Теория струн воспринималась как теория ядерного взаимодействия (в ядре атома удерживаются нейтроны и протоны). Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. В рамках теории струн получено описание Вселенной с реалистичным значением плотности темной энергии. Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения.
Войти на сайт
До всего этого десятка измерений, кое-что безразмерное, так называемое нулевое измерение. Конечно же, это точка. А у вас были другие варианты? Теперь возьмем две точки и соединим как в начальных классах на математике. Что получилось?
Правильно, отрезок. Он, в отличие от точки уже имеет одно измерение — длину. Однако ни ширины, ни высоты здесь по-прежнему нет. Двигаться в одномерном пространстве можно только вперед и назад.
Никаких вверх-вниз, влево-вправо там и в помине нет. Если на вашем пути поставить какое-либо препятствие, вы в лепешку расшибетесь, но обогнуть его не сможете. Зато на такой линии уже можно определить нахождение объекта по одной координате. Итак, представьте, что на отрезке все-таки возникло препятствие, как его обойти?
Логично, что нужно добавить еще одно измерение, ибо в одном никак. Поэтому дорисовываем где-нибудь рядом с этой линией еще одну точку. Совместим ее с любой из двух других точек и получим двумерную систему координат. Теперь у нас есть два измерения — длина и ширина.
Но для настоящего 3D-пространства нам все еще не хватает высоты. Поэтому сейчас мы будем творить настоящую магию. Добавим еще одну точку и соединим ее с той, с которой соединяли предыдущую. Теперь мы можем двигаться как вперед и в сторону, так и вверх-вниз.
Мы получили трехмерное пространство, в котором мы же с вами и живем. Ну и не забываем про время, конечно же. Думаю, вы все уже задались вопросом: как это все вяжется с теорией струн? Скоро все поймете, мы же тут для чайников разжевываем, поэтому все по порядку.
Вам же понравилось рисовать? Поэтому давайте продолжим. Нарисуем двух человечков в двумерном пространстве. Назовем их Федор и Вадим.
Мы с вами видим их такими: Однако Федор и Вадим существуют в 2D-пространстве, поэтому они видят друг друга так: А теперь нарисуем Федора сверху: Как теперь Вадим будет видеть своего товарища? Вот так: Из этого следует, что, как ни крути, эти ребята будут видеть друг друга как одномерные отрезки, но мы то с вами знаем, что оба они двумерны. Вы и так уже наверняка догадались, почему. Все из-за точки обзора.
Мы с вами видим Федора как объект, имеющий длину и ширину, а Вадим недоумевает и говорит, что мы свихнулись, и перед нами простой отрезок с одним единственным измерением. Тот факт, что Вадим живет на плоскости, попросту не позволяет ему даже представить, как по-настоящему выглядят объекты в его мире. И я уже не говорю о том, как сильно будет болеть его плоский мозг, пытаясь представить трехмерное изображение. А сейчас попытайтесь представить, что в спокойную двуразмерную жизнь Федора и Вадима резко врывается некий 3D-объект, пересекающий их плоскость.
Каким образом вы увидите это со стороны? Двумерные проекции сразу же изменятся и это будет похоже на брокколи в МРТ: Что в этот момент будет с нашими героями? Сказать, что они очень удивятся такому развитию событий, ничего не сказать. Такого они даже представить себе не смогут.
Для них везде начнут появляться отрезки, которые будут резко менять свою длину и положение. Вычислить длину или координаты этих объектов в двумерном мире будет просто невозможно. Надеюсь, теперь вы немного въехали в то, что я пытаюсь вам здесь втереть. Мы живем в трехмерном мире и видим все объекты двумерными.
Лишь тот факт, что они или мы перемещаемся в пространстве, позволяет нам говорить о том, что у всего есть объем.
