Новости что такое анодирование

Анодирование – это метод обработки, который изменяет химию поверхности различных материалов, в частности, металлов. Что такое анодирование. Процессом анодирования называется электролитическая химическая реакция металла с окислителем. Анодирование металла выполняется с целью улучшения его прочностных и эстетических качеств, повышения коррозийной устойчивости и срока службы. Анодирование алюминия кроме прочности, долговечности и простоты в уходе, придаёт изделиям эстетику и декоративный внешний вид.

Процесс анодирования алюминия

В электронике - придает алюминиевым деталям повышенные изоляционные свойства. В архитектуре обработанные таким способом фасадные панели выделяются долговечностью и привлекательностью. В производстве спортивного инвентаря анодированные компоненты обеспечивают устойчивость к агрессивным условиям внешней среды. Преимущества и недостатки Несмотря на широкое применение, данный метод имеет как достоинства, так и отрицательные моменты. Преимущества: Повышение коррозийной стойкости: пленка из оксида предотвращает прямой контакт с окружающей средой, защищая его от ржавчины и других вариантов коррозийной деструкции. Износостойкость: обработанная деталь становится более устойчивой к истиранию благодаря увеличению твердости. Эстетическая привлекательность: позволяет изменить цвет, что делает его привлекательным для использования в дизайне и архитектуре. Долговечность: не облупливается и не отслаивается со временем, сохраняя свои свойства на протяжении длительного периода.

Рисунок 10 — Иллюстрация теории Богоявленского. Интересно отметить, что размеры ячеек Келлера близки размерам мицелл геля Al OH 3. Толкование механизма роста анодной пленки с позиций коллоидной химии позволяет объяснить внедрение в ее структуру анионов и катионов электролита и отдельных составляющих оксидируемого сплава. При этом сопряжение процессов образования оксида и его растворения в электролите также учитывается коллоидной теорией. Теперь следует заметить, что структура анодированного алюминия, на самом деле, может быть весьма далека от идеальной, описанной в теории. В частности теория говорит о правильных гексагональных ячейках, в центре которых находится одна пора. На самом деле, получить такую структуру можно только специальными методами, например, многостадийным анодированием в определенных режимах. Примеры таких "правильных" покрытий приведены на рисунке 11. Более глубокое описание наноструктурированного аноднооксидного будет приведено ниже. Рисунок 11 — Примеры идеальных и близких к идеалу ячеек пористого слоя в аноднооксидном покрытии на алюминии. Чаще же можно наблюдать более "грязные" варианты. Примеры их были показаны в начале статьи. Кроме этого, теории не предполагают возможности ветвления пор, что наблюдается в действительности. Рисунок 12 — Пример ветвления пор 4. Особенности роста оксида алюминия при анодировании. Формирование оксидного слоя протекает на дне пор, где препятствием для прохождения электрического тока служит только тонкий барьерный слой, толщина которого практически не меняется в процессе обработки. С этой точки зрения можно наращивать толщину оксидного слоя без существенного увеличения напряжения на ванне. Образующиеся поры имеют форму конуса, расширяющегося к внешней стороне покрытия, поскольку эта часть дольше подвергается агрессивному воздействию электролита. Необходимо отметить, что формирование пористой структуры является необходимым условием роста оксидного слоя. Оксид алюминия является плохим проводником электричества, а поры, хотя и заполнены электролитом, имеют весьма малый диаметр, поэтому сопротивление анода во много раз выше сопротивления на катоде и сопротивления электролита. Изменение потенциалов самих электродов вследствие поляризации незначительно по сравнению с прикладываемым напряжением, поэтому изменение напряжения во времени при постоянной плотности тока определяется изменением омического сопротивления анода. Если проводить процесс при постоянной плотности тока, то есть при постоянной скорости формирования оксида, то рост пленки будет тормозиться возрастающим сопротивлением электролита в порах. Для дальнейшего роста требуется либо увеличение прилагаемого напряжения, либо растравливание пор. На практике преобладает второй фактор. Этому способствует значительное выделение теплоты в процессе анодного окисления, причем основная часть тепла выделяется в барьерном слое на дне пор. Поэтому рост оксидной пленки при постоянной плотности тока сопровождается непрерывным увеличением скорости растворения оксида. Предельная толщина пленки достигается тогда, когда скорость ее образования под действием электрического тока станет равна скорости химического растворения электролитом. Чрезмерный перегрев электролита у основания пор и местное повышение его агрессивности может привести к растравливанию оксидного слоя и получению некачественных покрытий с повышенной пористостью и слабой адгезии к металлу. Скорость химического растворения оксида алюминия сравнительно велика, особенно в агрессивных растворах серной кислоты. Растворение оксида выражается не только в стравливании поверхностного слоя формирующегося покрытия, но и в увеличении его пористости. Присутствие в алюминиевых сплавах меди и магния также несколько увеличивает скорость растворения оксида в серной кислоте. Таким образом, соотношение скоростей формирования оксида и его химического растворения предопределяет и толщину и структуру получаемых анодно-окисных покрытий на алюминии. Ввиду того, что образующийся оксидный слой имеет высокое сопротивление, электрический ток в процессе оксидирования автоматически перераспределяется на те участки, где сопротивление меньше.

