Новости вязкость крови от чего зависит

Густая кровь обладает повышенной вязкостью – это становится причиной застоя крови в сосудах, повышает риск тромбообразования. Синдром повышенной вязкости крови не является заболеванием, но при наличии серьезных патологий может вызывать тяжелые и грозные осложнения.

Симптоматика густой крови

  • Хирург Ювченко объяснил, почему кровь может стать густой или жидкой | DOCTORPITER
  • Причины “густой крови”
  • Области применения
  • Диета при густой крови
  • Популярные материалы

Причины густой крови, лечение

Повышает вязкость крови нормальный питьевой режим, отказ от приема длительных горячих ванн, своевременное снижение температуры при различных заболеваниях. Снижение вязкости крови ведет к ускоренному передвижению крови по сосудам. Увеличение вязкости крови приводит к тому, что некоторые кровяные клетки не могут полноценно выполнять свои функции, а некоторые органы перестают получать необходимые им вещества и не могут избавляться от продуктов распада. Густая кровь (синдром повышенной вязкости) возникает при увеличении значений гематокрита, нарушении соотношения между уровнем ферментов и плазмы.

Измерение вязкости цельной крови

В ряде экспериментов по моделированию микрокровотока в разных условиях при переменных скоростях сдвига и разном соотношении объемных фракций крови продемонстрировано, что в ходе деформации эритроциты подвергаются разнообразным морфологическим модификациям [ 85 ]. Предложены возможные механизмы этого сложного перехода от одной формы клетки к другой при повышении напряжения сдвига [ 92 ]. В современных экспериментальных исследованиях по изучению деформируемости эритроцитов делается акцент на сложности и комплексном характере физиологических механизмов этого процесса. До настоящего времени наши знания о регуляции деформируемости эритроцитов базируются на измерениях их деформации при вхождении в узкий канал либо в условиях движения в потоке при заданных сдвиговых условиях течения скорости сдвига или напряжения сдвига. Эти два подхода, как представляется, отражают различные клеточные механизмы, обеспечивающие деформацию. Было замечено, что состояния со значительными нарушениями деформируемости эритроцитов практически совпадают с условиями проявления эриптоза — программируемой гибели эритроцитов, процесса аналогичного апоптозу, но имеющего специфические для безъядерных эритроцитов особенности. Это, например, гипоксия, железодефицитные состояния, злокачественные новообразования, дегидратация, метаболический синдром, гемолитическая анемия, сердечная недостаточность, сахарный диабет, хроническая болезнь почек, малярия, сепсис, серповидноклеточная анемия и т. Исходя из концепции эриптоза, изменения деформируемости в физиологических условиях например, при мышечной деятельности и при патологических состояниях например, при сахарном диабете, серповидноклеточной анемии предложено рассматривать как принципиально разные процессы [ 33 ].

Оптимальной деформируемость оказывается в физиологических пределах таких физико-химических показателей окружающей среды плазмы крови как осмолярность и рН, при отклонении в ту или иную сторону деформируемость снижается. Не менее важно для поддержания нормальной морфологии и деформируемости эритроцитов присутствие альбумина, который обладает способностью не только предотвращать, но и устранять уже имеющий место эхиноцитоз [ 115 ]. Деформация эритроцитов повышает гидродинамическое перемешивание цитоплазмы, что ведет к усилению внутриклеточной конвекции молекул кислорода, дезокси- и оксигемоглобина. Это благоприятствует внутриэритроцитраной диффузии кислорода и является одним из механизмов внутриклеточного транспорта кислорода, обусловливающим высокий коэффициент переноса кислорода при относительно низком коэффициенте диффузии. Ухудшением деформируемости эритроцитов обусловлено развитие застойных явлений капиллярного кровотока и, как следствие, возникновение тканевой гипоксии. За счет перемешивания содержимого эритроцитов в текущей крови деформируемость в большей степени способствует диффузии кислорода, чем облегченная диффузия [ 2 ]. Агрегация эритроцитов Эритроциты человека в физиологических условиях объединяются в линейные и разветвленные агрегаты при снижении скоростей сдвига до критического уровня.

Обратимая умеренная агрегация красных клеток крови человека необходима для нормального кислородного питания тканей и удаления из них продуктов метаболизма. Образование агрегатов по типу монетных столбиков способствует обмену кислородом между эритроцитами. В монетных столбиках и происходит усреднение их степени оксигенации для более эффективного восприятия кислорода в легких [ 14 ]. Агрегация эритроцитов оказывает многофакторное комплексное влияние на сопротивление кровотоку in vivo, которое может реализовываться посредством следующих механизмов: 1 за счет уменьшения упорядоченности линейного течения при увеличении размера движущихся частиц [ 22 ]; 2 повышением затрат энергии на разобщение клеток в условиях микроциркуляции [ 152 ]; 3 агрегация способствует аксиальному дрейфу эритроцитов и образованию краевого плазменного слоя [ 41 ]. Повышенное аксиальное скопление эритроцитов ведет к снижению локальной вязкости в пристеночной зоне сосуда [ 137 ], тем самым модулируя активность сосудистых регуляторных механизмов, активируемых механическим стрессом. Это выражается в ингибировании генерации NO эндотелием [ 25 ], затруднении процесса деоксигенации и снижении отдачи кислорода тканям при существенном увеличения пристеночного слоя плазмы, выступающего в качестве барьера для диффузии кислорода [ 139 ]. Агрегация эритроцитов — достаточно сложный феномен, гемодинамические эффекты которого многосторонни и неоднозначны.

Такие эффекты как проскальзывание skimming плазмы, эффект Фареуса, микрососудистый гематокрит скорее улучшают микрокровоток, однако исходя из влияния агрегации эритроцитов на внутрисосудистый профиль их скоростей, можно заключить, что рост агрегации способствует снижению поток-зависимой вазодилатации, тем самым ухудшая микрокровоток [ 158 ]. Значение агрегации эритроцитов особенно возрастает в условиях патологии, поскольку при этом изменяются степень агрегации, скорость агрегатообразования, устойчивость образующихся агрегатов, их размеры и морфология [ 1 , 11 ]. Повышенная степень агрегации ведет к ухудшению оксигенации тканей, способствует развитию ишемии и тромбоза, приводит к нарушению микроциркуляции органов и тканей [ 97 ]. В экспериментах in vivo показано, что при супранормальных показателях процесса агрегатообразования эритроцитов имеет место существенное уменьшение плотности функционирующих капилляров, в то время как при физиологических уровнях агрегации такое явление возможно только при снижении артериального давления [ 78 ]. Ангиогенез на уровне микроциркуляции отличается стохастическим характером, при этом формируется микрососудистая сеть с мельчайшими сосудами — капиллярами, диаметр которых сопоставим с размерами клеток крови порядка 5 мкм [ 122 ]. Если системное кровообращение имеет определенную структуру и строение, то на уровне микрокровотока рост и изменения сосудистой сети происходят под управлением локальных тканевых факторов [ 101 , 154 ]. Сократительная активность гладких миоцитов сосудистой стенки обеспечивает поддержание оптимального диаметра сосудов в системе микроциркуляции и сопряжена с их способностью поддерживать сосудистый тонус в течении длительного времени.

