Для вывода изображения на экран телевизора необходима светодиодная подсветка, и компания Samsung придумала два типа светодиодов для подсветки изображения. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей. Подсветка Edge LED в жидкокристаллических телевизорах наиболее используемая и дешевая технология их производства. Светодиодная подсветка телевизора. 900 ₽.
Особенности технологии
- Ответы : Что такое светодиодная (LED) подсветка в телевизоре?
- Динамическая подсветка для ЛЮБОГО телевизора своими руками
- Edge LED или Direct LED? Direct LED или Edge LED: где лучше качество картинки
- Что такое LED-телевизоры – технология, характеристики
- LED телевизор: что это значит, особенности лед экранов
- Дополнительная подсветка телевизора и монитора: польза и вред
Что такое LED-телевизоры и в чем их преимущество для телезрителя
Третий недостаток решается банальными шторами, а вот четвёртый попадает в категорию индивидуального восприятия. Проверить насколько вы готовы к OLED-ТВ просто: если у вашего смартфона OLED-экран а большинство из них сейчас комплектуется именно такими , и у вас от него не болят глаза и голова, то можно смело отправляться в магазин за новым телевизором. Говоря проще, у любого ULED-телевизора в обязательном порядке есть слой квантовых точек в матрице, за счёт которого он поддерживает палитру цветов DCI-P3, а это делает картинку более яркой и насыщенной. У такого телевизора продвинутая локальная подсветка в том или ином виде, благодаря чему ТВ лучше работает с чёрным. Он обладает повышенной плавностью картинки и улучшенной отзывчивостью управления в играх — это заслуга частоты обновления 120 Гц. И, наконец, он формирует изображение в разрешении 4K, следовательно, оно будет детальным и чётким. Теперь OLED. У ТВ с органическими диодами изображение строится по совсем иному принципу: без участия источника внешней подсветки. Laser TV Теперь, пожалуй, о самом интересном: лазерные телевизоры Hisense. Что вообще такое лазерный телевизор? По сути — классический проектор братьев Люмьер на стероидах, который долгое время эволюционировал.
В процессе такого развития у него теперь вместо обычной лампы для формирования изображения используются пучки лазера. Впрочем, это не самое главное. Основное тут — сверхкороткое фокусное расстояние оптики, при помощи которой можно разместить проектор на расстоянии около 40 см до экрана и получить диагональ в 120 дюймов при честном 4K-разрешении. Не нужно думать о специальных полках и мучаться с прокладкой кабелей в комнате. Достаточно просто поставить устройство на тумбу выглядеть оно будет предельно аккуратно, как игровая приставка или Hi-Fi-усилитель , включить в розетку и соединить с источником сигнала. Про контрастность также можно не думать: тот же Hisense L9H можно включать даже при дневном свете - яркости в 2800 люмен в тандеме со свето-поглощающим ALR-экраном Ambient Light Rejecting хватит даже в таких зверских для традиционных проекторов условиях. При этом технология Trichroma гарантирует равномерную яркость на всей площади экрана. Ну и ещё кое-что. В сочетании с хорошей контрастностью это отличная модель для HDR-фильмов и одиночных игр, не требующих частоты обновления выше 60 Гц. В плане функционала это самые обычные современные телевизоры, оснащённые полным набором портов и функций.
Только гораздо более элегантные и компактные по сравнению с традиционными ЖК-моделями при схожей диагонали изображения. Лазерный ТВ — это полноценный домашний кинотеатр с эффектом погружения.
Весьма удобно реализовано управление и настройка в приложении по телефону.
Подсветка сама включается и выключается вместе с тв или apple tv. Интересно реализован работа режима Музыка - там динамическая подсветка анализирует не цвета на экране, а частоты музыки - верхние, средние и басы и все это можно настраивать по своему усмотрению.
Сенсор яркости палочка лучше всего ловит 498 нм — это очень близко к зелёному, и поэтому зелёный цвет кажется нам самым ярким. Как мы видим разные цвета?
Например, жёлтый? Жёлтый — это 570 нм. Значит, думай, что это жёлтый». Хотя, в реальности, это может быть и не жёлтый, а обманка в виде того самого зелёного и красного, которую излучил дисплей.
Да, ваш дисплей если это не Sharp особой серии настоящий жёлтый цвет показать не сможет, всё это обман. Некоторые живые существа, кстати, вполне могут это заметить. Здесь должна быть маленькая формула с интегралом, но, к несчастью для интегралов, они очень пугают большинство людей. Объясню словами.
