Американские ученые в результате реакции термоядерного синтеза впервые получили больше энергии, чем затратили. Инженер и старший преподаватель Института ядерной физики и. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала.
Термоядерную установку, у которой нет аналогов в мире, запустили в Курчатовском институте
Зачем люди пытаются создать Солнце на Земле, или что такое термоядерная энергетика | Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. |
Прорыв в термоядерном синтезе | Реакции термоядерного синтеза позволяют получать энергию без радиоактивных отходов и оставления углеродного следа. |
Термоядерный синтез | Все самое интересное и актуальное по теме "Ядерная физика". |
Ядерный синтез: недавний эксперимент преодолевает два основных препятствия для работы
На основе найденных величин можно будет рассчитать кинетику ядерных превращений для расчета коэффициента полезного действия КПД конкретной энергетической термоядерной или гибридной ядерной установки. Результаты исследования помогут развитию энергоэффективной термоядерной энергетики.
Установка предназначена для проведения углубленных исследований в широком круге направлений физики высоких плотностей энергии. Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Мишени прямого облучения представляют собой полую стеклянную или полимерную сферическую оболочку с высокой однородностью толщины, заполненную либо газообразной смесью дейтерий-тритий, либо дейтерием.
Диаметр сферы от 200 до 1000 мкм, толщина стенки 0,5—15 мкм, давление газа внутри оболочки 1—100 атм. На внешнюю поверхность сферы может быть нанесено какое-либо покрытие. Мишени непрямого облучения представляют собой мишень прямого облучения, заключенную в сферический или цилиндрический кожух диаметром 1—4 мм из металла с высоким атомным номером. Мишень для исследования уравнения состояния в лазерных экспериментах представляет собой базовую пластину из алюминия или меди толщиной 40—60 мкм, на одну из сторон которой нанесены в виде ступеньки слои из материала базы и исследуемого материала толщиной 4—10 мкм.
Ступеньки отстоят друг от друга на расстоянии 50—100 мкм. Другая сторона мишени, на которую воздействовал лазерный импульс, покрывалась слоем полипараксилилена толщиной 8—10 мкм. Шероховатость поверхности не превышала 80 нм для свинца, 50 нм для алюминия и 10 нм для меди и полипараксилилена. При диагностике лазерного излучения и исследованиях плазмы на мощных лазерных установках ИЛФИ "Искра-5", "Луч" для проведения с субнаносекундным временным разрешением временной, пространственно-временной и спектрально-временной регистрации используются фотохронограф с щелевой разверткой СЭР-4 — для видимого и ближнего ИК-излучения, рентгеновский фотохронограф с щелевой разверткой РФР-4 — для мягкого и сверхмягкого рентгеновского излучения.
В два раза быстрее, чем поезд идущий от Москвы до Владивостока. Принципиальная схема термоядерного двигателя Основа двигателя камера длиной в 8 метров с магнитными ловушками — в ней будет разогреваться и удерживаться от контакта со стенками термоядерная плазма. Топливо — Дейтерий и Гелий-3. Оно самое перспективное с энергетической точки зрения. Оптимизировать конструкция камеры поможет искусственный интеллект и суперкомпьютеры американцев из Princeton Satellite Systems.
Термоядерный синтез — это процесс, который происходит в звездах, в том числе в нашем Солнце.
В масштабах нашей планеты он мог бы стать практически неисчерпаемым источником экологичной энергии, для производства которой могло бы понадобиться только немного морской воды. Однако, чтобы термоядерный синтез, подобный звездному, успешно протекал, необходимы колоссальные температуры и давление. На Земле создать такое уже давно возможно, однако для этого долгое время требовалось больше энергии, чем получалось на выходе. Иоффе, академик, председатель Комиссии по борьбе со лженаукой при Президиуме РАН «В конце 2022 года мировой научной сенсацией стало сообщение о достижении существенного успеха в попытках реализации лазерного термоядерного синтеза — Ливерморская лаборатория США заявила о достижении существенного превышения выделившейся энергии ядерного синтеза над поглощённой энергией световых лазерных импульсов, используемых для обжатия мишени. Разумеется, до рентабельной термоядерной энергетики остается неопределенно долгий путь, поскольку поглощенная энергия имеет порядок одного процента от полной энергии света лазеров, не говоря о низком КПД самих лазеров.