На мышечный компонент сосудистой стенки непосредственно воздействуют основные тонусформирующие факторы в системе микроциркуляции — нейрогенный, миогенный и эндотелиальный механизмы регуляции просвета сосудов. В физиологических условиях собственно миогенный компонент регуляции в чистом виде локализован на прекапиллярах и сфинктерах, нейрогенная регуляция затрагивает артериолы и артериоло-венулярные анастомозы, мишенью эндотелиальной регуляции диаметра сосудов являются по большей части более проксимальные сосуды мелкие артерии, крупные артериолы [ 5 ]. Особое место в регуляции тонуса микрососудов наряду с нейрогенной и гормональной регуляцией принадлежит локальной местной регуляции, поскольку именно она способна оперативно управлять кровотоком в соответствии с постоянно изменяющимися потребностями тканей. И это служит дополнительным аргументом в пользу представлений о микроциркуляторно-тканевой системе, где все подчинено решению основной задачи — обеспечению оптимального уровня жизнедеятельности тканевого региона. На уровне обменных сосудов капилляров , не имеющих сократительных элементов, объектами регуляции выступают число функционирующих перфузируемых капилляров, отражающих площадь обменной поверхности, и те процессы обмена, которые реализуются через сосудистую стенку массоперенос растворенных веществ [ 5 ]. Сосуды микроциркуляторного русла почти полностью выстланы эндотелиальными клетками, которые фенестрированы и содержат поры, связь между ними осуществляют различные молекулы, включая кадгерины, а также токопроводящие щелевые контакты, которые обеспечивают восходящую электрическую связь между эндотелиоцитами. Эти эндотелиальные структуры различаются по плотности и морфологии в сосудах различных органов.

Эндотелиоциты в симбиозе с гладкомышечными клетками сосудистой стенки влияют на микрососудистый кровоток преимущественно за счет регуляции сосудистого тонуса артериол и прекапиллярных сфинктеров. Одной из важнейших субклеточных структур эндотелия, опосредующей его функцию, является гликокаликс, присутствующий на люминальной поверхности эндотелия [ 71 , 146 ]. Гликокаликс представляет собой гелеобразный слой толщиной 0. Гликокаликс играет ключевую роль в поддержании гомеостаза сосудов, контролирует проницаемость сосудов и тонус микроциркуляторного русла, предотвращает микрососудистый тромбоз и регулирует адгезию лейкоцитов. Принято считать, что целостность гликокаликса является основной детерминантой сосудистого барьера, однако в исследованиях Guerci P. Гликокаликс отталкивает эритроциты от люминальной поверхности эндотелия, способствуя их дальнейшему продвижению по сосудистому руслу, препятствует адгезии тромбоцитов к сосудистой стенке и ослабляет взаимодействие между тромбоцитами и лейкоцитами [ 4 ]. Число Рейнольдса, отражающее гидродинамический режим движения и степень его турбулентности, в таких сосудах невелико, поэтому течение крови принято считать ламинарным и подчиняющимся закону Стокса, на основании чего в таких условиях можно говорить о параболическом распределении скоростей профиле скоростей в сечении трубки сосуда.

Если геометрия сосуда неизменна, движение крови определяется ее суспензионными свойствами. В сосудах с диаметром, значительно превышающем размеры клеточных элементов, кровь рассматривают как континуум с нелинейными реологическими свойствами. При изучении движения крови в стеклянных трубках было продемонстрировано, что кажущаяся вязкость крови значительно снижается при уменьшении диаметра сосуда менее 300 мкм уровень микроциркуляции эффект Фареуса—Линдквиста , а при уменьшении диаметра сосуда до критических для пассажа клеток размеров порядка 3—5 мкм , наблюдается обратный эффект Фареуса—Линдквиста — рост кажущейся вязкости крови, поскольку на этом уровне определяющим фактором становятся клеточные свойства [ 24 , 128 ]. Значения сопротивления кровотоку на уровне микроциркуляции оказались существенно выше в условиях кровотока по сосудистой сети in vivo в сравнении с оценками, полученными в экспериментах in vitro при течении в стеклянных трубках. Логично предположить, что сосудистая стенка, являясь активным участником циркуляции крови, вносит свой вклад в это несоответствие. В качестве одной из возможных причин несоответствия было названо наличие гликокаликса на поверхности эндотелиальных клеток. Эндотелий, длительное время считавшийся пассивной сосудистой оболочкой, в настоящее время рассматривается в качестве независимой системы, играющей важную роль в процессах тромбоза и тромболизиса, взаимодействия тромбоцитов и лейкоцитов с сосудистой стенкой, в регуляции сосудистого тонуса и пассажа крови [ 146 ].

Эндотелий экранирован от патогенных воздействий эндотелиальным гликокаликсом — гелеобразным отрицательно заряженным слоем, состоящим из сульфатированных гликозаминогликанов и протеогликанов, который выполняет защитную функцию в отношении эндотелиоцитов, уменьшая воздействие на них напряжения сдвига, индуцированного потоком крови [ 71 , 146 ]. Напряжение сдвига — это сила, прикладываемая к верхнему слою ламинарно текущей жидкости, вызывающая смещение нижележащих слоев относительно друг друга в направлении прикладываемой силы [ 112 ]. В случае повышения напряжения сдвига, опосредованного через гликокаликс, эндотелий увеличивает выработку оксида азота, вызывающего вазодилатацию и снижение напряжения сдвига. Под действием напряжения сдвига эндотелиоциты существенно усиливают выработку гиалуроновой кислоты в гликокаликсе, что также уменьшает напряжение сдвига. Повреждение гликокаликса нарушает эти механизмы и реакцию эндотелия на напряжение сдвига, что может приводить к развитию тромбоза и атеросклероза [ 4 ]. Более 80 лет назад А. Крог предложил модель транспорта кислорода в ткани, которая базировалась на процессе диффузии кислорода в направлении условного цилиндра цилиндра Крога , окружающего каждый капилляр.

Эта модель продемонстрировала ограничения диффузии и смогла объяснить почему ткани с высоким уровнем потребления кислорода отличаются высокой плотностью капилляров. Также модель Крога показала, что недостаточно просто доставить к органу адекватное количество кислорода, необходимо еще и распределить его в точном соответствии с его потребностями [ 64 ]. Артериолы, которые контролируют сосудистое сопротивление в микрососудистой сети органа, а, следовательно, и приток крови, также отвечают за регуляцию распределения кислорода в пределах тканевого региона. Для обеспечения эффективного контроля, ответ микрососудов на изменяющиеся условия , например, повышенная потребность в кислороде, сниженная доставка кислорода должен быть тесно интегрирован в пределах микрососудистого русла. Клеткам эндотелия принадлежит определяющая роль в интеграции локальных стимулирующих сигналов, эта функция реализуется посредством межклеточной коммуникации в микрососудистом эндотелии [ 126 ] или трансдукцией сигнала в ответ на локальное напряжение сдвига, обусловленное изменениями микрокровотока [ 79 , 80 ]. К примеру, если сосудорасширяющий стимул возникает на уровне капиллярной сети, сосудистый эндотелий способствует проведению сигнала к артериолам, снабжающим эти капилляры, вызывая их дилатацию и тем самым увеличивая приток крови к данному региону. Это было подтверждено другими исследователями на разных органах с использованием различных методических подходов [ 47 , 142 ].