Сенсор не детектирует какую-то одну длину волны, а суммирует амплитуды яркость всех обнаруженных длинн волн. Но не просто суммирует. Перед этим суммированием всего-всего, он домножает яркость каждой длины волны на свою сенсора способность видеть эту длину волны, то есть свою чувствительность к этой длине волны. Пример с зелёным сенсором.
Посветим на него одновременно несколькими длинами волн: 450 нм, 500 нм, 550 нм и 600 нм. Каждая волна будет иметь условную яркость в 1 единицу. Посмотрите на график, и увидите, какая у него чувствительность к этим длинам волн. Как он будет действовать?
Яркость волны длиной 450 нм, равную 1 он умножит на 0,1 Яркость волны длиной 500 нм, равную 1, он умножит на 0,4 Яркость волны длиной 550 нм, равную 1, он умножит на 1,2 Яркость волны длиной 600 нм, равную 1, он умножит на 0,4 А потом всё это сложит. Получится 2,1. И он отправит значение 2,1 в зрительный нерв на самом деле не сразу, в сетчатке есть своя мини-нервная система, выполняющая предварительную обработку информации, но это не важно. Пример двух спектров, которые на химическом и физическом уровне абсолютно разные, но для сенсора — то же самое Теперь убираем все эти четыре длины волны, и, вместо этого, светим одной в 525 нм и яркостью 2,1.
Сенсор снова сделает это умножение-сложение, и у него снова получится 2,1. То же самое. Поэтому, с информационной точки зрения, для сенсора два этих воздействия — абсолютно одно и то же. Сенсор выдаёт только интенсивность, просто циферку — и мозг, как-бы, будет видеть одно и то же.
Только вот сенсор живой и электрохимический. Он требует обслуживания, заботы и управления, надо подкачивать разные нужные вещества и калибровать всякие биологические штуки. Кислород с витаминками, и всё такое. Не одно и то же всё время, а по ситуации: от воздействия света разной интенсивности и длины волны в палочках и колбочках возникают разные фотохимические реакции, и баланс веществ в них постоянно меняется.
Чтобы грамотно рассчитать калибровку нервных окончаний и дозу веществ и витаминок в нужный момент времени, организм должен понять, какое на этот сенсор идет воздействие со стороны внешней среды, и на основе этого сделать нужные организменные штуки с этим сенсором. Адаптировать его к ситуации. А какое воздействие на глаз может быть со стороны внешней среды? Если не брать во внимание нештатные сценарии шлицевая отвёртка , то это могут быть только электромагнитные волны разной частоты длины волны.
Очень условный гипотетический! Организм начеку — как только эта длина волны появилась, надо усилить подкачку новых молекул этого витамина, чтобы концентрация не снижалась. Но сенсор даёт очень скудную информацию — лишь одно число, и по нему непонятно, что там происходит. Вдруг там 458 нм, или 461 нм?
Сенсор всё равно выдавал бы одно и то же. А может там вообще только 500 нм? Тогда, если мы ложно испугаемся и ошибочно начнем пихать туда новые дополнительные витаминки, их там будет, наоборот, переизбыток — а это тоже нехорошо. То есть, на информационном уровне, сенсор детектирует зелёный цвет и всё, а на физиологическом уровне на него разные длины волн в спектре действуют по разному, просто он об этом доложить организму не может.
Как же узнать, что витаминки действительно уничтожаются и их пора подкачивать? Поставить спектрограф? Природа их делать не умеет. Датчик на каждое вещество и каждый чих в каждый сенсор — глаза будут размером с арбузы и очень мясные, придётся уменьшить мозг и качать шею.
Но можно сделать проще — ориентироваться на среднюю температуру по больнице. Природа любит так делать. Для того, чтобы полностью оценить это воздействие, и, в частности, узнать, как сильно светит волна 459 нм, нужно знать весь спектр, а не одну циферку с сенсора. За неимением спектрографа, организм, руководствуясь генетическим опытом, выработанным в ходе эволюции нашего вида, выдумывает наиболее вероятный спектр, который бы воздействовал на сенсор так, чтобы получился как раз тот сигнал-циферка, которая с этого сенсора и поступает в данный момент.