Эра термоядерного синтеза
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики | На этой неделе на юге Франции началась сборка первого в мире термоядерного реактора. |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER | Впервые "положительный КПД в управляемой реакции термоядерного синтеза" был получен в 1950х, а девайс, который это сделал, называется "термоядерная бомба". |
Самая грандиозная научная стройка современности. Как во Франции строят термоядерный реактор ITER
На этой установке российские ученые будут проводить исследования, без которых невозможен запуск международного проекта ИТЭР. Самый большой в мире экспериментальный термоядерный реактор сейчас строится на юге Франции. На связь оттуда вышел генеральный директор проекта. На совещании глава правительства обсудил с российскими учеными федеральную программу развития синхротронных и нейтронных исследований. До 2027 года на нее предусмотрено выделить 138 миллиардов рублей. В рамках программы Курчатовский институт создает по стране целую сеть мегаустановок нового уровня.
Россия была абсолютно самодостаточна. Мы производили все сами, все компоненты от начала до конца. И сейчас у нас это есть, но это требуется перевести на современный уровень», — отметил президент НИЦ «Курчатовский институт» Михаил Ковальчук. План по модернизации прорабатывается, и глава правительства призвал ученых присоединиться к этой работе.
Такая установка разрабатывается в Национальной лаборатории им. Лоуренса в Ливерморе, США. Научный комплекс National Ignition Facility NIF за несколько миллиардных долей секунды усиливает и фокусирует 192 мощных лазера на мишени размером несколько квадратных сантиметров. Температура мишени превышает 100 миллионов градусов, давление — 100 миллиардов атмосфер. Этого достаточно, чтобы началась термоядерная реакция. Главная проблема — затраты энергии на разогрев мишени должны быть меньше желательно, гораздо меньше , чем энергия выделяемая при термоядерном синтезе. Иначе процесс не производит энергию, а тратит. Как сообщила Ливерморская лаборатория, на NIF поставлен новый рекорд: летние эксперименты показали в 8 раз более высокий энергетический выход, чем во время весенних опытов 2021 года и в 25 раз выше результатов 2018 года. Выход превысил 1,3 мегаджоуля. Это серьезный шаг вперед. Хотя пока еще нельзя говорить, что NIF может устойчиво производить энергию.
Духова «Событие, важное не только для мировой науки, для человечества — это термоядерный синтез с положительным выходом энергии. Американский "Национальный комплекс зажигания" National Ignition Facility, NIF в Ливерморской национальной лаборатории воспроизвел так называемый инерционный управляемый термоядерный синтез, предусматривающий облучение крошечной порции водородной плазмы самым большим в мире лазером». Вот когда появится первая ТЯ электростанция на 100 гвт, тогда и будет порыв. А так, просто болтовня! Гоблин даже про него говорил. Ну как английские ученые прямо...
И вот недавно я случайно узнал, что, в каком-то роде, пошел прямо по дедушкиным стопам! Перебирая домашний архив, я обнаружил грамоту более, чем 40-летней давности, которую в свое время вручили моему деду за вклад в автоматизацию экспериментов на токамаках ФТИ, где я сейчас работаю! Так что, в науку я попал неслучайно В школе я любил алгебру, геометрию и физику. С девятого класса я учился в специализированном лицее с физико-математическим уклоном. А потом поступил на кафедру экспериментальной ядерной физики в Политехнический тогда еще институт в Санкт-Петербурге. Преддипломную практику я проходил на токамаке «Глобус-М» в Физико-техническом институте им.