Украсить внешний вид Помимо защитных свойств, анодирование играет ключевую роль в эстетическом улучшении. Процесс может быть адаптирован для получения множества отделок, от ярких глянцевых оттенков до приглушенных матовых тонов. Однородный и контролируемый оксидный слой можно окрашивать для достижения определенных цветов, что делает его предпочтительным для отраслей, где функциональность и дизайн имеют первостепенное значение. Обеспечьте лучшую адгезию для красок, клеев или смазочных материалов В тех случаях, когда металлы нуждаются в дополнительной обработке, такой как покраска или склеивание, анодированные поверхности обладают превосходными адгезионными свойствами. Пористая природа анодированного слоя служит отличной грунтовкой, обеспечивая более эффективное и долговечное прилипание красок, клеев и смазочных материалов. Это не только обеспечивает более длительный срок службы покрытия, но и снижает потенциальные проблемы, такие как отслаивание или сколы. Ключевые технические параметры анодирования Плотность тока: Плотность тока, измеряемая в амперах на квадратный фут ASF или амперах на квадратный метр ASM , представляет собой количество электрического тока, подаваемого на ванну анодирования. Выбранная плотность напрямую влияет на скорость роста и толщину анодного оксидного слоя. При более высоких плотностях тока обычно быстрее образуются более толстые оксидные слои. Однако чрезмерно высокая плотность тока может привести к выгоранию или неравномерному покрытию. Наоборот, низкая плотность тока может привести к более тонкому и менее прочному оксидному слою. Концентрация кислоты: Концентрация кислоты в ванне для анодирования играет ключевую роль в определении структуры и пористости оксидного слоя. Различные концентрации могут привести к различным размерам пор в сформированном слое. Например, при сернокислотном анодировании поддержание постоянной концентрации кислоты необходимо для получения однородного плотного оксидного слоя. Неточные концентрации могут привести к некачественному анодному покрытию, что повлияет на внешний вид слоя и его защитные свойства. Температура: Контроль температуры ванны анодирования имеет решающее значение для получения стабильных результатов. Он влияет на скорость реакции анодирования и структуру оксидного слоя. Более высокие температуры, как правило, ускоряют процесс анодирования, но могут поставить под угрозу качество и долговечность оксидного слоя, что может привести к более мягкому и пористому покрытию. С другой стороны, более низкие температуры могут замедлить реакцию, создавая более плотный и твердый анодный слой. Продолжительность лечения: Время, в течение которого металл подвергается процессу анодирования, оказывает непосредственное влияние на толщину анодного слоя. Продление обработки обычно приводит к более толстому оксидному слою, повышающему его защитные свойства. Однако для каждой установки существует оптимальная продолжительность; чрезмерное анодирование может привести к хрупкому или менее липкому оксидному слою. И наоборот, недостаточное анодирование приведет к более тонкому слою, который может не обеспечить адекватной защиты или желаемой эстетики. Виды анодирования Органическое кислотное анодирование тип I Этот метод использует органические кислоты, такие как хромовая кислота, вместо более распространенной серной кислоты. Анодирование хромовой кислотой, подмножество этой категории, дает более тонкий оксидный слой, обычно до 12 микрометров. Несмотря на то, что он обладает коррозионной стойкостью, его основное преимущество заключается в ситуациях, когда критически важны минимальные изменения размеров детали. Исторически он использовался в аэрокосмической промышленности, особенно там, где требуются жесткие допуски. Однако из-за экологических проблем, связанных с хромом, его использование сокращается в пользу альтернатив. Сернокислотное анодирование тип II Одна из наиболее распространенных форм анодирования, сернокислотное анодирование, использует ванну с разбавленной серной кислотой для создания защитного оксидного слоя. Этот метод предлагает хороший баланс между толщиной, защитой и эстетикой. В результате получается прозрачная или слегка тонированная поверхность, хотя после анодирования можно использовать дополнительные красители для получения множества цветов. Оксидный слой, полученный с использованием этого метода, обычно имеет толщину от 0. Благодаря своей универсальности сернокислотное анодирование находит применение во многих отраслях промышленности, от аэрокосмической до товаров народного потребления. Твердое анодирование тип III Как следует из названия, твердое анодирование направлено на создание особенно толстого и твердого оксидного слоя, что делает его идеальным для компонентов, подверженных сильному износу или агрессивным средам.