Если кислород может перемещаться таким образом из артериол в капилляры, вполне возможно существование кислородного обмена и между капиллярами с различным уровнем кислорода, между артериолами и венулами. Кроме того, количественные оценки микрокровотка продемонстрировали значительную пространственную гетерогенность капиллярной перфузии [ 46 ]. Уникальные реологические свойства эритроцитов, циркулирующих в местах ветвления микрососудов эффект Фареуса и проскальзывание плазмы в точках бифуркации способствуют проявлению достаточно широкого диапазона распределения гематокрита в капиллярах и скоростей движения эритроцитов. Гетерогенность микрососудистого гематокрита, падение сатурации кислорода в прекапиллярной зоне и диффузионный обмен кислорода между микрососудами означают, что кровоток сам по себе не может быть адекватным индикатором адекватной доставки кислорода в ткани [ 46 ]. Это приобретает особое значение в плане регуляции кислородного снабжения, в особенности в условиях патологии и при исследовании доставки кислорода в условиях in vivo. Обмен нутриентов и метаболитов требует наличия проницаемого эндотелиального барьера, контролирующего пассаж биомолекул и жидкости между кровью и интерстициальным пространством. Что касается транспорта кислорода, три типа клеток внутри сосудистой системы гладкомышечные клетки сосудистой стенки, эндотелиоциты и эритроциты выполняют согласованную работу, чтобы обеспечить адекватный транспорт кислорода к месту его потребления [ 21 ].

Соответствие потребности в кислороде и его доставки в скелетные мышцы [ 123 ] и головной мозг [ 51 ] в определенной степени изучено, хотя обсуждение механизмов в основном сосредоточено на регулировании функции кровеносных сосудов, то есть на клетки, составляющие сосудистую стенку: эндотелиоциты и гладкие миоциты. В последнее время появляется все больше свидетельств того, что эритроциты наряду с транспортной функцией способны выполнять функции детекции гипоксии и локальной регуляции кровотока в соответствии с метаболическими потребностями тканевого микрокрайона, поскольку их свойства зависят от парциального напряжения кислорода. Например, было показано, что свойства эритроцитов претерпевают существенные изменения в ответ на физические нагрузки, которые сказываются на доступности кислорода и на его потреблении тканями [ 42 ]. Гипотеза о том, что эритроциты наряду с эндотелиоцитами и гладкими миоцитами сосудистой стенки выступают в качестве равноправных участников процесса регуляции микрокровотока в соответствии с локальными потребностями тканей выдвинута относительно недавно. Внутриэритроцитарные сигнальные пути регулируют высвобождение кислорода и модифицируют реологические свойства красных клеток крови, а также высвобождение ими вазоактивных соединений в ответ на воздействие специфических лигандов, сигнализирующих о потребности в кислороде посредством активации мембранных рецепторов эритроцитов [ 21 ]. Продолжительность жизни зрелого эритроцита составляет около 120 дней, большую часть из этого времени эритроциты находятся в системе микроциркуляции, где подвергаются значительным биомеханическим и биохимическим стрессовым воздействиям. Уникальная физиология эритроцитов позволяет ему адаптироваться к этим воздействиям и успешно функционировать в сложных условиях циркуляции [ 117 ].

В системной и легочной микроциркуляции эритроциты подвергаются высокоамплитудным деформациям, в результате чего происходят биофизические и биохимические изменения, ведущие к элиминации красных клеток крови из циркуляции ретикулоэндотелиальной системой. Была выдвинута гипотеза о том, что многократные механические воздействия пассаж через микроканалы с применением методов микрофлюидики могут моделировать ускоренное старение. Эксперименты по искусственной ригидификации эритроцитов свидетельствуют о значительном ухудшении перфузии тканей при снижении деформируемости эритроцитов. В реальных условиях кровотока модификация деформируемости эритроцитов менее значима, поскольку они все же сохраняют некоторую хотя и сниженную способность к деформации и нарушения микрокровотока имеют место лишь в сосудах самого мелкого калибра, более крупные сосуды такие эритроциты проходят. Поэтому кроме видимых overtly реологических нарушений как например, при серповидноклеточной анемии, когда эритроциты необратимо ригидифицированы , можно говорить и о скрытых covertly нарушениях реологии крови, которые не приводят к окклюзии сосудов, но ухудшают перфузию тканей [ 19 ].

Индивидуальный расчет составляет около 30 мл на каждый килограмм веса. Следует определять норму по внутренним ощущениям организма. Фото: Econet Грамотно составленный рацион, выполнение правил питания, народные средства восстановят нормальную густоту крови без использования медикаментозных препаратов и побочных эффектов. Как разжижить густую кровь. Зачем вообще нужно снижать вязкость крови? Все предельно просто — чем гуще кровь, тем сложнее ей двигаться через сосуды. А именно замедленный кровоток является основной причиной таких болезней, как атеросклероз, варикозное расширение вен, геморрой. Также слишком густая кровь — это одна из основных причин сердечной, почечной и печеночной недостаточности печень и почки также принимают участие в стимуляции кровотока. А самый худший расклад — это тромбоз легочной артерии, инфаркт и инсульт, которые развиваются на фоне купирования сосудов тромбами. Нередко это и вовсе заканчивается летальным исходом, так как если пострадавшему не предоставить помощь буквально в первые 2 часа после возникновения внутреннего кровоизлияния, то сердечно-сосудистая система может и вовсе перестать выполнять свою основную функцию, то есть, будет остановка сердца. Также важно соблюдать нормальную вязкость крови при нестабильном артериальном давлении. Гипертония — одно из самых распространенных последствий густой крови, когда давление постоянно повышено, что провоцирует ухудшение тонуса всех кровеносных сосудов, их расширение и утончение стенок. А что именно необходимо организму для нормализации вязкости крови? Все они прямо влияют на кроветворную функцию, нормализуют кровообращение или помогают регулировать баланс липидов, сахаров в плазме крови. Минералы и солевые соединения. Проще говоря, организму необходим нормальный водно-солевой баланс. Поэтому следует ежедневно пить хотя бы 1,5 — 2 литра воды. Таурин и прочие аминокислоты в том числе незаменимые. Организму они необходимы для стимуляции межклеточных обменных процессов. Это поможет расщепить вредный холестерин, снизить концентрацию липидов в кровеносных сосудах. Некоторые группы фитонцидов. Они помогают нормализовать работу желудочно-кишечного тракта, предотвратить дисбаланс микрофлоры желудочно-кишечного тракта. Содержится только в фруктах и овощах, причем свежих при термической обработке частично разрушается. Клетчатка помогает кишечнику получать большее количество питательных компонентов из пищи, а также задерживает жидкость в толстой кишке. Что касательно витаминов, то их избыток негативно сказывается на вязкости крови. К примеру, чрезмерное употребление аскорбиновой кислоты приводит к снижению концентрации калия в плазме крови, что провоцирует водно-солевой баланс и частые позывы к мочеиспусканию то есть, организм начинает более активно терять жидкость. Понизить вязкость крови можно в домашних условиях и без таблеток, следуя определенным правилам питания.

Ведь каждому органу нужно питание. Даже сердцу. Когда эритроциты налипают друг на друга, то в крови образуется тромб. Именно от таких образований умирает каждый четвертый человек на планете. Сердце обладает таким запасом прочности, что может работать более 150 лет. Но это возможно только тогда, когда клетки сердца будут получать все необходимые питательные вещества. Если в крови нет чего-то важного, то клетки сердца будут страдать, работая всё хаотичнее. Такое явление в медицине называют мерцательной аритмией. Если в нормальных условиях оно отдыхает каждые полсекунды, то при аритмии отдых сокращается, а значит, сердце изнашивается быстрее. А если прибавить к этому недостаток питательных веществ, дефицит кислорода, стресс, неправильную еду, переизбыток кислоты в напитках, то срок жизни сердца сокращается. Кальций Без кальция страдают зубы, ногти, волосы.