Английского физика, передавшего СССР секреты водородной бомбы, предали советские академики-ядерщики
Чтобы запустить процесс на ИТЭР, плазму надо разогреть в токамаке — огромной полой баранке, где высокотемпературную плазму «держат на весу» мощные сверхпроводящие магниты. Это позволит проводить первые операции по разогреву плазмы. В 2035 году реактор должен выйти на полную мощность и будет производить больше энергии, чем потребляет. Но это еще не скоро.
Например, лазерным излучением. Такая установка разрабатывается в Национальной лаборатории им. Лоуренса в Ливерморе, США.
Научный комплекс National Ignition Facility NIF за несколько миллиардных долей секунды усиливает и фокусирует 192 мощных лазера на мишени размером несколько квадратных сантиметров. Температура мишени превышает 100 миллионов градусов, давление — 100 миллиардов атмосфер. Этого достаточно, чтобы началась термоядерная реакция.
Главная проблема — затраты энергии на разогрев мишени должны быть меньше желательно, гораздо меньше , чем энергия выделяемая при термоядерном синтезе.
Для исследования лазерного термоядерного синтеза разработаны мишени прямого и непрямого облучения. Мишени прямого облучения представляют собой полую стеклянную или полимерную сферическую оболочку с высокой однородностью толщины, заполненную либо газообразной смесью дейтерий-тритий, либо дейтерием. Диаметр сферы от 200 до 1000 мкм, толщина стенки 0,5—15 мкм, давление газа внутри оболочки 1—100 атм. На внешнюю поверхность сферы может быть нанесено какое-либо покрытие. Мишени непрямого облучения представляют собой мишень прямого облучения, заключенную в сферический или цилиндрический кожух диаметром 1—4 мм из металла с высоким атомным номером. Мишень для исследования уравнения состояния в лазерных экспериментах представляет собой базовую пластину из алюминия или меди толщиной 40—60 мкм, на одну из сторон которой нанесены в виде ступеньки слои из материала базы и исследуемого материала толщиной 4—10 мкм.
Ступеньки отстоят друг от друга на расстоянии 50—100 мкм. Другая сторона мишени, на которую воздействовал лазерный импульс, покрывалась слоем полипараксилилена толщиной 8—10 мкм. Шероховатость поверхности не превышала 80 нм для свинца, 50 нм для алюминия и 10 нм для меди и полипараксилилена. При диагностике лазерного излучения и исследованиях плазмы на мощных лазерных установках ИЛФИ "Искра-5", "Луч" для проведения с субнаносекундным временным разрешением временной, пространственно-временной и спектрально-временной регистрации используются фотохронограф с щелевой разверткой СЭР-4 — для видимого и ближнего ИК-излучения, рентгеновский фотохронограф с щелевой разверткой РФР-4 — для мягкого и сверхмягкого рентгеновского излучения. Инфракрасный многокадровый фоторегистратор КИТ-3М базируется на полупроводниковой камере ионизационного типа и многокадровой электронно-оптической камере.
Есть как минимум еще четыре : Отсутствие эмиссии парниковых газов. Возможность размещения станции вблизи населенных пунктов из-за отсутствия выделяемых в окружающую среду вредных веществ. Практически неограниченные запасы топлива. Например, изотоп водорода дейтерий легко получается из обычной воды, да и требуется его немного. К тому же термоядерный синтез лишен всех недостатков классической атомной энергетики.
Так, первое теоретическое обоснование в своих работах дал Лаврентьев 1950 , чуть позже с аналогичными трудами выступил Спицер из США 1951. Первый токамак , ТМП, был сконструирован в 1958 году в Курчатовском институте. По расчетам, его мощность будет в 30 раз выше аналогичного показателя у JET. ИТЭР был согласован в 1992 году, строительство началось в 2010-ом. Экспериментальный реактор выполнен, как и JET, по типу «токамак». То есть внутри раскаленная плазма удерживается на расстоянии от стенок установки мощнейшей магнитной системой. Кстати, сам термин «токамак» — это акроним от советских ученых, обозначающий «тороидальную камеру с магнитными катушками».