При получении описанным способом анодный оксид алюминия получается пористым, поэтому после анодирования часто применяют дополнительные методы обработки с целью закупорить поры. Обычно деталь длительно обрабатывают паром или кипятят в воде. Качественно анодированные детали считаются хорошими изоляторами для напряжений до 100 В, при условии целостности оксидной плёнки, которая относительно нестойкая по отношению к грубым механическим воздействиям, к примеру, она может быть легко поцарапана острым металлическим предметом. Анодирование магния[ править править код ] Магний и его сплавы обладают низкой коррозионной стойкостью, поэтому их защищают анодными пленками оксида магния. Используются растворы, состоящие из бихромата или перманганата, хромового ангидрида или фторида и гидроксида натрия.

Анодированный алюминий

20 сентября 2020 Павел Грата ответил: Анодирование — это создание тонкого оксидного слоя на поверхности металлов или сплавов путем их погружения в проводящую среду с последующей анодной поляризацие. Анодирование алюминиевых профилей широко использовалось в архитектуре в 1960-х и 70-х годах. Анодирование алюминия кроме прочности, долговечности и простоты в уходе, придаёт изделиям эстетику и декоративный внешний вид. Для чего необходимо анодирование Если вас интересует Узнайте, что такое анодирование и анодированное покрытие. Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны.

Анодирование в "домашних" условиях V2.0

Анодирование алюминия: создание прочного оксидного слоя, стойкого к коррозии и механическому воздействию Содержание статьи: 1. Что такое анодирование алюминия? В данной статье мы расскажем вам о том, что такое анодирование, объясним основные понятия и способы анодирования, расскажем о плюсах и минусах метода, а также о том, когда используют анодирование | Статьи ГК Интерстилс в Находке. Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях.

анодирование

Анодирование хромовой кислотой часто используется для аэрокосмических компонентов, сварных компонентов или в качестве основы для дополнительной окраски. Тип II — анодирование серной кислотой Тип II серная кислота является наиболее популярным методом анодирования. Пленки, полученные сернокислотным анодированием, имеют толщину от 0,0001 до 0,001 дюйма. Накопление оксида изменяет поверхность детали, делая ее подходящей для ситуаций, когда необходимы стойкость к истиранию и твердость. Красочная отделка поверхности алюминия и родственных сплавов достигается за счет использования пористости сернокислотных покрытий перед герметизацией. Пористый оксид алюминия легко впитывает красители. Герметизация анодно-оксидной пленки после нанесения красителя помогает избежать выцветания детали во время использования. Несмотря на то, что в целом цветостойкие, цветные анодированные пленки имеют склонность к выцветанию при постоянном воздействии УФ-излучения. Некоторые из вариантов цвета, доступных с этой техникой анодирования, включают: черный, серый, коричневый, красный, синий, зеленый и золотой. По сравнению с другими методами анодирования, при сернокислотном анодировании используются менее дорогие химические вещества, меньше энергии и меньше времени для достижения желаемой толщины. Также возможна отделка большего количества типов сплавов.