Вот в такой крови жир. Холестерин сворачивается, так же, как в шашлыке с уксусом, и налипает на эритроциты. И это называется тромб. И от этих тромбов, собственно, умирает каждый четвертый человек на планете. Статистика везде одинаковая. Только у японцев другая статистика. У них люди в некоторых местах, включая наш любимый остров, не умирают от болезней, а перестают жить, потому что кончается энергетический запас. Оказывается, так тоже можно! Итак, сердце может быть идеальным, добрым, ласковым — все зависит от того, какая кровь к нему подойдет. Вы знаете, что сердце сохраняет автоматизм, даже когда отделено от организма. Он взял сердце цыпленка, положил его в чашку, налил туда воду со всем необходимым 28, 3,12,15, 7 , водичку и каждый день ее менял. Сердце жило 35 лет. Без курицы. Оно не знало, что курицы нет. Питательные вещества подходят — все нормально, мама на месте. Значит, она съела что-то хорошее. Профессор получил Нобелевскую премию, потому что он доказал, что если клетку содержать в нормальных условиях, она может очень долго жить. В природе ни одна курица не дожила до своего 35-летнего юбилея. Какая вязкость крови, какие питательны свойства крови, такая и жизнь. Это абсолютно две взаимосвязанные вещи. Если в крови нет чего-то из необходимого — страдают клетки сердца. Клетка сердца страдает, страдает, страдает, а потом умирает. И сердце начинает сокращаться неритмично, хаотично, слишком часто или более медленно. Мы это называем мерцательной аритмией. Оно не отдыхает. Оно должно полсекунды отдыхать -полсекунды сокращаться. Если оно треть отдыхает, а три четверти сокращается, или две третьих, оно истощается. И мы говорим: «у вас изношенное сердце». И патологоанатом видит, что сердце как тряпочка и говорит: «Этот человек уже не мог жить». У него истощение сердечной мышцы. Истощение — это отсутствие питательных веществ и кислорода. О чем же нам надо заботиться, чтобы изменить статистику сердечно-сосудистой патологии? Заботиться принципиально надо о нескольких вещах. Причины сердечно — сосудистых заболеваний А причины наших инфарктов все те же: Психология приведет к инфаркту? Сто процентов! Еда неправильная приведет? Даже не сомневайтесь, приведет. Отсутствие воды, присутствие кислых напитков приведет? Хламидии в сердце. Далее о кислотно-щелочной шкале крови. Как мы уже знаем: 7 — нейтрал, 1 — это кислота и 14 — щелочь. Мы отрицательно заряженные: межклеточная жидкость заряжена -50, а внутриклеточная жидкость заряжена — 40. Между ними разность потенциалов. Внутри клетки -40, снаружи -50. Это говорит о том, что есть электрический ток. Если мы поставим кардиограмму, мы этот электрический ток поймаем в виде кривой на разных точках сердца. Так вот 7,43 — это константа рН крови. Кровь — это слабый электролит щелочной. Если рН крови снизится до 7,1 — это смерть. От 7,43 до 7,1 — граница нашей с вами жизни. Погасить электрический потенциал можно кислотой. Три литра Пепси-Колы с этой задачей легко справляются. Либо человек останется без зубов, костей, ногтей, т. Ощелачивающих минералов несколько: кальций, магний, натрий, калий. А кровь щелочная. А минералов не хватает. Я всегда привожу такой пример. Человек приходит домой усталый с работы, достает свежемороженую семгу, представили? Садится и съедает. Сколько можно съесть свежемороженой рыбы без соли? А если посолить, сколько можно съесть? А чем соленая семга отличается от несоленой? Все, у кого повышенная кислотность организма, испытывают сильную потребность в натрии.

Густая кровь: симптомы, которые нельзя игнорировать!

Зачастую вязкость крови наблюдается в период вынашивания ребенка. Вязкость крови сильно зависит от концентрации эритроцитов и их биомеханических свойств, таких как агрегация и эластичность мембран. Вязкость крови как свойство этой жидкой ткани кроме вышеназванных внешних факторов зависит от вязкости плазмы, показателя гематокрита (объемной концентрации ее форменных элементов, преимущественно эритроцитов).

Записаться на прием

  • Вязкость крови: причины, последствия
  • Диета при густой крови
  • Диета при густой крови
  • Густая кровь (синдром повышенной вязкости): предпосылки, проявления, связь с болезнями, чем лечить?

Что такое сгущение крови, и чем оно опасно

Как выяснилось, при COVID-19 могут возникать микротромбозы, которые приводят к недостаточности одного или нескольких органов. Дело в том, что одна из благоприятных сред для размножения вируса SARS-CoV-2, - это эндотелий, выстилающий внутреннюю поверхность кровеносных сосудов, которая контактирует с кровью. В норме они очень эластичны и кровь движется по ним беспрепятственно. Когда клетки эндотелия поражает вирус, внутренняя оболочка сосудов теряет свою эластичность, затрудняя ток крови. При этом человек даже не почувствует, что у него развивается тромб. Одно из самых важных условий борьбы с тромбозом - модификация рисков. В зоне их действия - пациенты с онкологическими, сердечно-сосудистыми заболеваниями, перенесшие хирургические вмешательства. Среди способов предотвращения рисков ключевым остается медикаментозная терапия. Важно следовать клиническим рекомендациям и при этом учитывать индивидуальные особенности конкретного пациента - его анамнез, возраст, сопутствующие заболевания, - отметила главный внештатный специалист Минздрава России по клинической лабораторной диагностике, завкафедрой лабораторной медицины и генетики НМИЦ им. Алмазова Минздрава России, профессор Татьяна Вавилова.

Аспирин долгое время считалось самым доступным и популярным кроворазжижающим средством. Но в последнее время вместо него обычно назначают другие препараты, связано это с тем, что при длительном применении аспирин может вызвать язву желудка и двенадцатиперстной кишки. В условиях стационара, чтобы разжижать кровь, делают инъекции гепарина, урокиназа или стрептокиназа. Эти препараты способны растворить даже тромбы, что помогает спасти пациента от инфаркта и инсульта. Среди народных средств, которые рекомендуют применять для разжижения крови, внимания заслуживают следующие рецепты: - Натереть на терке 5 зубчиков чеснока и смешать их с 100 грамм меда. Переложить смесь в банку, закрыть крышкой и поставить в затемненное место на 20 дней. Затем достать ее и принимать по одной чайной ложке перед каждым приемом пищи. Затем положить 4 столовой ложки этой смеси в эмалированную кастрюлю, налить туда 2 стакана кипятка и поставить кастрюлю на огонь. Когда отвар закипит, убавить огонь и варить его 20 минут. Охлажденный отвар принимать по одной столовой ложке после еды. Плоды конского каштана ядовиты, их нужно выбросить, для приготовления отвара использовать их нельзя. Готовить лекарство следует только из кожуры.