То есть он пытается выдумать такой спектр, при котором бы сенсоры выдавали то, что они выдают в данный момент. Поскольку он знает только естественный спектр и его формы, то выдумывает именно естественный спектр. И, поскольку сенсор не один, а четыре, очень грубую картину спектра организм таки восстанавливает. Естественный для нашего организма спектр — это довольно плавная штука: Естественный спектр Плавный он по простой причине.
Что видел глаз всю эволюцию? Листики с травинками, камешки, небо с речками, волосня товарища по пальме, вот это всё. Большое разнообразие химических элементов, одним словом. И почти для каждой длины волны найдется какая-нибудь молекула, хорошо отражающая именно её.
И получается, что когда веществ много разных, то отражаются почти все волны, и спектр этих отражённых волн плавный. А что значит «плавный спектр»? График плавный. Например, яркости 480 нм много — значит, скорее всего, и 479 нм, и 475 нм, и 485 нм тоже довольно много.
Физиология глаза заточилась под эту вездесущую плавность — потому что это всегда срабатывало. Работает — не трогай. Все, у кого глаз подстраивался неправильно, плохо видели и были заклёваны саблезубыми мамонтами, не дав потомства. Но потом появились искусственные источники света.
Их спектр бывает очень разный. В большинстве случаев, он очень сильно отличается от естественного спектра, под который эволюционно заточена автонастройка наших глаз. Спектры разных искусственных источников света Например, производители отчаянно воюют со светодиодами, которые очень любят длину волны в районе 430 нм и шпарят ей, как прожекторы, а в природе такого не бывает, там если 430 нм шпарит — то 420 нм и 440 нм тоже будут шпарить. И вот светодиод, у которого 430 нм светит ярко, а в окрестности нет, светит в глаз.
Организм думает, что раз синий датчик выдаёт что-то интенсивное, значит 420 нм, и 430 нм, и 440 нм много, и начинает на физиологическом уровне подстраиваться под этот спектр. Подкачивает не те вещества, не в той концентрации и невпопад, генерирует неверные стимулы всяких нейронов, неправильно калибрует чувствительность. В глазах нарушается баланс нужных веществ и электрохимических регулировок, и глаза начинают вполне справедливо докладывать о сбоях. Эти сбои наше сознание интерпретирует как неестественность картинки и усталость глаз.
Словом, не для того у нас эти две штуки в голове выросли. Неестественный спектр создаёт ощущение неестественности цвета. Сенсоры передают в мозг нужную информацию, на информационном уровне всё нормально — картинка как картинка, но авторегулировка физиологии глаза отрабатывает неадекватно ситуации, потому что неправильно рассчитывает предположение о том спектре, который светит в глаз. Если же спектр естественный — то представление организма о спектре и его реакции адекватны реальному воздействию на сетчатку — и цвета кажутся мягкими.
Потому что с физиологией всё хорошо. Спектр решает, будут цвета ощущаться мягкими и естественными, или нет. Давайте делать дисплей. Светоизлучающих элементов, способных выдавать любую видимую длину волны, пока не сделали.
А жаль. Поэтому делаем просто — под каждый сенсор в нашем глазу свой элемент на дисплее. Красному — 700 нм, зелёному — 550 нм, синему — 450 нм. Будем этими элементами дисплея стимулировать сенсоры глаз так же, как это делают цвета, и обманем глаз, чтобы он думал, что видит цвет.
В длинах волн и частотах видимого спектра стоит коварный капкан для мозга. Случайно или нет? Длины волн видимого спектра - от 380 до 780 нм, а частоты - от 380 ТГц до 790 ТГц. Например, у оранжевого частота 500 ТГц, а у бирюзового - длина волны 500 нм.
Частота и длина волны - это, как-бы, взаимно обратные величины, и вот такой вот нюанс с почти одинаковыми цифрами может сильно путать мозг Резюмируем. У нас в дисплее три источника света: красный, зелёный и синий. Когда они будут светить одновременно — мы будем стимулировать сразу три сенсора в глазу — и будет белый. Вот только этот белый — какой у него будет спектр?
Если этот спектр будет неестественным, то от такого дисплея устанут глаза. А если наоборот, спектр получится более естественным — картинка будет выглядеть мягкой и глаза не будут уставать. И так не только с белым, а вообще со всеми цветами. В этом вся соль.
К слову, в ныне вымерших плазменных телевизорах, особенно последних моделей, дела со спектром обстояли очень и очень хорошо. Поэтому у многих из них картинка выглядит, местами естественнее, чем на OLED, если не брать в расчёт моральное устаревание и связанные с этим аспекты. Свет от Солнца до Земли летит миллионы лет А как же отражённый свет? Да никак.