Другие преимущества этого метода заключаются в том, что он дает более прочное покрытие, чем анодирование хромовой кислотой, и дает четкую и естественную отделку, что позволяет добавлять другие цвета при окрашивании. Обработка отходов процесса анодирования Типа II также дешевле и проще, чем обработка отходов анодирования хромовой кислотой. Общие области применения анодирования типа II включают оптические и электронные детали, корпуса гидравлических клапанов и корпуса для электроники и компьютеров. Тип III — твердое анодирование Анодирование с твердым покрытием обычно применяется с использованием электролита на основе серной кислоты. При этом образуется значительно более плотный и толстый оксидный слой, чем при сернокислотном анодировании. Процесс твердого анодирования рекомендуется для применений, требующих превосходной стойкости к истиранию в агрессивных средах. Это также может быть полезно в тех случаях, когда требуется лучшая электрическая изоляция. Поскольку анодированные покрытия типа III могут быть достаточно толстыми, их можно использовать для восстановления износостойких покрытий или для восстановления компонентов, не соответствующих техническим требованиям. Некоторые из ключевых характеристик твердых анодированных покрытий включают в себя: повышенную износостойкость по сравнению с другими типами анодированного покрытия, электрически непроводящую поверхность, возможность фиксации изношенных поверхностей алюминия путем создания однородного слоя на поверхности и улучшенную смазку для скольжения. Анодирование с твердым покрытием можно использовать для клапанов и поршней, скользящих деталей, зубчатых колес, шарнирных соединений, электроизоляции, взрывозащитных экранов и многого другого.

Каковы преимущества анодирования? В таблице 1 перечислены преимущества анодирования: Преимущества.

В результате малой плотности тока покрытие растет очень медленно, и оно- бесцветно. Проблема в том, что при очень низкой температуре элекрическое сопротивление электролита сильно возрастает, вследствии чего вашего напряжения 25-50 вольт недостаточно для получения «правильной» плотности тока. У вас есть 2 пути решения: или поднять напряжение вольт так до 60-100 опасно!!!

Я бы советовал второй вариант. Плотность тока правильная, а вот твердость анодного слоя слабовата, да и окраски у него по сути нет. Так себе, легкий мутновато-молочный оттенок… Дело в том, что температура- важнейший показатель процесса. И при превышении порога допуска, процесс изменяется качественно. Из «холодного» он становится «теплым». Со всеми вытекающими: бесцветная и не слишком толстая и твердая пленка.

Даже уже полученный «холодный слой», при этом разрыхляется и постепенно растворяется. Окраска исчезла не полностью, но пленка потеряла всякую прочность. Царапины от ногтя: 3 — Анодная плотность тока мала. Анодный слой растет медленно, он бесцветен. Хотя и прочен вполне. Дело в том, что окрашенность у анодного слоя появляется скачкообразно, примерно с анодной плотности тока в 1,5..

При меньшей- слой получается бесцветным, а вернее- слегка мутно-белым. И хоть прочность такого слоя не так уж и плоха, мы ведь хотим еще и эстетики? В качестве небольшого запаса надежности. Вдруг вы ошиблись при подсчете площади поверхности детали? Хочется чтобы процесс шел быстро- потому вы подняли ток выше нормы. Но вас преследуют частые «пробои» и растравы то детали, то зажима подвески.

Это явление называется «прогар». Вот почему это происходит: Прогар — отчего он происходит? В принципе, при очень интенсивном перемешивании электролита, и как следствии — хорошем отводе тепла от детали, допустимы большие плотности тока. Это сокращает время процесса, и позволяет нарастить особо толстый анодный слой. В промышленности возможен даже вариант с 2мм слоем анода. Так обрабатывают рабочую поверхность цилиндров судовых двигателей.

Для этого там имеют место во первых, супер качественное охлаждение детали в процессе анодирования, во вторых- напряжение анод-катод в сотни вольт. Но ни то, ни другое мы позволить себе не сможем, к сожалению. И в итоге, из за естественной концентрации тока на углах и концах детали, деталь наша будет иметь зоны местного перегрева. А такие зоны нагревают окружающий электролит. А нагретый электролит имеет значительно более низкое электрическое сопротивление. Значит весь электрический ток устремляется именно в перегретую зону, перегревая ее этим еще больше!

Кроме того, теплый электролит интенсивно растворяет анодный слой! В зоне перегрева начинается такой себе мини-процесс в «теплой» интерпретации. В течении нескольких секунд, такая микрозона перегрева полностью оголяется до белого метала, и через нее начинает течь ток, в разы больший нормального. За пару минут деталь может раствориться наполовину! И все вышеуказаные проблемы- из за недостаточного перемешивания электролита! Таким образом, я не слишком советую большую плотность тока.