Как бы то ни было, мозголомка по всему миру продолжается, пока ты сидишь в интернетах. Вины[ править ] Mузыкальное произведение, популяризирующее теорию струн и демонстрирующее какие проблемы привели к её появлению Ясен пень, что никто не стал бы мучиться с этой вашей непонятной теорией, если бы она не обладала большими плюсами в глазах физиков. И таковые действительно есть, причём какие! Прекращение борьбы бобра с ослом. На протяжении ХХ века бобро в лице ОТО и осло в лице квантовой механики цапались друг с другом, причиняя неистовый butthurt физикам. Как написано выше, теория струн нашла способ их помирить — не без обработки напильником, конечно, но осло по крайней мере перестало люто стремиться уничтожить бобро. Избавление от сингулярности. За что физики особенно благодарны теории струн — это за то, что ей в определённом смысле удалось укротить такое чудовище, как сингулярность, то есть возникающую по уравнениям ОТО бесконечную кривизну пространства-времени в экстремальных условиях например, в чёрных дырах или во время Большого взрыва.
Теория струн утверждает, что никакой сингулярности не будет, ибо вся Вселенная имеет минимальный размер сжатия так называемый планковский размер , после которого она автоматически «вывернется наизнанку» и вновь начнёт расширяться. Точнее, продолжит сжиматься, но со стороны это будет выглядеть как расширение. Шанс стать Единой теорией. Физики полагают, что это одна из конечных целей физики как науки. Фейлы и трудности[ править ] M-теория таки идёт к успеху , но пока ещё не пришла, и у неё много своих проблем, при упоминании которых физики прикладывают руку к лицу. Сверхсложная высокость. Уравнения теории струн и уж тем более её последнего релиза — M-теории настолько сложны, что физики большей частью оперируют только их приближёнными формами. Что, конечно, не ведёт к повышению точности результатов. Более того, часто складывается такая ситуация, что для решения этих уравнений даже соответствующих математических методов-то не создано, и приходится придумывать всё на лету.
Ёбаный стыд. Только этот стыд, собсно, не к самой теории струн, а к нынешнему состоянию математики. Уж пару веков старая добрая ньютоновская небесная механика никаких вам струн поставила общую задачу трех тел , а фиг ли толку? Или вот уравнения Навье — Стокса для турбулентных потоков — старая добрая классическая гидродинамика, двести лет отроду. За доказательство существования и гладкости решения даже не за само решение! Что символизирует. Практически везде, где физика уперлась в тупик, на самом деле в тупик уперлась математика. И в теории струн — тем более, ибо она там сложнее, чем где бы то ни было. И эта проблема служит источником двух других.
Экспериментальный вакуум. Главный косяк теории — то, что она описывает явления на таких малых масштабах, что напрямую экспериментально подтвердить её основные утверждения невозможно. И никогда не будет возможно — для этого нужен не страшный ужасный адронный коллайдер длиной 27 километров, а ускоритель размером примерно с видимую Вселенную. Само по себе это не приговор — нужно только вывести косвенные наблюдаемые следствия. Вот теория великого объединения , например, предсказывает распад протона с ненулевой вероятностью — и физики надеются, загоняя в подземные резервуары туеву хучу тонн воды, что какой-нибудь протон, на глазах у их детекторов, таки распадется. Физика питается косвенными свидетельствами — в конце концов, как электроны движутся вокруг ядра, тоже никто до недавнего времени ни в какой микроскоп не видел, и ускорителей тогда тоже не было. Проблема в том, что выводить наблюдаемые следствия из уравнений теории струн при их нынешнем математическом состоянии — задача для волшебников. А без математического прорыва и прямого эксперимента в теории струн иногда в ход идут такие хитровыебанные аргументации, что любой продажный адвокат пожал бы физикам руку. Элементарные частицы, дополнительные измерения и некто Карл Поппер.