Фотоны не бывают «отражённые» и «прямые». Если хочется, можно даже сказать, что все фотоны вокруг нас — отраженные. Даже с Солнца. Почему же на лампочку и солнце смотреть больно, а на объекты, освещенные ими нет?
Ну ясно-понятно, это же прямой свет, а не отражённый. Не по этому. Когда солнце или лампочка проецируется на сетчатку глаза, то на сравнительно маленькой площади сетчатки появляется слишком много яркого света. Источник света же точечный.
Вот он в виде этой точки и проецируется. Если натянуть на лампочку большой трёхметровый светорассеиватель, то на него вполне комфортно будет смотреть. И наоборот, если осветить комнату мощным военным прожектором и посмотреть на мебель в этом «безвредном» отражённом свете, то это может оказаться последним, что вы увидите. Потому что смысл в яркости, а не в том, откуда свет.
Точнее, концентрации яркости на условном кусочке сетчатки глаза. Лазеров это тоже касается — сами по себе, они не вредные. Просто у лазеров спектр очень-очень далёк от естественного, и лазером гораздо легче получить концентрированную яркость на маленьком участке сетчатки. Лазер мы встречаем в жизни чаще, чем сверхмощные военные прожекторы по крайней мере, пока что , поэтому проблема попадания лазера в глаз встречается чаще.
Сенсоры сетчатки могут перегрузиться и сгореть, поэтому сигнализируют об этом, если успеют. Вот поэтому нам неприятно смотреть те штуки, которые перегружают их. Давайте посмотрим на фотоны поближе и изучим их повадки. Не будем заострять внимание на том, что мир для них двумерный, времени не существует, и они вообще не «летят» — лучше обратим внимание на то, как они отражаются.
Когда свет летит через плазму или газ — фотоны не летят через него. Вместо этого, атомы газа постоянно поглощают и переизлучают фотоны заново. Как по цепочке. Долетают не «те самые» фотоны, а «новые» физики, держитесь.
На постоянное поглощение-переизлучение уходит время, именно поэтому свет в веществе замедляется. Точно также, когда фотоны «отражаются от поверхности» — на самом деле они поглощаются, и переизлучаются новые. Большая часть фотонов, прилетающих с Солнца на Землю, рождаются у него в сердце, и миллионы лет скитаются в толще его плазмы, переизлучаясь-отражаясь огромное число раз, прежде, чем вырваться на волю и долететь до нас за те самые 8 минут. А с книжкой то что?
А почему же книжку легче читать, чем дисплей? Да потому, что отражение есть переизлучение, а переизлучение немного меняет спектр. Одни частоты отражаются лучше, другие хуже. И это, как правило, постепенно приближает спектр к естественному.
Причём, если после изменения спектра соотношение между сигналами красной, зелёной и синей колбочки не поменяется - то визуально цвет остаётся таким же. Однако, спектр света, отражённого от книжки может стать спокойнее и ближе к естественному. Причина приятности E-Ink состоит в естественном спектре и правильной яркости Книжка состоит из целлюлозы — того вещества, которое окружало нас миллионы лет эволюции, и под наблюдение которого эволюционно заточились сенсоры в наших глазах. Нашим глазам приятнее воспринимать те волны, которые целлюлоза отражает лучше, и менее приятно воспринимать те волны, которые целлюлоза отражает хуже.
Поэтому для глаз эта спектральная книжковость естественна и приятна. Большинство объектов вокруг нас тоже чуть-чуть выправляет спектр ближе к естественному.
Производитель утверждает, что такой сетап предназначен для обеспечения «настоящего 4D-эффекта», который расширяет контент за пределы телевизора. Настроить степень свечения и нужный режим можно в фирменном приложении Nanoleaf. Более того, новинка совместима с Apple HomeKit, что позволяет интегрировать её в существующую систему умного дома.
Чем заменить светодиоды в подсветке телевизора?