В том смысле, что площадь поверхности свинцового катода мала, в сравнении с площадью поверхности обрабатываемой детали. Это не самая большая проблема, если вы обрабатываете маленькие детали, расположенные далеко от катода в разных концах ванны. Но вот, если вы станете анодировать тот же рессивер, в ванне не слишком больших габаритов, то начнутся проблемы. Появится высокая склонность к прогару и растравливанию детали. Дело в том, что малые размеры катода способствуют неравномерному распределению силовых линий тока по поверхности детали. А это и приводит в итоге к повышенному риску прогара.

Мой совет: площадь катода должна быть хотя бы в 2 раза больше чем площадь детали. В этом случае, получится достаточно равномерное распределение тока на поверхности детали. В идеале- лучше всего иметь свинцовую «облицовку» по всем стенкам и дну ванны. Не удается добиться правильной силы тока, а самое главное,- при подаче тока на деталь, пузырьки кислорода идут не с ее поверхности, а с поверхности зажима. Ну или- вообще не идут. Чисто електрическая проблема.

Возникшая, скорее всего, от вашей лени сделать качественный зажим. Всяческие варианты с обматыванием детали алюминиевой проволокой, имхо, ненадежны. Зажим должен быть струбциноподобным, с резьбовой контактной шпилькой-электродом из алюминия. Только такая конструкция позволяет с достаточной силой прижать електрод к детали, обеспечив тем самым, надежный электрический контакт. Возможна и еще одна причина- точка контакта шпильки-электрода на зачищена наждачкой. Надо перед каждым анодированием обязательно зачищать точку контакта.

Алгоритм правильного режима анодирования: 1- Вы аккуратно подсчитали площадь поверхности детали, и правильно вычислили необходимую силу тока. Диаметр пузырьков крайне мал, их общее течение напоминает скорее струйки дыма, чем собственно пузырьки. Для полного понимания вот вам фото «правильного» течения процесса: 4- Длительность процесса контролируется в общем то визуально по цвету детали, но в среднем равна 20-30 минутам для мелких деталей заглушки и т. Подготовка под анодирование. Есть несколько специфичных тонкостей, которые надо знать, чтобы подготовить детали к анодировке. Легко подсчитать, что при толщине слоя 0,05 мм, болту в гайке станет теснее на 0,2 мм.

Шлифовать тем или иным способом деталь уже анодированную почти невозможно- твердость покрытия как у керамики. Да и крайне неэстетично обдирать часть покрытия, открывая, к тому же, дорогу коррозии… Значит единственный способ- обеспечить «запас» до обработки. Плоские участки можно подогнать напильником и шкуркой. Ну а у резьбы, как показывает практика, достаточно легко шлифовать лишь самую вершину резьбы- именно ей «становится тесно». Это можно сделать очень мелкой наждачкой. Во первых сильно выигрывает эстетика, во вторых снижается вероятность «прогара» при анодировании.

Хотя, на самом деле, не так этот прогар и страшен.. Надо отметить что дефекты поверхности анодный слой не маскирует- они будут видны и на обработанной детали. Не советую держать ее в горячем едком калии или натрии, как рекомендуют заводские технологи- это заметно портит чистоту поверхности. Лучше пользоваться куском хозяйственного мыла и зубной щеткой- детали мелкие, работа нас не пугает… 4 — Очень эффективно обезжиривает стиральный порошок: достаточно растворить его в горячей воде, залить в пластиковую емкость, высыпать туда детали и хорошенько потрясти посудину. Но есть одно НО: после промывки детали надо тут же высушить горячим воздухом, иначе дюраль интенсивно окисляется! Видимо, стиральный порошок уж очень агрессивен!

Тончайший слой жира с пальцев рук- не помеха. Он моментально окисляется кислородом при первых секундах анодирования и всплывает в виде черных хлопьев… Вот и все. Этого вполне достаточно. Самодельная установка для анодирования. Тут я постараюсь подробно описать устройство всего необходимого оборудования. С некоторыми рекомендациями по изготовлению.

Ну и, по возможности, с фотографиями. Замечу, установка пригодна для анодирования деталей с площадью поверхности примерно до 7-8 дм2. На практике этого хватит для ресиверов ружей 70-90 см. Итак, приступим: Гальваническая ванна. Ванна, скорее всего, понадобится даже не одна. У меня их, например, три.