Десятимерная теория струн на более привычных масштабах должна, естественно, сводиться к известной и ОЧЕНЬ хорошо проверенной физике элементарных частиц. Но, как выясняется, способов такого сведения существует по меньшей мере 10100 , хотя не исключено, что и 100500 , а то и вовсе бесконечность. При этом каждая из получившихся четырёхмерных теорий описывает свой собственный мир, который может быть похож на реальность, а может и принципиально отличаться от нее. Проблема здесь в том, что свойства частиц считаются способом колебания струн, а возможные способы колебания струн зависят от точной геометрии дополнительных измерений. Но существующим приближенным уравнениям удовлетворяет туева хуча разных геометрий. То есть эти уравнения были бы справедливы не только в нашем мире, но и в туевой хуче других миров, а возможно — в любом мире. Будь эти приближенные уравнения окончательными, это был бы тотальный экстерминатус в связи с нефальсифицируемостью по Попперу, то есть признаком ненаучности теории. А так — хвост пистолетом и искать точные уравнения. Квантовая гравитация[ править ] Основным результатом теории струн ну или М-теории, всем похуй принято считать возможность проквантовать гравитацию.
Ясно дело , что кроме теории струн есть ещё и другие способы эту вашу гравитацию квантовать, которые убоги каждый в чем-то. Поэтому надо тут остановиться подробнее. Квантовая теория поля учит нас, что все взаимодействия между частицами можно представить в виде картинок, диаграмм Фейнмана. Например взаимодействие электрона и позитрона можно нарисовать в виде диаграммы справа, как обмен одним фотоном. Электрон и позитрон взаимодействуют, обмениваясь фотоном Но это только так называемое древесное приближение — на деле эта диаграмма даёт лишь классическую теорию, а квантовые эффекты появятся, если мы будем рисовать петли. Петлевые поправки к взаимодействию между электронами На этих диаграммах волнистая линия — фотон, прямые линии — электрон и позитрон. Но все это можно рисовать для любого взаимодействия. Ты, анон, уже догадался, что этих петель можно рисовать чуть более, чем дохуя. А именно, бесконечно.
Каждая такая картинка соответствует совершенно невменяемому выражению, включающему в себя интегралы, логарифмы и прочую матаническую поебень.
Некоторые из них, свернутые сами по себе теории Калуцы — Клейна , остаются незамеченными на наших шкалах с помощью процедуры, называемой размерной редукцией. Исходя из этих предположений, теория струн предсказывает, что: Гравитон , бозон то есть посредник от силы тяжести , будет частицей спины 2 и нулевой массы в соответствии с квантовой физикой. Его струна имеет нулевую амплитуду волны. Общие концепции теорий Бранес -Брана , или , точнее , р-браны, является расширенным объектом в теории струн. Р это число пространственных измерений , в которых -брана расширяется. К этому числу необходимо добавить временное измерение, чтобы получить общее количество измерений.
Например, 1-брана — это брана только с одним пространственным измерением, но всего с двумя измерениями. Следовательно, они соответствуют поверхностям вселенной. Несколько космологических моделей возникло в результате введения бран в теорию струн. Общая идея бранарной космологии состоит в том, что наша Вселенная ограничена 4-браной. Это означает, что частицы материи кварки , электроны и т. И фундаментальные взаимодействия, отличные от гравитации переносимые частицами, такими как фотон , глюон и т. Также в рамках модели Большого взрыва недавно была предложена идея, как альтернатива космической инфляции, описывающая самые первые моменты истории Вселенной , экпиротическая модель.
В этой модели начальное расширение происходит из-за столкновения браны и антибраны, которая высвобождает энергию, необходимую для расширения Вселенной. Эта модель предсказывает возможность других столкновений, которые приведут к другим Большим взрывам. Тем не менее, это не вызывает единодушия в сообществе космологов, и космическая инфляция остается механизмом, который в основном рассматривается для описания первых моментов. Дополнительные размеры Пример пространства Калаби-Яу. Согласно теории струн, наш мир, пространство которого кажется трехмерным, будет состоять не из четырех измерений пространства-времени три измерения пространства и одно время , а из 10, 11 или даже 26 измерений. Без этих дополнительных измерений теория рушится. Действительно, физическая когерентность волновая функция, дающая неотрицательные вероятности требует наличия дополнительных.