Максимально глубокого черного на этих панелях не получить, но все остальные характеристики на порядок выше, чем в стандартных LED-панелях. Именно благодаря квантовым точкам получается существенно улучшить детализацию картинки в ее темных областях. Но нужно искать и воспроизводить на таких телевизорах HDR-контент для получения необходимого эффекта. Долговечность В отличие от OLED-экранов, дисплеи с QLED не имеют в своей конструкции органических светодиодов, поэтому компоненты такого экрана гораздо меньше подвергаются процессу деградации выгоранию. Производители заявляют, что QLED экраны вовсе не выгорают. Это потому, что в производстве OLED-матрицы получаются дороже. Стоит рассмотреть их подробнее для того, чтобы можно было разобраться во всех нюансах технологии. Это из-за того, что в OLED экранах нет светодиодной подсветки и пиксели загораются сами, когда через них проходит ток определенной силы. А при демонстрации черного цвета пиксели просто не загораются.
Поэтому даже при просмотре динамических кадров отсутствует инерционность. Яркость свечения OLED зависит от величины электротока.
Управляя им, можно, не потеряв в качестве картинки, получить требуемую яркость. На LCD технологии это было невозможно. Поэтому на такой экран приятно смотреть в любое время. Однако на практике этот показатель меньше в 100 раз. Потому что эксплуатационный срок светодиодов при таком режиме быстро сокращается. Уменьшаются вес и габариты ТВ; Оптимальное свечение пикселей, которыми можно еще и управлять; Малое потребление электроэнергии; Идеальные углы для обзора. Искажения отсутствуют; Улучшенная яркость и контрастность, по сравнению с подсветкой LCD; Возможность производства прозрачных экранов, способных функционировать в широком температурном диапазоне; Отсутствие подсветки. Минусы: Органические светодиоды отдельных цветов могут непрерывно функционировать в малом промежутке времени. Однако проблема уже решается; Существует эффект выжигания дисплея.
Главные недостатки Edge LED — неравномерная яркость и засветы. Особенно хорошо это проявляется в бюджетных моделях, где светодиодная лента располагается только с одной или двух сторон. В премиальных моделях светодиоды размещены по всем четырем сторонам, что увеличивает равномерность подсветки. Если важна равномерность подсветки, а толщина телевизора не принципиальна, можно выбрать Direct LED. Ну, или купить OLED — он и тонкий, и без возможных засветов. Частота обновления экрана Частота обновления экрана — это максимальное число отображаемых кадров в секунду. Эфирное вещание обычно не превышает 50 кадров, а фильмы — вообще 24. Чтобы сделать картинку более плавной, процессоры современных телевизоров «дорисовывают» промежуточные кадры технология интерполяции. Однако эти алгоритмы не безупречны, в сценах с разнонаправленным быстрым движением возможно появление артефактов. Во-вторых, из-за таких «улучшений» старые фильмы могут показаться чересчур плавными и реальными, что не всегда нравится зрителю. В свое время этот параметр дал повод для множества маркетинговых манипуляций. Иногда можно было встретить телевизоры с частотой 800, 1200 и даже 1600 Гц! Немного истории. Раньше заветные цифры получали, умножая частоту обновления на количество вспышек светодиодной подсветки. Например, 100 Гц экрана, умноженные на 10, давали целую 1000. Для обозначения этого параметра производители использовали различные индексы и названия. Теоритически телевизор с частотой обновления 120 Гц даст более плавную и детальную картинку по сравнению с 60-герцовой моделью. Особенно хорошо это будет заметно в динамичных сценах и консольных играх. Однако на практике разница не всегда присутствует, и чем больше у исходного видео частота кадров, тем меньше будет видимых отличий. Как правило, 120-герцовые телевизоры являются премиальными моделями и стоят ощутимо больше. Технология HDR расширенный динамический диапазон делает картинку максимально сочной, живой и реалистичной. Большинство современных 4К-телевизоров поддерживают HDR по умолчанию. При этом возможности бюджетных устройств могут оказаться весьма далеки от совершенства. Для идеальной реализации технологии требуется 10-битная матрица, пиковая яркость 1000 нит, высокая контрастность, локальная подсветка, разъемы HDMA 2. Камнем преткновения может стать недостаток HDR-контента. Чтобы узнать, какой формат поддерживает телевизор, лучше заглянуть в спецификации производителя. Часто в одной модели встречается сразу два или три вида HDR. Подробно об этой технологии рассказано в статье «Что такое HDR в телевизоре». Dolby против DTS Половина успеха хорошего фильма — его звуковая дорожка. Два самых популярных аудиоформата — DTS и Dolby. Оба поддерживают объемный шестиканальный звук систему с пятью динамиками и сабвуфером. Основное отличие между ними — битрейт. Теоретически меньшее сжатие во время кодирования означает более детальный звук. Значит, выбираем DTS? Не так быстро. Компания Dolby утверждает, что ее кодеки и алгоритмы сжатия более эффективны, а звучание не уступает конкуренту. Впрочем, современные телевизоры нередко имеют обе технологии одновременно. Они поддерживают восьмиканальный 7. Dolby Atmos использует дополнительные динамики. В идеале их располагают на потолке для создания звукового «пузыря». Не хотите сверлить потолок перфоратором? Можно купить звуковые панели Dolby Atmos со специальными драйверами, которые создают аналогичный эффект. Поддержка Dolby Atmos есть у премиальных моделей всех известных производителей. Этот формат встречается на дисках Blu-ray и потоковых сервисах, включая Amazon Prime Video и Netflix. DTS:X более гибок.