Муравьев А. Эффект оксида азота и сероводорода на деформируемость и агрегатные свойства эритроцитов зависит от уровня обеспеченности кислородом и более выражен у лиц с высокими показателями максимального потребления кислорода [ 3 , 8 ]. Продемонстрировано положительное влияние оксида азота на микрореологические свойства эритроцитов и показатели свертывания крови [ 141 ]. Классическая триада Рудольфа Вирхова, обозначившая ключевые факторы тромбообразования, включает в себя нарушение целостности сосудистой стенки в первую очередь ее эндотелиального слоя , изменения состава и свойств самой крови и скорости кровотока. Если первые два фактора интенсивно изучались и здесь достигнуты определенные успехи, то исследованию влияния условий течения крови на процесс тромбообразования уделялось недостаточно внимания. Первые исследования в этой области были предприняты в 70-гг. Начальным этапом свертывания крови является первичный тромбоцитарно-сосудистый гемостаз, который играет важную роль как в физиологических условиях, так и при патологии. Нестимулированные тромбоциты циркулируют в виде гладких дискоидных клеток с незначительной метаболической активностью. Такие тромбоциты не вступают в физиологически значимое взаимодействие с другими форменными элементами периферической крови или монослоем эндотелиальных клеток, выстилающим эндоваскулярное пространство. Физиологическая активация тромбоцитов начинается тогда, когда поврежден сосудистый эндотелий и обнажен субэндотелиальный внеклеточный матрикс. При этом происходит быстрая адгезия тромбоцитов к обнаженному субэндотелиальному экстрацеллюлярному матриксу в целях остановки кровотечения и репарации поврежденных тканей. На следующих этапах первичного гемостаза происходят активация и агрегация тромбоцитов с формированием тромбоцитарной пробки [ 86 ]. В условиях in vivo и адгезия, и агрегация тромбоцитов включает переход от движения в потоке к фиксации на поверхности. В случае адгезии поверхность, к которой прикрепляются тромбоциты, это сосудистая стенка либо окружающие ткани, адгезивными субстратами выступает эндогенный матрикс или мембранные протеины и протеогликаны со связанными компонентами плазмы. В случае агрегации поверхностью является мембрана соседних тромбоцитов, которые уже иммобилизованы в месте формирования тромба и предоставляют мебраносвязанные субстраты, перемещенные из внутренних мест хранения в процессе активации или извлеченные из плазмы. Таким образом, и на процесс адгезии, и на процесс агрегации тромбоцитов оказывают влияние условия течения крови, то есть ее реология [ 49 , 69 ]. Однако использование агрегатометрии тромбоцитов in vitro не позволяет учитывать влияние кровотока, важной переменной, существенно повышающей сложность процесса агрегации тромбоцитов. В агрегометре тромбоциты объединяются в агрегаты в условиях низкосдвигового не ламинарного течения, такие экспериментальные условия не способны адекватно моделировать когезию тромбоцитов на тромбогенной поверхности в реальных условиях циркуляции. Условия течения крови или ее реологические свойства в месте повреждения сосудистой стенки оказывают существенное влияние на адгезию и агрегацию тромбоцитов. В условиях циркуляции in vivo тромбоциты подвергаются воздействию разных гемодинамических условий: от относительно медленного течения в венулах и крупных венах средние пристеночные скорости сдвига составляют порядка 500 с—1 до мелких артериол, где скорости сдвига могут достигать 5000 с—1. В стенозированных артериях скорости сдвига увеличиваются до 40 000 с—1 [ 118 ]. Тромбоциты обладают уникальной способностью формировать прочные адгезионные контакты при любых сдвиговых условиях течения имеющих место in vivo с последующим формированием тромбоцитарной пробки и в конечном итоге тромба даже при высоких скоростях сдвига [ 59 ]. Стойкая адгезия тромбоцитов включает следующие процессы: прикрепление, роллинг, активацию и адгезию. Субэндотелиальный внеклеточный матрикс содержит ряд адгезивных макромолекул таких как коллаген, фактор фон Виллебранда, ламинин, фибронектин и тромбоспондин, которые служат лигандами для различных мембранных рецепторов тромбоцитов [ 88 ]. Тромбогенный фибриллярный коллаген типа I и III является самым мощным медиатором адгезии тромбоцитов благодаря выраженной способности активировать тромбоциты и высокой аффинности к фактору фон Виллебранда. Оба эти рецептора действуют синергично, усиливая активность друг друга в целях оптимальной адгезии и активации на коллагене. Первоначальное адгезивное взаимодействие тромбоцитов с внеклеточным матриксом существенно зависит от локальных реологических условий. Циркулирующие тромбоциты и сосудистая стенка разделены слоем плазмы и не могут взаимодействовать если расстояние между ними превышает 100 нм. Межмолекулярные связи могут формироваться при снижении дистанции до 10 нм и менее. Минимальное расстояние зависит от длины молекул, участвующих в адгезии, их конформации и положения реакционных центров [ 69 ]. Формирование связи между мембранным рецептором и адгезивным лигандом при их сближении на достаточное расстояние возможно в том случае, если скорость формирования связи выше относительной скорости движения этих молекул друг относительно друга. Поэтому количество адгезированных клеток уменьшается при увеличении скорости сдвига. Напряжение сдвига оказывает противоположное влияние на прочность уже образовавшихся адгезивных контактов: при возрастании напряжения сдвига уже сформированные адгезивные контакты могут разрушаться. Различные способы реализации адгезии тромбоцитов при разных условиях течения определяются биомеханическими свойствами разных лиганд-рецепторных пар. При невысоких скоростях сдвига менее 1000 c—1, имеет место в венах адгезия тромбоцитов происходит посредством связывания с коллагеном, фибронектином и ламинином. Это взаимодействие замедляет быстрое движение тромбоцитов и способствует образованию дополнительных связей, способствующих прикреплению тромбоцитов и последующим процессам первичного гемостаза [ 32 ]. При очень высоких скоростях сдвига более 10 000 c—1 не активированные тромбоциты могут связываться с иммобилизованным фактором фон Виллебранда, способствуя тромбообразованию в условиях высокосдвигового течения, когда быстрый кровоток затрудняет формирование адгезивных связей и снижает локальную концентрацию агонистов [ 38 ]. Прочное связывание тромбоцитов запускает активацию сигнальных путей с участием тирозинкиназ, рецепторов, сопряженных G-белками, что ведет к росту внутриклеточного кальция, реорганизации цитоскелета и активации интегринов. Следующим этапом становится контролируемая реакция высвобождения. Тромбоцитарные гранулы высвобождают свое содержимое набор биоактивных молекул в близлежащем от клетки пространстве. Пара- и аутокринная природа сигнала способствует активации соседних тромбоцитов, вызывая вторичную секрецию и многократное усиление процесса активации тромбоцитов. В тромбоцитах различают три типа гранул: альфа-гранулы, плотные дельта гранулы и лизосомы лямбда-гранулы. Альфа-гранулы содержат около 280 различных протеинов хемокины, факторы роста, про- и антитромботические молекулы. Плотные гранулы секретируют АДФ — основной индуктор агрегации тромбоцитов [ 32 , 88 ]. За адгезией и активацией тромбоцитов следует их агрегация с формированием богатого фибриногеном тромба в месте повреждения сосуда. Экспериментальные исследования агрегации тромбоцитов в потоке позволили установить, что многочисленные лиганды фактор Виллебранда, фибриноген, фибронектин и др. Исследования процесса агрегации позволили идентифицировать три различных механизма агрегации клеток на первичном слое адгезированных тромбоцитов. Симметрия фибриногена позволяет формировать своеобразные мостики между тромбоцитами, таким образом объединяя их в агрегаты. На следующей стадии формируются стабильные агрегаты. На начальном этапе агрегации тромбоцитов в данных сдвиговых условиях дискоидные не активированные тромбоциты перемещаются на поверхность тромба и формируют временные адгезионные контакты с другими дискоидными адгезированными тромбоцитами. Взаимодействие между дискоидными клетками в условиях потока возможно за счет формирования мембранных тяжей, возникающих под действием напряжения сдвига. Эти структуры минимизируют силы отталкивания в условиях потока, активация тромбоцитов на данном этапе минимальна и не требует участия АДФ, тромбоксана и тромбина. Формирование обратимых агрегатов способствует активации тромбоцитов с последующим формированием стабильных агрегатов, поскольку тесное пространство между клетками повышает локальную концентрацию растворимых агонистов: АДФ, тромбина и тромбоксана. Агонисты вызывают активацию тромбоцитов, изменение их формы, реакцию высвобождения с последующим формированием стабильных агрегатов [ 69 ]. Таким образом, фактор Виллебранда играет основную роль в инициации агрегации при высокосдвиговом течении, а роль фибриногена и фибрина вторична — он стабилизирует эти агрегаты. В норме процесс формирования тромба в месте повреждения артериальной стенки не уменьшает просвет сосуда, распространяясь в экстравазальное пространство. При атеросклерозе, наоборот, рост тромба направлен в люминальное пространство сосуда и может приводить к его окклюзии [ 114 ]. В этом случае гемореологические нарушения играют ключевую роль. Чтобы сохранить объемную скорость кровотока объем крови, проходящий за единицу времени в стенозированном сосуде, скорость кровотока должна увеличиться, что ведет к росту напряжения и скорости сдвига. Этим обусловлено, к примеру, увеличение скорости сдвига до 20 000—40 000 с—1 при тяжелом атеросклеротическом стенозе коронарной артерии человека [ 127 ]. Максимальное повышение скорости сдвига наблюдается на вершине атеросклеротической бляшки, за которой кровоток становится вихревым, вызывая обратный ток крови в постстенотической зоне. При высоких скоростях сдвига усиливается агрегация тромбоцитов и традиционные антитромботические средства в данном случае оказываются не эффективными из-за специфики высокосдвиговой агрегации тромбоцитов. Формирующийся тромбоцитарный тромб еще больше усиливает стеноз сосуда, это ведет к ограничению кровотока в нижележащей области, а, следовательно, способствует коагуляции крови формированию красного тромба с участием эритроцитов и сети фибрина. Тромбообразование меняет гемодинамические условия, ограничивая просвет сосуда, по которому движется кровь [ 114 ]. По этой же причине скорость сдвига на мембране тромбоцита, прикрепленного к поверхности артериального тромба и контактирующего с потоком крови, повышается по мере увеличения размеров тромба в просвете сосуда. Установлено, что вирус SARS-CoV-2 способен проникать в эндотелиоциты, провоцируя развитие системной дисфункции эндотелия, приводящей к нарушению баланса сосудистого русла в сторону сужения сосудов с последующей ишемией, воспалением и специфическим протромботическим изменениями системы гемостаза. Взаимосвязь тяжелой формы COVID-19 с вирусной коагулопатией, проявляющейся в легочной эмболии, венозном, артериальном и микрососудистом тромбозе, обусловленных повреждением легочного эндотелия, и тромботическими осложнениями, ведущими к развитию острого респираторного дистресс-синдрома ОРДС зафиксирована в ряде клинических исследований [ 39 , 83 , 130 ]. При COVID-19 поражается не только дыхательная система легкие с развитием респираторного дистресс-синдрома, но проявляется целый ряд симптомов, затрагивающих практически все системы организма: такие как острая почечная недостаточность, острая сердечная недостаточность, коагулопатия, тромбоэмболические осложнения инсульт и легочная эмболия , циркуляторный шок [ 119 ]. Легочная недостаточность развивается вследствие тромбоза на уровне микроциркуляции в легких с последующей обструкцией мелких сосудов [ 120 , 83 , 98 ], системный характер дисфункции микроциркуляции проявляется множественным тромбозом микрососудов и системными нарушениям, ведущими к полиорганной недостаточности, характерной для тяжелого течения COVID-19 [ 11 ]. На фоне полиорганной недостаточности отмечено воспаление эндотелия во всех пораженных органах, начиная от легких и заканчивая кишечником. В дополнение к специфическим повреждениям органа эндотелиальная дисфункция может провоцировать системное прокоагулянтное состояние [ 66 ]. Все три ключевых элемента триады Вирхова повреждение эндотелия, повышенная свертываемость крови и замедление кровотока как предполагается, играют основную роль в развитии тромботических осложнений, полиорганной недостаточности и гибели пациентов с COVID-19 [ 96 ]. Среди множества исследований, посвященных оценке эндотелиальной функции и процессам коагуляции у пациентов с COVID-19, появились и работы, содержащие данные оценки реологических свойств крови и состояния микрокровотока у пациентов с тяжелым течением COVID-19 [ 16 ]. Способность вирусных инфекций интенсифицировать процесс свертывания крови хорошо известна, однако у пациентов, инфицированных SARS-CoV-2, отмечен беспрецедентный уровень тромботических а иногда и геморрагических осложнений [ 18 , 37 , 94 , 104 , 138 ]. Возможно поэтому авторы нередко пытаются сравнить изменения гемодинамики на уровне микрокровотока, эндотелиальной функции и свойств крови при COVID-19 с уже известными критическими состояниями, пытаясь провести аналогию с наблюдаемыми при новой коронавирусной инфекции нарушениями. Так, например, известно, что дисфункция эндотелия может рассматриваться в качестве основного клеточного события, ответственного за гемодинамический коллапс, имеющий место при шоке, и ответственного за неэффективность рутинных реанимационных мероприятий [ 60 ]. Показано, что выраженные изменения в системе микроциркуляции, которые опосредуются рядом механизмов, включая эндотелиальную дисфункцию, деградацию гликокаликса, нарушения реологии крови снижение деформируемости эритроцитов , и дисбаланс между уровнем вазодилататоров и вазоконстрикторов характерны для сепсиса [ 68 ]. С учетом того, что вирус SARS-CoV-2 связывается с АПФ и инфицирует непосредственно эндотелиальные клетки, COVID-19 можно считать сосудистым заболеванием и нарушения проницаемости, адгезивности и регуляторной функции сосудистого эндотелия могут играть ключевую роль в патогенезе острого респираторного дистресс-синдрома и полиорганной недостаточности [ 105 , 109 ]. По результатам многоцентрового проспективного исследования, проведенного с мая по июнь 2020 г. Мюнстера Германия , в котором у пациентов с тяжелым и средней тяжести течением COVID-19 с ОРДС оценивалось состояние сублингвальной микроциркуляции методом видеобиомироскопии и уровень циркулирующих маркеров дисфункции эндотелия и воспаления, были выявлены серьезные нарушения сублингвального микрокровотока разрежение капилляров и показателей состояния гликокаликса. Эти данные указывают на то, что тяжелая форма COVID-19 сопровождается дисфункцией эндотелия, повреждением гликокаликса и значительным ухудшением капиллярного кровотока [ 119 ]. Существенные нарушения реологии крови как элемент дисфункции микрокровотока являются важным звеном патогенеза геморрагического, септического шока и, как показывают исследования последних лет, сопряжены и с тяжелым течением COVID-19 [ 90 , 77 , 103 , 116 ]. Анализ опубликованных данных позволяет заключить, что при тяжелой форме COVID-19 имеют место выраженные комплексные нарушения реологических свойств крови, затрагивающие и ее плазменный компонент, и клеточные элементы.