Одна- для обработки всяких маленьких деталей, другая- для недлинных труб до 60 см , третья- для длинных труб 70-90 см. Замечу, для работы с последней, нужен весьма мощный блок питания, до 20-30 ампер при 50 вольтах. Материал для изготовления ванны может использоваться разный, можно даже использовать нержавейку или алюминий. Но эти ванны придется тщательно мыть после использования. И в них нельзя оставлять электролит надолго. Потому как коррозия будет иметь место.

Более нетребовательны пластиковые ванны. И, пожалуй самый подходящий материал- полиэтилен. Так, для маленькой ванны я использую пищевой контейнер, купленный в супермаркете, на 6 литров. А для больших ванн я вполне приспособил длинные пластиковые цветочные горшки- очень подходящая «тара» получилась. И вполне кислотоупорная. Что очень важно- ванна должна иметь хорошую теплоизоляцию корпуса.

Иначе электролит будет быстро в ней нагреваться, особенно летом, придется гораздо чаще его менять. Самое простое решение- обклеить ванну толстым 2-4 см слоем пенопласта. Можно также, закрепив ванну внутри подходящей коробки, залить промежуток строительной пеной. Но имейте в виду- пена, расширяясь, может сильно покоробить ванну. Тут важно- не переборщить с количеством пены. Лучше ее лить в несколько этапов.

Вот примерно такие ванны должны у вас получиться: Затем, необходимо изготовить свинцовый катод для ванны. Делается он из листового свинца. Такой свинец лучше всего снять с толстых електрокабелей. Думаю, вы и так это знаете: аккумуляторы и кабеля- 2 основных источника Pb для подвоха, озабоченного изготовлением грузов для грузпояса… Задача состоит в том, что площадь катода должна быть не менее чем раза в 2 больше площади поверхности обрабатываемой детали. При этом, поверхность катода, прислоненная к стенке дну ванны в учет не берется. Весьма полезным является наличие множества отверстий в катодной пластине- через них удобно выходить газу и, кроме того, так катод работает чуть эффективнее.

Катод можно собрать из нескольких кусков, если нет одного большого. При этом куски надо паять мощным паяльником, обязательно- вдоль всех стыков толстым швом. Не забывайте- у нас сильноточная цепь, она не любит тонких сечений! Паять лучше свинцом , а не припоями ПОС. Вывод контакта из ванны можно выполнить просто полоской того же свинца. Хотя можно и толстым медным проводом в изоляции.

Место припайки медного провода надо изолировать силиконовым герметиком. Вот такие катоды для ванн получились у меня: Токоограничивающий резистор. Кусок толстого нихромового провода диаметром 2 мм- метров этак 5. Из него нужно свернуть спирать- это будет мощный сильноточный резистор для регулировки силы тока на детали. По тому же принципу, как и у сварщиков. Купить такой провод можно там, где торгуют разным оборудованием для электросварки.

Спираль сделать путем навивки провода на подходящий штырь или трубу. Можно часть резистора сделать из тонкой 1.. Не советую экспериментировать со стандартными, вращающимися проволочными потенциометрами зеленые такие — их мощность все же маловата, будут сильно греться. Да и цена- немаленькая. Поверьте, простая самодельная спираль с «крокодилами» — и проще и надежнее. Блок питания.

Электрическая схема БП выглядит примерно так: Попробуем разобрать ее по блочно. Самая важная и дорогая деталь БП. К нему предъявляются весьма высокие требования. Прежде всего- по мощности. Если вы намерены анодировать не только мелкие детали, а и относительно крупные ресиверы ружей , с площадью поверхности 5-8 дм2, то ищите трансфоматор с током вторичной обмотки 10-15 ампер. Такие трансформаторы весьма дороги, поэтому иногда выгодно купить 2 меньших, и подключить их параллельно.

Очень важно, чтобы во вторичной обмотке был хотя бы один центральный отвод- это даст вам 2 рабочих напряжения. Если будет несколько отводов- еще лучше. Напряжения вторичных обмоток я советую 2х25 вольт. Это довольно распространенный вариант. У меня 2 спараллеленных: один самодельный, другой- силовой от советского усилителя мощности: 2- диодный мост.

Анодирование металлических сплавов применяется в разных отраслях промышленности уже достаточно давно. Это — сложный электрохимический процесс, детальное описание которого мы не будем здесь приводить — на это потребуется слишком много времени. Приблизительно же процедура анодирования заключается в следующем — подвергаемый обработке элемент конструкции помещается в кислый электролит к примеру, в раствор серной кислоты , после чего подключается к источнику тока. Результат — образование на поверхности металла оксидной пленки.