Отрезки ленты необходимо приклеить к задней стенке телевизора на самоклеящийся слой, предварительно обезжирив поверхность спиртом. Светодиодная лента имеет черную подложку, чтобы не выделятся на тёмном корпус. Подключение к телевизору происходит через USB разъём с помощью кабеля, который входит в комплект и на который уже установлен мини- контроллер. Пульт дистанционного управления, входящий в комплект, позволяет выбрать любой оттенок и уровень яркости подсветки. Преимущества фоновой подсветки Apeyron Electrics Готовое решение — всё необходимое для работы уже включено в комплект Простая и быстрая установка своими руками Возможность выбора любого оттенка и уровня яркости Тёмные оттенки экрана становятся более глубокими и насыщенными Светодиодная подсветка имеет долгий срок эксплуатации Установить фоновую подсветку можно не только на телевизор, но и на монитор компьютера. Также можно подсветить любой девайс, имеющий разъём USB.
Типы подсветки LED телевизоров — какая лучше Edge или Direct
Технология подсветки LED в современных телевизорах | Если вы планируете создать динамическую фоновую подсветку телевизора, то в случае с нашим комплектом, как и с любым другим (кроме штатной подсветки Ambilight от Phillips), вам потребуется компьютер, либо Smart TV приставка. |
Динамическая подсветка экрана Ambient Light | От 2 138 руб. за комплект! | Хотите приобрести экологичную, энергосберегающую и высококачественную светодиодную подсветку телевизора от профессиональных производителей? |
Что такое LED-телевизоры и в чем их преимущество для телезрителя | Сделал фоновую подсветку для телевизора на основе датчиков цвета. |
Edge LED или Direct LED? Direct LED или Edge LED: где лучше качество картинки | Мы выявили неисправность светодиодной подсветки и определили Какие светодиоды в телевизоре их тип и характеристики. |
какая подсветка в телевизорах лучше и долговечней | Для вывода изображения на экран телевизора необходима светодиодная подсветка, и компания Samsung придумала два типа светодиодов для подсветки изображения. |
От органики до лазеров: разбираемся в технологиях современных телевизоров
Чтобы организовать фоновую подсветку для экрана телевизора, вам даже не придется вызывать мастера. В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и т.д. Светодиодная подсветка ROCKNPARTS для телевизоров универсальная (3 В) ZeepDeep LED 3030-SingleLED_3V. В живую телевизоры с встроенной подсветкой не пробовал, поэтому сравнить заводской амбилайт и амбилайт с амазона могут обладатели телевизоров Phillips в комментариях.
Устройство и принцип работы LED телевизора
Интересно знать - Гильдия мастеров (Ремонт) | Купить светодиодные ленты для телевизора по цене от 131 рубль со скидкой за бонусы от СберСпасибо на Мегамаркет. Реальные отзывы покупателей. |
Смарт-подсветка для любого телевизора (14 фото + видео) | В светодиодной подсветке тоже не все просто, дело в том, что есть несколько типов ее, значительно разнящихся по принципу действия. |
Смарт-подсветка для любого телевизора (14 фото + видео) » :: Гаджеты и технологии | Наиболее распространенной подсветкой для ЖК-дисплеев (и светодиодов) является холодная люминесцентная лампа с задней подсветкой (CCFL) и светодиодная подсветка с краев. |
Дополнительная подсветка телевизора и монитора: нужна ли она? | ремонт телевизора Что такое ЛЕД (LED) подсветка телевизора? Это метод подсвечивания матрицы жидкокристаллического ТВ на основе светодиодов. |
Светодиодные подстветки Direct LED и Edge LED: что это такое и что лучше | Светодиодная лента 75"-85" адаптивная подсветка AmbiLight для телевизора 75"-85" 3NOD Trade Electronics Co Ltd. |
какая подсветка в телевизорах лучше и долговечней
Все светодиодные ленты в категории. Подобрать тип светодиодной подсветки в телевизоре или мониторе несложно, если разобраться в особенностях каждого варианта и учесть характер использования оборудования. Подсветка для телевизора должна быть мягкой, чтобы при освещении не отвлекать внимание от просмотра сериала или передачи. Подсветка с прямым освещением: в светодиодном экране с прямым освещением светодиоды находятся прямо за экраном и светят через ряд отверстий или отверстий в экране. Поговорим о технологии Amblight (послесвечение – фоновая задняя подсветка ТВ), эту опцию предлагают в своих телевизорах PHILIPS.
