике убытки: в США подсчитали, что система здравоохранения страны ежегодно теряет около 150 миллиардов долларов.
Зачем врачам нейросети Правительство оценит готовность внедрения искусственного интеллекта во всех регионах России Пандемия COVID-19 серьезно ускорила технологический прогресс в медицине по всему миру. В результате сфера здравоохранения стала лидером по внедрению инноваций, в основном на базе искусственного интеллекта. Заместитель главы федерального минздрава Павел Пугачев отметил, что на данный момент зарегистрированы Росздравнадзором и уже применяются в больницах более 20 медицинских изделий на основе нейросетей.
Кроме того, по оценкам ВОЗ, к 2030 году во всем мире ожидается дефицит порядка 10 миллионов медработников. Спрос на высококвалифицированных специалистов растет уже сейчас. Все это говорит о необходимости освободить врачей от рутины, заполнения бумаг и медкарт пациентов. Обработка речи человека, интеллектуальная поддержка принятия решений и другие технологии на базе ИИ помогут медикам уделять больше времени на диагностику сложных случаев и повысить эффективность лечения больных.
Наши жители не получат новые возможности по поддержанию и сохранению здоровья, а мы окажемся в роли «догоняющего» участника новой реальности. Тем временем ИИ становится новой базовой технологией, как когда-то персональные компьютеры и программы, которыми мы пользуемся повседневно переводчики, навигация, домашние умные помощники и т. Скорость этих изменений, а также требования к росту качества жизни постоянно увеличиваются. В этих новых условиях нам необходимо предоставлять лучшие медицинские услуги для наших жителей и условия труда для наших медицинских работников. При постоянном развитии цифровизации здравоохранения, экспоненциальном росте накапливаемых данных без новых технологий их обработки просто не обойтись. И такой технологией является искусственный интеллект. В каких мегаполисах мира работают аналогичные сервисы? Конечно, мы активно изучаем международный опыт, но у нас есть проекты, по масштабу не имеющие аналогов в мире.
Например, московский эксперимент по использованию компьютерного зрения для анализа медицинских изображений. Результаты этого проекта легли в основу 11 национальных стандартов разработки и применения ИИ для клинической медицины. Проекты по исследованию возможностей ИИ в столичном здравоохранении реализуют единым фронтом несколько команд Комплекса социального развития Правительства Москвы — от разработки принципиально новых для страны ИИ-сервисов, тестирования прототипов до масштабного внедрения готовых продуктов. Мы разрабатываем и реализуем собственные подходы по применению ИИ в здравоохранении, с исследовательским скепсисом подходим к информации о возможностях тех или иных технологий, все проверяем и тестируем на своей базе. В последних отчетах исследовательских и консалтинговых компаний о цикле развития новейших технологий генеративный ИИ находится на пике завышенных ожиданий — о нем много говорят, с ним экспериментируют. Однако говорить о его массовом внедрении, в первую очередь в медицине, пока рано — нет ни одного готового продукта с понятным сценарием использования и доказанными эффектами для роста производительности труда или повышения качества медицинского обслуживания, диагностики или лечения. Безусловно, у технологии большой потенциал, и мы пока даже не представляем его глубину и трансформационную силу. Предполагаю, что оценить первые результаты мы сможем в среднесрочной перспективе — на горизонте пяти лет.
Но на протяжении этого времени нам, стороне заказчика и пользователя технологии, предстоит провести немало экспериментов. И возможно, не все сразу принесут желаемые результаты. Пандемия заставила рентгенологов обучаться буквально не отходя от рабочего места. Насколько они достоверны? И это, безусловно, гигантские объемы данных. Практически каждое соприкосновение жителя с системой здравоохранения оставляет цифровой след в его электронной медицинской карте. Сегодня порядка трех миллиардов цифровых записей аккумулирует электронная медицинская карта ЭМК пациента. Мониторинг полноты данных, оценка их качества, поддержание необходимого уровня «гигиены» данных — это неотъемлемая часть нашей повседневной рутины.
Но благодаря этой постоянной скрупулезной работе данные сегодня стали применимыми для машинной обработки и анализа, а также для обучения и внедрения сервисов на основе искусственного интеллекта. Мы организовали совместную с медицинским сообществом работу по разработке и поддержанию в актуальном состоянии структуры собираемых медицинских данных.
Искусственный интеллект в медицине. Настоящее и будущее
Теперь же искусственный интеллект готов прийти на помощь к профессионалам медицины. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. — Илья Александрович, почему применение искусственного интеллекта (ИИ) в государственном здравоохранении обрело такую высокую актуальность?
Чем так хорош искусственный интеллект в медицине?
- Другие статьи по теме
- НБМЗ — Ассоциация разработчиков и пользователей искусственного интеллекта в медицине
- Нейронные сети в помощь врачам
- ИИ в медицине: тренды и примеры применения
- Искусственный интеллект в медицине: применение и перспективы
- Для чего в российских регионах используют ИИ в медицине
Искусственный интеллект идет в медицину: успешные бизнес-решения в отрасли
Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. "Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами. Росздравнадзор впервые приостановил применение медизделия с искусственным интеллектом (ИИ) — системы анализов , позволяющей врачам обнаружить на снимках компьютерной томографии патологии. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением. Искусственный интеллект (ИИ) в медицине в значительной степени уже сейчас заменяет человека в разработке новых лекарств, диагностике болезней, а также улучшает медицинские услуги в целом. 2022 год для искусственного интеллекта (ИИ) в российской медицине ознаменовался двумя знаковыми событиями.
Искусственный интеллект в медицине: преображение здравоохранения в XXI веке
Решения с использованием искусственного интеллекта в медицине внедряют 70 российских регионов, сообщил заместитель министра здравоохранения РФ Павел Пугачев, выступая на форуме "Биотехмед". 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении. 6 случаев, когда искусственный интеллект может творить чудеса в здравоохранении.