Корректировать вязкость можно с помощью гиполипидемических препаратов, а также с помощью методов реофереза: каскадная реофильтрация, HELP-реоферез, иммуносорбция ЛНП, Лп а и фибриногена, плазмаферез. Мы назначаем аферез пациентам с гомозиготной и гетерозиготной гиперхолестеринемией, резистентными формами гиперхолестеринемии, ишемической болезнью сердца, атеросклерозом, онкологическими заболеваниями, диабетом и его осложнениями, рассеянным склерозом, проблемами с зачатием. И это далеко не полный список», — добавил профессор. Второй показатель, который также в течение долгого времени определяется пациентам Медси, это функция эндотелия сосудов. От эндотелия зависит регуляция сосудистого тонуса, регуляция гемостаза, пролиферация клеток. Доказано участие нарушений функции эндотелия в формировании метаболического синдрома, возникновении сосудистых осложнений у больных с диабетом, развитии гипертонической болезни, сердечной недостаточности и других патологий. Стратегическое расположение эндотелиального слоя между текущей кровью и артериальной стенкой позволяет наиболее адекватно выполнять эти функции, но в то же время подвергает эндотелиальные клетки действию различных факторов сердечно-сосудистого риска. Дисфункция эндотелия имеет системный характер, то есть идет поражение во всех артериях. В то же время, она обратима. При коррекции факторов риска, приведших к нарушениям, функция эндотелия нормализуется, что позволяет проводить контроль эффективности терапии. Повлиять на этот показатель можно медикаментозными и немедикаментозными способами.