Умный Свет - Ambilight подсветка телевизора
В наличии более 300 моделей светодиодных подсветок для телевизоров всех известных производителей, таких как lg, самсунг, филипс и др. В поисках ответа появилось несколько типов светодиодной подсветки, среди которых выделяют два основных. Чтобы модернизировать LCD-телевизоры начали использовать подсветку с помощью светоимитирующего диода – Light-Emitting Diode (сокращено LED). Светодиодная подсветка (LED-подсветка) используется во многих (в последнее время в подавляющем количестве) устройствах с ЖК-экранами (телевизоры, мониторы, мобильные устройства и пр.).
Что такое LED-телевизоры и в чем их преимущество для телезрителя
Многих людей интересует, для чего используется подсветка для LED телевизора. Чтобы с этим разобраться, необходимо узнать, к чему приводит регулярный просмотр ТВ в темноте. Если постоянно пользоваться телевизором в абсолютно темном помещении, это может привести к появлению следующих негативных последствий: быстрая утомляемость глаз; ухудшение зрения; появление мигрени. Из-за динамического изменения яркости экрана зрительная система человека начинает работать в экстремальных условиях при сильных нагрузках. Некоторые люди для решения этой проблемы используют потолочную подсветку, размещенную над телеэкраном.
Однако она совершенно не улучшает просмотр ТВ в ночное время. Наоборот, она только засвечивает экран, что приводит к увеличению нагрузки на глаза и их дальнейшей утомляемости. Сделать вечерний просмотр телевизора более комфортным поможет размещение дополнительных светодиодов на уровне глаз. При этом их не стоит располагать сзади, за спиной зрителя.
Их необходимо устанавливать за задней стенкой телевизора или на его корпусе. При этом не стоит использовать слишком яркие световые элементы, чтобы они не мешали смотреть ТВ. Требования к подсветке Прежде чем выбрать и установить лену с подсветкой для телевизора, необходимо ознакомиться с требованиями, которым она должна соответствовать. Это поможет в будущем подобрать наиболее подходящие световые элементы, которые позволят с комфортом смотреть ТВ даже ночью.
Качественная подсветка должна соответствовать следующим требованиям: Светодиоды не должны быть очень яркими. Таким образом, работающая подсветка не будет отвлекать от просмотра кинофильма или телевизионного сериала.
Если покрытие глянцевое, то на экране картина очень яркая и контрастная.
При ярком солнечном освещении видимость становится хуже. Функциональные разъёмы. В последних моделях встречается видеопорт D-sub.
Он предполагает подключение компьютера к телевизору. Частота развертки. Показатель того, сколько кадров фильма показывается за секунду.
Измеряется в Герцах и может достигать величины до 960 Гц. Для 3D телевизоров частота может быть ещё выше. Дополнительные возможности DVB-T.
Стандарт цифрового телевидения. Позволяет, кроме аналогового кабельного и эфирного телевидения, подключать спутниковое. Объемное 3D изображение.
С помощью этой опции можно просматривать объемные картинки с активным или пассивным 3D. Необходимо позаботиться о специальных очках. Смарт ТВ.
Разрешает подключить и использовать интернет. Подключение происходит через модуль WiFi. Возможно подключение через сетевой кабель.
Некоторые телевизоры позволяют встраивать роутер дополнительно. Со Smart T. Советы при выборе LED устройства стали популярны.
Ведь LED-телевизор — что это значит? Это высокое качество, удобств и комфорт в использовании. Преимущество жидкокристаллического телевизора — светодиодная подсветка, есть у всех LED моделей.