Причина, по которой они остаются невидимыми, заключается в том, что они будут свернуты в процессе уменьшения размеров в микроскопическом масштабе в миллиарды раз меньше атома , что не позволит нам их обнаружить. В самом деле, если мы представим себе кабель, видимый издалека, он представляет собой только прямую линию без толщины, одномерный объект. Если мы подойдем достаточно близко, мы поймем, что действительно существует второе измерение: то, которое окружает себя вокруг кабеля. Согласно теории струн, пространственная ткань может иметь очень большие размеры, такие как наши обычные три измерения, но также и маленькие размеры, свернутые на себя. Пространства Калаби-Яу — это разновидности, которые играют роль спиральных измерений. Это чрезвычайно сложная форма, состоящая из шести измерений. Суперсимметрия Суперсимметрия — это симметрия в физике элементарных частиц.
Он устанавливает очень прочную связь между частицами с полным спином и частицами с половинным спином. В этом контексте фермионы связаны с другим типом частиц: суперпартнером. Суперпартнеры — это большие частицы, которые идентичны своему партнеру во всех отношениях , за исключением уровня спина : у суперпартнера он отличается на половину единицы. Супергравитация — это теория, сочетающая суперсимметрию с общей теорией относительности.
Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.
Цена работы Основные принципы квантовой теории струн Квантовая теория струн — это физическая теория, которая описывает элементарные частицы не как точки, а как маленькие вибрирующие струны. Она представляет собой попытку объединить общую теорию относительности и квантовую механику, создав единую теорию, которая объясняет все фундаментальные взаимодействия в природе. Математический формализм квантовой теории струн основан на идеи, что струны могут колебаться в различных режимах. Основные предположения и постулаты теории включают: Струны как основные объекты: В квантовой теории струн, основными объектами являются струны, а не точечные частицы. Струны представляют собой одномерные объекты, которые могут иметь различные размеры и формы. Колебания струн: Струны могут колебаться в различных режимах, которые определяются их размерами и формами.
Колебания струн определяют энергию и массу элементарных частиц. Квантование колебаний: Колебания струн квантуемы, то есть они могут принимать только определенные дискретные значения энергии и импульса. Это приводит к появлению дискретного спектра масс частиц. Дополнительные измерения: Квантовая теория струн требует наличия дополнительных измерений, помимо трех пространственных и одного временного измерений. Эти дополнительные измерения могут быть свернуты или свернуты в маленькие компактные размеры. Размерности струн и режимы колебаний определяют свойства и характеристики элементарных частиц.
Различные режимы колебаний струн могут соответствовать различным частицам и их взаимодействиям. Квантовая теория струн предлагает новый подход к пониманию фундаментальных взаимодействий и структуры Вселенной. Развитие квантовой теории струн Квантовая теория струн возникла как попытка объединить общую теорию относительности и квантовую механику, создав единую теорию, которая объясняет все фундаментальные взаимодействия в природе. Она развивалась в результате нескольких ключевых открытий и прорывов. Одним из ключевых моментов в развитии квантовой теории струн было осознание ограничений и проблем традиционной физики. Традиционная физика, основанная на точечных частицах, не могла объяснить некоторые фундаментальные вопросы, такие как объединение гравитации и квантовой механики, причина массы частиц и природа темной материи и энергии.
В 1960-х годах физики начали исследовать модели струн, которые могли быть основой для новой теории. Однако, в то время не было достаточно математических инструментов для полного описания струнных моделей. В 1970-х годах были сделаны важные открытия, которые привели к развитию квантовой теории струн. Это был важный шаг вперед в понимании струнных моделей. В 1980-х годах были сделаны еще большие прорывы в развитии квантовой теории струн. Операционализация и экспериментальное подтверждение квантовой теории струн до сих пор остаются сложными задачами.
В настоящее время нет прямых экспериментальных данных, которые бы подтверждали предсказания квантовой теории струн.
Что такое теория струн?
Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее. Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику.