Минобрнауки России 1 002 подписчика Подписаться Бесконечная энергия, без вреда для природы и почти даром! Звучит как фантастика, но это новая реальность! Глеб Курскиев: — В детстве я мечтал стать мореплавателем или космонавтом, и еще — исследователем. И, в какой-то степени, мечту осуществил! Когда я был маленьким, главным примером для меня был мой дедушка, заведующий лабораторией в Ленинградском ЦКТИ. Когда мне еще не было 6 лет, он рассказывал мне все об устройстве окружающих вещей от двигателя внутреннего сгорания до ядерного реактора!
Российский инженер рассказала о значении термоядерного прорыва американских ученых
Меня уже несколько раз просили подробнее рассказать о термоядерном синтезе, термоядерных реакциях и вот этом вот всём. Ещё с 1950-х годов прошлого века физики мечтали использовать термоядерный синтез для получения энергии, но прежде не получалось добыть больше энергии. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский. Советские физики, в частности, еще в 40-е годы прорабатывали теорию газодинамического термоядерного синтеза — то есть термоядерной реакции под действием направленного.
Эра термоядерного синтеза
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить | И все из-за нового термоядерной установки токамак, аналогов которой нет нигде в мире. |
Эра термоядерного синтеза | Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. |
Поддерживаемый Биллом Гейтсом стартап по термоядерному синтезу превзошел температуру Солнца
Статья автора «Канал Наука» в Дзене: 13 декабря 2022 года было объявлено: американским физикам удалось добиться, чтобы термоядерный синтез выработал на 50% больше энергии. Ученые Института ядерной физики а СО РАН (ИЯФ, Новосибирск) добились ускорения плазмы в термоядерной установке "СМОЛА", где вещество удерживается. Так что, готовимся устанавливать термоядерный реактор в каждый дом? Сомневается популяризатор науки, автор YouTube-канала «Физика от Побединского» Дмитрий Побединский.
Физики впервые запустили самоподдерживающийся термоядерный синтез, но не смогли это повторить
Новосибирские физики ускорили плазму в установке - основе термоядерного ракетного двигателя 28 декабря 2022, 14:07 Новосибирск. Есть мысль про двигатель термоядерный и так далее. Там активно работает молодая команда", - рассказал он. Кроме того, отметил Багрянский, установлено, что спиралевидное магнитное поле очень эффективно ограничивает поток плазмы, то есть удерживает его.
Система удержания плазмы токамак изобретена и предложена в Советском Союзе в Курчатовском институте, и это наш главный вклад. То есть вся кооперация, весь мир строит реактор в концепции, предложенной нашими учеными». Интересно и то, что соглашение об ИТЭР состоит из двух частей. Первая: о создании самого проекта и его реализации, а вторая — как страны участники будут делить интеллектуальную собственность, которая создается.
Семь партнеров, включая Россию, вкладывают свои ресурсы и технологии. Наша доля — девять процентов. Взамен мы получаем право на безвозмездную лицензию для уже нашей собственной термоядерной программы и создания нашего реактора. Анатолий Красильников: «Понимаете, мир сейчас очень сложный, турбулентный, разные есть события, отношения между странами. А вот ИТЭР — как ледокол: идет, и об его крепкий корпус все мелочные нюансы текущей жизни мировой разбиваются.
Прогресс, достигнутый в результате многолетних исследований на токамаках, не следует недооценивать. Достижение всех необходимых для реализации УТС значений параметров 2 сегодня продемонстрировано экспериментально, но, к сожалению, в разных экспериментах табл. Полученные значения тройного произведения более чем в 1000 раз превышают данные середины 70-х годов прошлого века, когда стартовали первые крупные токамаки с дополнительным нагревом плазмы 3 3.