Оксидная пленка практически не проводит ток. Обработанная посуда приобретает устойчивость к интенсивным перепадам температур. В процессе приготовления пища не подгорает. Декоративные свойства. Некоторые металлы подвергают обработке для изменения визуальных качеств. В основном, для этих целей используют алюминий как обладающий хорошим соединением с кислородом. Добавление определенных солей в раствор электролита позволит поменять исходный цвет, придавая окрашенным изделиям ровные и глубокие оттенки. Оксидирование также позволяет скрыть незначительные дефекты поверхности, такие как царапины или потертости. В отличие от обычной нержавеющая сталь плохо поддается обработке как условно инертный металл. Для решения этой проблемы нержавейку покрывают никелем, а только затем проводят оксидирование. Ученые активно занимаются разработкой специальных паст, которые будут уменьшать инертные свойства наружного слоя нержавеющей стали. Для прочих соединений эти условия могут быть неприемлемыми. Рассмотрим особенности обработки отдельных металлов и сплавов на их основе. Анодирование меди и ее сплавов Этот металл очень плохо поддается оксидированию. Оптимальным считается электрохимический способ, в результате которого происходит изменение цвета.

Принцип анодирования алюминиевого корпуса-обработка алюминиевой поверхности

При а. При см. При анодировании изделие, погруженное в электролит, соединяют с положительно заряженным электродом источника тока анодом. Оксидная пленка… … Энциклопедический словарь по металлургии анодирование — нанесение защитного покрытия на поверхность металлических изделий.

Отрицательно заряженный кислород притягивается к положительному заряду на алюминии и окисляет поверхность алюминия, образовывая на ней оксидную пленку Al2O3. Кислота из раствора разъедает эту жесткую корку, создавая глубокие в ней микропоры диаметром 10-100нм. Через эти поры ток продолжает попадать на поверхность металла и процесс продолжается.

Чем дольше длится процесс, тем толще получающаяся оксидная пористая пленка. Толщина пленки может составлять от 0,5мкм и менее для декоративных целей и до 150мкм для архитектурных зданий , чаще всего 15-20 мкм. Концентрация электролита, степень кислотности, температура раствора, сила тока тщательно контролируются для равномерного создания качественного защитного слоя. Жесткие толстые пленки, как правило, получают с использованием более разбавленных растворов при более низких температурах с высокими напряжениями и током. После завершения процесса поры заполняются цветными красителями, создавая глубокий слой ровного окраса детали, или бесцветными нейтральными подавителями коррозии. Если нет необходимости в высоком сцеплении поверхности, поры после окрашивания закрываются запечатываются, уплотняются , чтобы не допустить коррозии через них и удержать красители.

Холодная обработка, когда поры закрываются пропиткой герметиком тефлоном, ацетатом никеля, ацетатом кобальта, бихроматами натрия или калия в ванной при комнатной температуре, более распространена из-за экономии электроэнергии но такие покрытия не подходят для склеивания. Такое покрытие из-за большой толщины износостойкое и дает защиту алюминия даже при износе со временем поверхности и при образовании не слишком глубоких царапин. Цвета покрытия Цвета анодированных покрытий, создаваемых раствором красителей как правило анилиновых могут быть самыми разнообразными. Цвет также может являться неотъемлемой частью оксидной пленки: в таком случае в раствор серной кислоты при анодировании добавляются органические кислоты также использующиеся при окраски ткани, щавелевая, малеиновая, сульфосалициловая и другие органические кислоты , используется импульсный ток.

Это разные электролиты, есть возможность составлять и различные сочетания. Также могут использоваться источники прямого и переменного тока, а также их комбинации. Но всегда алюминиевая продукция выступает анодом, то есть подключается к положительному полюсу источника электротока, а другой элемент является катодом.

Основные этапы твердого анодирования: Подготовка алюминиевой поверхности. Затем заготовка помещается в ванну осветления с целью удаления образовавшихся темных продуктов после выполненного процесса травления. Это позволит идеально подготовить заготовку для последующей обработки. Промывка в воде с подходящими рабочими растворами. Непосредственно перед процессом анодирования заготовка промывается обязательно деминерализованной водой. Металлическая заготовка помещается в емкость с электролитом между катодами. Тип, степень концентрации и температура электролита, а также параметры электротока — все это влияет на уровень качества и толщину получаемого слоя.