Вязкость крови: причины, последствия

Результаты анализа вязкости крови выражаются в единицах скорости секунд; чем выше значение, тем более густая кровь. Здоровье - 31 мая 2023 - Новости Новосибирска - Какая вязкость крови, какие питательны свойства крови, такая и жизнь. Высокая вязкость крови требует от сердца больше усилий для прокачки ее по сосудам, что приводит к повышению артериального давления.

Чем опасна густая кровь, причины и лечение мужчин, женщин и детей

Первые зависят от соотношения количества клеток крови и объема жидкой части, а также стабильности клеточной взвеси в плазме. Показателями реологии крови является вязкость, гематокрит, содержание эритроцитов. Высокая вязкость крови требует от сердца больше усилий для прокачки ее по сосудам, что приводит к повышению артериального давления. Синдром повышенной вязкости крови не является заболеванием, но при наличии серьезных патологий может вызывать тяжелые и грозные осложнения. рассказала Алла Шабалина.

Измерение вязкости цельной крови

Это врожденное или приобретенное заболевание, при котором в организме человека синтезируется недостаточное количество пищеварительных ферментов. Из-за того, что пища расщепляется не полностью, кровь загрязняется продуктами распада, что провоцирует склеивание эритроцитов, кислородное голодание тканей; плохое качество потребляемой воды. Некачественная вода негативно влияет на состав крови, ведет к повышению вязкости; большая нагрузка на печень. Из-за нехватки минералов и витаминов печень перестает справляться со своими задачами. Это приводит к повышению количества форменных элементов в крови.

Негативно влияет на печень злоупотребление копчеными, острыми, солеными, кислыми блюдами. Разрушающе действует на орган алкоголь; обезвоживание организма. Если при интенсивных физических нагрузках человек не потребляет достаточного количества воды, это может спровоцировать повышение густоты крови. Кроме того, причиной обезвоживания служит диарея, прием большого количества диуретиков, рвота и прочие состояния; нарушение функции селезенки.

Гиперфункция селезенки ведет к нарушению соотношения плазмы и форменных телец. Частая причина патологического состояния — болезни печени с нарушением синтеза ферментов Из-за повышения вязкости кровь тяжело циркулирует по организму, вследствие чего нарушается функционирование всех органов и систем, сердце вынуждено работать в усиленном режиме, так как ему тяжело перегонять густую кровь. В последнее время наблюдается тенденция к повышению вязкости крови не только у пожилых людей, но и у более молодых пациентов. Этому способствует плохая экология, некачественные продукты питания и прочие факторы.

Причины пониженной вязкости Иногда густота крови снижается.

Если тромбы образуются в месте соединения плаценты с маткой или в ее кровеносных сосудах, то плод не может получать питательные вещества и перестает развиваться. С помощью современных методик выявляются женщины, страдающие повышенной вязкостью крови, склонные к образованию тромбов, перенесшие в прошлом осложнения при беременности. Чтобы предотвратить возможные проблемы, они получают лечение препаратами, разжижающими кровь. Лечение при повышенной свертываемости крови При лечении повышенной вязкости крови особое внимание следует уделить причинам ее возникновения и диагностике. Классическим методом лечения тромбофилии является прием антикоагулянтов. В зависимости от характера патологии могут назначаться спазмолитики, противовоспалительные препараты, фибринолитики. Может применяться процедура восполнения объема крови с помощью трансфузионной и инфузионной терапии или применяться метод удаления тромбов с помощью операции. При наследственных тромбофилиях показан длительный прием аспирина в малых дозах.

Во время беременности аспирин противопоказан. Лечение должно проводиться при постоянном лабораторном контроле показателей крови, поскольку при приеме препаратов разжижающих кровь, могут легко возникать неконтролируемые внутренние кровотечения. Все лекарственные препараты следует принимать только по назначению лечащего врача и под его контролем. Питание Разжижению крови помогает особый питьевой режим и соблюдение соответствующей диеты.

Он может оторваться во сне, например, когда достиг узкого участка кровеносного сосуда или когда повысилось артериальное давление. Физические упражнения или посещение сауны также могут вызвать изменение кровотока, повышение артериального давления, что увеличивает риск отрыва тромба. Чаще всего это может происходить с людьми, у которых имеется высокий риск тромбообразования, поэтому перед началом физических упражнений не будет лишним проконсультироваться с врачом.

Можно ли «прогнать» тромбы, если пить по 2 литра воды в день? Это маловероятно. Количество воды не может «прогнать» уже существующие тромбы, для этого нужно принимать препараты для растворения тромбов антикоагулянты. Однако употребление достаточного количества воды, особенно летом, может улучшить кровообращение и, как следствие, минимизировать образование новых тромбов. При этом важно помнить, что бывают состояния, при которых употребление большого количества воды может негативно сказаться на организме, поэтому лучше узнать у врача свои индивидуальные рекомендации. Работают ли на самом деле рецепты «чистки» сосудов?

Формируется, так называемый, порочный круг нарушенного кровообращения.

Густая кровь способствует развитию атеросклероза, а атеросклероз способствует дальнейшему увеличению вязкости крови. Компенсаторное увеличение силы сердечных сокращений, требуемое для «проталкивания» густой и вязкой крови по неэластичным сосудам, приводит к быстрому истощению миокарда и развитию сердечной недостаточности. Снижение сердечного выброса при сердечной недостаточности приводит к прогрессированию нарушения микроциркуляции и ишемии органов и тканей. Также, усиливается образование тромбов и возрастает риск развития инфаркта, инсульта, тромбоэмболии, ишемии нижних конечностей. Сгущение крови, микротромбообразования и ишемия на фоне сердечной недостаточности способствуют формированию хронической почечной недостаточности. Густая кровь — причины Для того, чтобы ответить на вопрос от чего густеет кровь у человека, необходимо рассмотреть, что влияет на ее вязкость. Основными причинами повышения густоты и вязкости крови являются: нарушение деформационной способности эритроцитов;.

Густая кровь. Признаки, факторы риска

Здоровье - 31 мая 2023 - Новости Новосибирска - Кровь влияет на работу всех органов, а ее повышенная вязкость может привести к таким осложнениям. Результаты анализа вязкости крови выражаются в единицах скорости секунд; чем выше значение, тем более густая кровь. При лечении повышенной вязкости крови особое внимание следует уделить причинам ее возникновения и диагностике. В результате повышенная вязкость крови может быть причиной ряда заболеваний — ишемического инсульта, инфаркта миокарда, тромбоэмболии легочной артерии, тромбоза вен и артерий нижних конечностей, ряда внутренних органов.