И то, и другое сопряжено с существенным удорожанием установки. Именно на реализацию проекта ИТЭР в последнее десятилетие были направлены основные усилия мирового термоядерного сообщества. При этом большинство участников вполне плодотворно использовали добытые общими усилиями при проектировании ИТЭРа знания и технические решения в своих национальных программах. И наоборот, данные, получаемые в ходе исследований, выполняемых национальными командами, анализируются и учитываются в проекте ИТЭР. Отметим, что планируемые режимы работы ИТЭРа основаны на довольно консервативных представлениях и достаточно обоснованы предшествующими экспериментами [ 9 ]. Вместе с тем ИТЭР — это качественный скачок в токамакостроении. Для примера: объём плазмы ИТЭРа равен 840 м3, что более чем в 10 раз превосходит объём плазмы самого крупного из действующих токамаков — токамака JET. Строительство и запуск ИТЭРа призваны продемонстрировать работоспособность идеологии, позволяющей создать на базе токамака термоядерный энергетический реактор.
Основной задачей экспериментов на ИТЭРе будут отработка и испытание важнейших технологий и компонентов реактора. Принципиально важной станет проверка концепции использования вольфрама в качестве материала для диверторных пластин — как самого тугоплавкого металла — в условиях ожидаемых на ИТЭРе огромных потоков энергии. Напомним, что наилучшие режимы удержания плазмы получены сегодня при использовании покрытий с низким зарядовым числом атомов в составе покрытия — углерода и бериллия; в ИТЭРе этими материалами будет покрыта первая обращённая к плазме стенка вакуумной камеры. Вопрос о том, будут ли и в каком количестве ионы вольфрама поступать в основную плазму, снижая её температуру за счёт излучения, может быть окончательно решён только в ходе экспериментов на ИТЭРе. Начиная с 2016 г. В августе 2020 г. Это событие стало предметом пристального внимания со стороны масс-медиа и заслужило ряд приветственных обращений высшего политического руководства стран — участников проекта. Отметим, что в случае соблюдения действующего ныне графика строительства, выполнения всеми сторонами своих обязательств и преодоления последствий пандемии 2020—2021 гг.
По мнению авторов, основные проблемы вполне понятны и могут быть поименованы. Во-первых, это колоссальная технологическая сложность самого устройства, которая особенно ясно проявилась в проекте ИТЭР. Протекающий по плазме токамака электрический ток в тороидальном магнитном поле обеспечивает как формирование итоговой магнитной конфигурации, являющейся идеальной ловушкой для удержания частиц плазмы, так и нагрев этой плазмы. Однако для длительного устойчивого удержания плазмы термоядерных параметров требуется множество инженерных систем, создание которых находится на пределе имеющихся технологических возможностей.
Интенсивная среда, создаваемая направленными внутрь ударными волнами, создала самоподдерживающуюся реакцию ядерного синтеза.
Однако за год ученые так и не смогли повторить эксперимент. В четырех аналогичных опытах удалось получить только примерно половину от энергии, полученной в первоначальном успешном эксперименте. Физики будут продолжать свои эксперименты, чтобы снова воссоздать самоподдерживающийся термоядерный синтез.
Прорыв в термоядерном синтезе
Случайное открытие физиков позволяет стабилизировать реакции термоядерного синтеза 5.5. все новости, связанные с понятием "Термоядерный синтез ". Регулярное обновление новостного материала. Проблемы термояда обсудили на 50‑й Международной конференции по физике плазмы и управляемому термоядерному синтезу в Звенигороде 20–24 марта. Исследования в области термоядерного синтеза и физики плазмы ведутся более чем в 50 странах, и термоядерные реакции были успешно запущены в ходе многих экспериментов.
Лазерный пресс
- Американцы произвели термоядерный прорыв к 100-летию советского академика Басова - МК
- Искусственное солнце: как первый в мире термоядерный реактор изменит мир
- Как причесать ежа, или попытки удержать плазму
- Прототип российского термоядерного реактора: для чего он необходим?
- Вестник РАН. T. 91, Номер 5, 2021
- Последние комментарии