Но за конструктивные особенности, дополнительные возможности иногда приходится доплачивать. В первую очередь необходимо определиться, какую лучше всего диагональ выбрать. В магазинах представлен огромный выбор разных моделей от 19 до 58 дюймов.
Иногда рассчитывать в дюймах не очень привычно и приходится подбирать размер в сантиметрах, то есть от 48 до 147 см. Правильный выбор диагонали зависит от размера помещения, где будет установлен телевизор. Существует примерная таблица соотношения диагонали и расстояния до комфортного просмотра.
Эти данные примерные и допускают корректировку в пределах полуметра. Так что, выбирая телевизор, необходимо продумать заранее его расположение в помещении и подобрать оптимальную модель, исходя из планировки.
Поэтому здесь прекрасный уровень света и затемнения. Мало того, вплоть до 1 пикселя можно отключать свет! Например, компания LG выпустила модель G6 с разрешением 4К, экран которой обладает толщиной всего 2. Угол обзора в OLED экранах доведён до совершенства. С какой бы стороны не смотреть на экран, качество изображения не ухудшается. Контрастность также выше в несколько раз. Потому что нет дополнительной подсветки и органический светодиод в выключенном состоянии ничего не излучает. Поэтому наши глаза воспринимают его как черную точку.
Контрастность современных ТВ 10000:1, и это не предел. Превосходство в быстродействии - 1000 раз. Поэтому даже при просмотре динамических кадров отсутствует инерционность.
Но, светодиодные блоки должны быть технически правильно и точно размещены.
Если допустить ошибку, на экране появятся засветы — световые пятна, появляющиеся в результате неравномерности свечения. Что такое Edge LED в телевизоре ясно, но какие плюсы у этой технологии: матрица стала компактнее. Боковое размещение светодиодов позволило снизить общую толщину панели; высокая яркость, что обеспечивает комфортное считывание информации с экрана. Есть и минусы: могут появиться засветы.
В новых телевизорах, чтобы равномернее распределять отраженный свет по поверхности матрицы, делают светоотражающую поверхность с матовым покрытием. С боковой подсветкой картинка в центре дисплея будет казаться темнее. При изготовлении многих моделей ТВ используют ленту с локальным затемнением , что позволяет снизить перепады яркости. Direct LED Для повышения равномерности между экраном и диодами размещают светорассеиватель Чтобы понять, что такое Direct LED в телевизоре, пригодится англо-русский словарь.
Лучшие светодиодные ленты 2024
Оплата Осуществляется после получения товара. Гарантия Распространяется на все модели подсветок. Мы предоставляем гарантию на работу новой LED подсветки сроком до 12 месяцев. В самых распространенных моделях это несколько или даже одна планка подсветки.
Серж 19 Ноя 2012 LARTER, я пытался потыкать тестером в подсветку на 3д панели - в режиме 3д напруга или то, что тестер показывает вырастает, примерно, вдвое. Там и сегментов подсветки много было.
А палки у меня в гараже валяются, но ума им не дал пока.
Стоит примерно 1300р в сумме. Начинаем пайку Задумка такая — соединить 4 сегмента ленты. При соединении важно учитывать "направление" — отмечено стрелкой на ленте.
Провод сигнальный подпаивается к "началу" ленты и далее идёт последовательно по всем сегментам, последний сегмент с первым не соединять! Сигнальный провод втыкается в ардуину. Лучше припаять, но я просто залудил и воткнул в панельку, сидит плотно. Ардуина питается от того же источника, 12в это нормально.
По факту там не 12в на самом деле, БП не очень — где-то 11.
И на сегодня такие телеприемники составляют самый массовый и доступный сегмент телевизоров. Плазменные модели уже уходят с рынка, осталось всего несколько фирм продолжающих выпуск плазменных телевизоров и то это всего несколько новых моделей в 2014 году и при этом это не флагманские модели. А вот аппараты с OLED экранами экраны на светоизлучающих светодиодах относятся как раз к флагманским моделям, и их цена пока не позволяет перевести эти телевизоры в разряд массовых. Отличия LED от обычных LCD При использовании ламп для подсветки матриц было невозможно регулировать подсветку отдельно взятых участков экрана. Это приводило к тому, что контрастность LCD экранов была не достаточно высокой, что бы конкурировать с плазмой или даже еще живыми на то время кинескопами. Поэтому и пришли к решению использовать светодиоды для подсветки матрицы.