Почему кровь становится густой?

  • Почему кровь густеет
  • Что же это такое - густая кровь и что с этим делать?
  • Симптомы и причины густой крови. Лечение.
  • Все о сгущении крови
  • Кто в группе риска

Поделиться публикацией

Игнорировать значительное повышение вязкости крови нельзя, так как во время беременности это может привести к тромбозам, тромбофилии, лейкозу или варикозу. Поражение сосудистого русла представляет опасность не только для самой женщины, но и для ребенка. Густая кровь у новорожденного ребенка У ребенка, который только что появился на свет, кровь имеет темный цвет и повышенную вязкость. Показатели крови новорожденного в значительной степени отличаются от аналогичных данных у детей старшего возраста.

Переживать по этому поводу не следует, пройдет несколько дней и эти цифры пойдут на убыль. Читайте также: Сердце человека: функции, анатомическое строение Густая кровь у новорожденного не является отклонением от нормы. Просто ребенок рос и развивался в кардинально иной среде, а сейчас он попал в новый мир.

Его организму требуется время, чтобы приспособиться к изменившимся окружающим условиям, например, научиться дышать по-другому. Кстати, именно это гемоглобин, который носит название фетального, становится причиной развития желтушки новорожденных. Иные показатели крови, в том числе, вязкость и уровень гемоглобина, приравняются к аналогичным значениям у взрослого человека.

Как снизить густоту крови Отсюда возникает задача разжижения крови в необходимых случаях. Этому в большой мере поможет диета и специальный питьевой режим.

Что стоит сделать? Определенная диета и особый питьевой режим помогут сделать кровь более жидкой. Кроме чистой воды, врачи советуют включать в рацион зеленый или травяной чай если нет противопоказаний к употреблению травяных напитков , не забывать про натуральные соки из овощей и фруктов. Для разжижения крови также рекомендуется употреблять виноград. Благодаря особым соединениям в частности, биофлавоноидам этот продукт считают одним из лучших для кардио-сосудистой системы. А как насчет того, чтобы пить 10-12 стаканов воды в день как метод разжижения крови?

Это позволяет получать больше питательных микроэлементов из употребляемой пищи. Свекла Свекла также полезна при густой крови. В отличии от других овощей, при её термической обработке клетчатка не разрушается. В небольшом количестве в ней также имеются витамин Е, фолиевая кислота, калий и натрий. Не рекомендуется употреблять свежий концентрированный свекольный сок. Диетологи рекомендуют его смешивать с яблочным или морковным в соотношении 1 к 1. Не менее приемлемый вариант — это употребление свекольного кваса. Сельдерей Содержит клетчатку, витамины группы В и D, которые стимулируют течение большинства метаболических процессов в крови. А ещё сельдерей очишает сосуды , поскольку элементы в его составе помогают не образовываться бляшкам и тромбам в сосудах, улучшают эластичность их стенок. Капуста Богата на жидкость, фолиевую кислоту. Но самой полезной считается квашенная капуста — в ней имеются полезные бактерии, нормализующие работу желудочно-кишечного тракта. В небольшом количестве в ней присутствуют: йод; селен; витамины К и РР. Но стоит учитывать, что при язвенной болезни желудка или при гастрите частое употребление квашенной и свежей капусты может усугубить течение заболевания. Лучше этот нюанс дополнительно обсуждать с гастроэнтерологом или диетологом. Морковь Богата на клетчатку и витамин А который принимает участие в формировании костного мозга, где и вырабатывается кровь, форменные её элементы. Морковный сок — одно из лучших средств для быстрого разжижения крови. Именно поэтому его и рекомендуют пить при хронических заболеваниях сердечно-сосудистой системы и при гипертонии. Зелень Богата на фитонциды, калий, натрий.

Хуже всего, если такой же процесс распространяется на сосуды головы. Ведь здесь находится орган, отвечающий за все системы организма, а также за их взаимосвязь. Повреждения головы всегда очень серьезно воздействуют на функционирование всего тела. В итоге человек испытывает ухудшение памяти, страдает от сонливости, вялости, быстро утомляется. Нередко нарушения распространяются и на органы зрения. Мышцы глаз вечно напряжены, а потому им необходим больший объем кислорода. Однако сосуды склеиваются, и в итоге развивается близорукость или астигматизм. Реже встречается дальнозоркость. Позже, когда процесс распространяется на наиболее крупные сосуды, появляется риск возникновения инсульта или инфаркта. Диагностика Современная медицина предлагает все больше способов проведения анализов на густую кровь. Как правило, проводят гемосканирование: достаточно увеличить каплю живой жидкости на микроскопе. Пациент при этом присутствует рядом со специалистом. Благодаря такому исследованию вырисовывается весьма подробная картина текущего состояния иммунной системы. Выбирая, какие анализы на густую кровь будет сдавать пациент, врачи нередко предпочитают гемосканирование, так как противопоказаний у него нет. Значение Показатель вязкости крови говорит о том, сколько прослужат сердце и сосуды. Чем эта жидкость гуще, тем быстрее износится сердечно-сосудистая система. Грубо говоря, анализ крови на густую кровь говорит о том, встанет ли человек завтра утром или уже нет. На то, какой является эта важнейшая жидкость в организме, влияет много факторов. Показатели бывают самыми разными. Если показатель доходит до критической отметки, это говорит о том, что организм находится на грани выживаемости. Сердечно-сосудистая система должна выдерживать увеличенный показатель густоты, если организм не страдает от патологий, вроде сердечной недостаточности, повышенного или пониженного давления. В таких случаях анализы крови на густую кровь становятся особо важными, ведь при малейшем изменении результатов многократно повышается вероятность внезапной смерти. Принято считать, что густота этой жидкости определяется белками. Но на деле крайне важно оценивать реакцию оседания эритроцитов. Это способность клеток оседать, формируя плазму. Время оценки реакции — 1 час. Чем показатель меньше, тем гуще важнейшая в организме жидкость. Многие не обращают на него ровно никакого внимания, а между тем, сердечная мышца испытывает постоянную перегрузку, занимаясь перекачиванием тяжелой густой жидкости по всему организму. Как правило, в исследованиях используются темнопольные микроскопы. С их помощью проводят ряд других исследований, которые обрисовывают то, насколько легко жидкость перемещается по сосудам. Их результаты выявляют, каковы текущие нагрузки на сердечную мышцу, в норме ли они. Самыми многочисленными белками в плазме крови являются протромбин и фибриноген. И если исследователь обращает внимание только на них, то он пропускает немало факторов, которые также влияют на густоту крови. По этой причине мало выяснить, какие анализы на густую кровь сдаются, необходимо их результаты грамотно обрабатывать. На консистенцию также оказывает влияние содержание белка альбумина. Он не участвует в выполнении свертывающих функций, однако занимается связыванием токсинов. Это позволяет переносить их к выделительным органам: печени, почкам. Таким образом, именно альбумин способствует очищению организма и крови. Его наличие определяет и консистенцию крови, и устойчивость к аллергии, и состояние иммунных сил. Повышенное или пониженное содержание эритроцитов Эритроциты являются самыми многочисленными клетками крови. Они переносят кислород и полезные вещества ко всем внутренним органам.

Похожие новости:

Оцените статью
Добавить комментарий