Теория струн кратко и понятно
Популярно о теории струн | Теория струн применима к познанию строения микромира не в том смысле, что там кругом висят верёвочки, а что описание происходящих в микромире процессов математически сходно с описанием неких “струн”. |
Теория струн: расширенное понимание микромира | Описание теории струн простым и понятным языком, или как принято говорить "Для чайников". |
Краткая история теории струн | Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. |
Теория струн. Теория всего
Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Принцип суперсимметрии был открыт вне теории струн. Однако его включение в теорию струн позволяет определенному члену в уравнениях вычеркнуть и придать смысл. Без этого принципа уравнения теории струн приводят к физическим несоответствиям, таким как воображаемые уровни энергии и бесконечные значения. Другими словами, объединение идеи суперсимметрии с теорией струн дает лучшую теорию, теорию суперструн. Физики надеются, что эксперименты с ускорителями частиц и астрономические наблюдения позволят выявить несколько суперсимметричных частиц, что обеспечит поддержку теоретических основ теории струн.
Объединение сил Современная физика имеет два совершенно разных закона: общая теория относительности и квантовая механика. Относительность изучает большие объекты в масштабе планет, галактик и вселенной, в то время как квантовая механика имеет тенденцию изучать крошечные объекты в природе на самых маленьких масштабах энергетических уровней атомов и субатомных частиц. Не совсем понятно, как гравитация влияет на мельчайшие частицы. Теории, которые стремятся описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации, и одной из наиболее многообещающих из всех таких теорий является теория струн. Открытые и закрытые струны 5 фундаментальных взаимодействий струны типа I Струны в теории струн имеют две формы: открытые и закрытые струны.
Две открытые струны могут соединяться с обоих концов, образуя закрытую струну. Или несколько открытых струн могут присоединиться к одному концу, чтобы сформировать новую открытую струну. Такие струны, известные как струны типа I, могут проходить через 5 основных типов взаимодействий. Эти взаимодействия зависят от способности струны соединять и разделять концы концов. Ученые считают, что у замкнутых струн есть особые атрибуты, которые могут описывать гравитацию в квантовой механике.
Считается, что характерная шкала длины струн составляет порядка 10 -35 метров, или длины Планка. Это масштаб, при котором эффекты квантовой гравитации становятся значительными. Однако в 1995 году американский физик-теоретик объединил все пять теорий в одну 11-мерную теорию, называемую М-теорией. Это может обеспечить основу для построения единой теории всех фундаментальных сил во Вселенной. Кто открыл теорию струн?
Перспективы и возможности для дальнейших исследований Квантовая теория струн остается активной областью исследований, и у нее есть много перспектив и возможностей для дальнейших разработок. Ученые продолжают исследовать различные аспекты теории струн, такие как сверхсимметрия, дополнительные измерения и свойства струнных моделей. Одной из перспективных областей исследований является разработка математических методов и техник, которые позволят более точно описывать и анализировать свойства и поведение струнных моделей. Это может привести к новым математическим открытиям и развитию смежных областей физики и математики. Кроме того, квантовая теория струн может иметь практические применения в различных областях, таких как квантовые вычисления, криптография и материаловедение. Исследования в этих областях могут привести к разработке новых технологий и приложений, которые могут иметь значительный вклад в науку и технологию. Критика и альтернативные подходы Квантовая теория струн, несмотря на свою значимость и потенциал, также подвергается критике и вызывает дискуссии среди ученых. Вот некоторые из основных критических моментов и альтернативных подходов, которые были предложены: Ограничения и проблемы квантовой теории струн Одним из основных ограничений квантовой теории струн является ее сложность и математическая трудность. Формализм теории струн требует использования высокоабстрактных математических концепций, таких как теория операторов и топология. Это делает ее трудно доступной для понимания и применения в практических расчетах.
Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения. В настоящее время нет прямых экспериментальных данных, которые могли бы подтвердить или опровергнуть предсказания теории струн. Это ограничивает ее статус как научной теории и вызывает сомнения в ее достоверности. Альтернативные модели и гипотезы Существуют альтернативные модели и гипотезы, которые предлагают альтернативные подходы к объединению гравитации и квантовой механики. Некоторые из них включают: Петлевая квантовая гравитация: Это альтернативная теория, которая основана на квантовании гравитационного поля в терминах петель. Она предлагает другой математический формализм и подход к описанию гравитации, который может быть более фундаментальным и ближе к экспериментальным данным. Теория супергравитации: Это теория, которая объединяет гравитацию и суперсимметрию. Она предлагает другой подход к объединению фундаментальных взаимодействий и может быть более простой и понятной, чем квантовая теория струн. Нелокальные теории: Это класс теорий, которые предлагают изменить принцип локальности, который является основой квантовой теории струн. В нелокальных теориях взаимодействия могут распространяться на большие расстояния и быть связаны с неклассическими эффектами.
Эти альтернативные модели и гипотезы предлагают другие подходы к объединению гравитации и квантовой механики и могут быть объектом дальнейших исследований и экспериментов. Дискуссии и перспективы развития будущих теорий Дискуссии и дебаты вокруг квантовой теории струн и ее альтернативных подходов продолжаются в научном сообществе. Ученые исследуют различные аспекты и проблемы теории струн, а также альтернативные модели и гипотезы. Будущие теории могут включать в себя комбинацию различных подходов и идей, а также новые математические и физические концепции. Они могут предложить новые предсказания, которые могут быть проверены экспериментально и привести к новым открытиям и пониманию фундаментальных взаимодействий и структуры Вселенной. Заключение Квантовая теория струн представляет собой уникальный и амбициозный подход к объединению гравитации и квантовой механики. Она предлагает новый математический формализм и концепции, которые могут пролить свет на фундаментальные взаимодействия и структуру Вселенной.
За этим открытием стоит математика, теория основана на простых предположениях и расчетах. Элементарные частицы настолько малы, что имеют размерность Планка, которая составляет 10-33, их невозможно даже наблюдать. Физики решили эту загадку, рассматривая эти частицы как «точку» в нашем трехмерном мире.
С точки зрения любого наблюдателя, это будет одномерная линия. С точки зрения реальности физической — двухмерная линия. Расширение Вселенной вопреки всем ожиданиям не замедляется, а ускоряется. Оказалось, что она состоит из трех видов материи. Существуют модели, предсказывающие, что скорость разлета будет все больше увеличиваться и в итоге Вселенная будет разорвана. Это та самая гибель Вселенной, о которой все говорят. Вселенная обладает удивительным свойством — она очень точно настроена на то, чтобы в ней была жизнь: любое изменение мировых констант сделает ее существование невозможной.
Теория струн. Возникновение теории, ее приложения
Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Сравнительно недавно появился подход, дающий возможность разрешить это противоречие — теория струн. Теория струн основана на идее физики о том, что все известные силы, частицы и взаимодействия могут быть связаны. В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. Теория струн основана на гипотезе[5] о том, что все элементарные частицы и их фундаментальные взаимодействия возникают в результате колебаний и взаимодействий ультрамикроскопических квантовых струн на масштабах порядка планковской длины 10−35 м. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время.
Войти на сайт
Теория струн, тем не менее, дает первое фундаментальное обоснование давно открытого свойства чёрных дыр, невозможность объяснения которого многие годы тормозила исследования физиков, работавших с традиционными теориями. •Краткая история теории струн. Рассказать о теории струн кратко вряд ли получится. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на.
Вы точно человек?
Теория струн — узнай главное на ПостНауке | Теория струн, вероятно, это одна из самых интригующих гипотез в мире науки. |
Теория струн простыми словами | Описание теории струн простым и понятным языком, или как принято говорить "Для чайников". |
Теория струн | Наука | Fandom | В первые годы теории струн развитие происходило настолько быстро, что уследить за всеми новостями было практически невозможно. |
Ответы : Объясните кратко, понятно что такое Теория Струн? | 1) «Теория струн» в первоначальном виде сама по себе уже устарела и сейчас это название закрепилось не за первоначальной теорией, а за целым семейством – собственно теория струн, теория суперструн и М-теория. |