Чем больше температура и меньше плотность тока, тем быстрее осуществляется процесс анодирования. Соответственно, чем ниже температурное значение и выше плотность электротока, тем более твердое получится покрытие. Закрепление защитного слоя. Поверхность получается пористая и мягкая. Чтобы продукция получилась прочной, долговечной, износостойкой, нужно закрыть эти поры.

Получаемая пленка очень плохо окрашивается, зато отлично растворяется в никелевом и кислом медном электролите при осаждении этих металлов, то есть применяется в основном как промежуточный этап перед омеднением или никелированием. Хромовый электролит. Полученная пленка имеет красивый серо-голубой цвет и похожа на эмалированную поверхность, процесс получил отсюда название эматалирования. В настоящее время эматалирование очень широко применяется и имеет ряд других вариантов состава электролита, на основе других кислот. Смешанный органический электролит. Раствор содержит щавелевую, серную и сульфосалициловую кислоты. Цвет пленки отличается в зависимости от марки сплава анода, характеристики покрытия по прочности и износостойкости очень хорошие. Анодировать в данном электролите можно не менее успешно алюминиевые детали любого назначения. Перфорирование Этот метод обработки приобретает все большее значение по причине возрастающих требований в светотехнике при производстве как светильников с прямым и отраженным светом, так и вторичных, и эвольвентных отражателей. Здесь важно перфорировать отверстия с диаметром менее 1,2 мм. Решающим для равномерного распределения света являются высокоточные перфораторы с правильно подобранным габаритом резки от вырубного штампа до матрицы и маркой стали, подходящей для алюминия, что позволит избежать образования отложений по краям отверстий. Смазка поверхности во время процесса перфорирования здесь также важна. Для этого используются летучие смазочные материалы в сочетании с подходящей защитной пленкой, что позволяет избежать проникновение смазки под защитную пленку на зеркальную поверхность формуемого материала. Мы готовы предоставить Вам информацию о компаниях с хорошей репутацией, занимающихся перфорацией. У нас Вы можете получить также матрицу стандартов перфорирования. Преимущества применения алюминиевого анодированного профиля Анодированный алюминиевый профиль применяется для изготовления навесных вентилируемых фасадов, монтажных лестниц, поручней. Защитная пленка не только защищает сам металл, но и ваши руки от серой алюминиевой пыли. Женщинам интересно будет узнать, что алюминиевые вязальные спицы тоже анодируют, чтобы не пачкались ручки мастерицы. Но и в строительстве анодированный алюминий получил свое применение. Анодирование алюминиевого профиля используют при монтаже навесных вентилируемых фасадов в высоко- агрессивных средах. Высоко- агрессивные среды- это приморские районы из-за высокого содержания солей в воздухе или территории вблизи заводов. Города миллионники редко имеют высоко- агрессивную среду, чаще средне- агрессивную. Присвоение класса агрессивности происходит на уровне специальных служб сан-эпидемического надзора по согласованию с администрацией города — нужно искать в их постановлениях. Еще одно важное преимущество — окраска анодированной поверхности. Наверное, это основной плюс описанного процесса. Появилась возможность декоративной обработки изготовленных алюминиевых изделий, что сразу принесло к большому распространению его применения. Высокая износостойкость анодной пленки способствовала увеличению содержания анодированных алюминиевых деталей в общем объеме судостроительных и авиастроительных предприятий. Фасады многих Олимпийских объектов в Сочи выполнены с помощью технологии Навесной Вентилируемый Фасад на алюминиевых анодированных системах. Гравировка Лазерные надписи и гравировки отлично подходят для работы с нашими анодированными поверхностями и поверхностями с PVD покрытием благодаря высокому качеству, хорошей репродуктивности, высокой скорости письма, бесконтактной обработке, а также износостойкости лазерных инструментов и гарантированности от фальсификации самих надписей. Правильная настройка позволяет достигать различных видов надписей. При выполнении надписей лазером следует оптимизировать параметры письма, учитывая особенности нашего материала, облагороженного при помощи анодирования, так же как и в случае глубокой и широкой гравировки для предотвращения образования заусенцев у наклонных кромок и бороздок. Мы готовы помочь Вам в поиске производителей станков или компаний, занимающихся гравировкой. Что такое анодированный алюминий На сегодняшний день алюминий остается очень важным и востребованным материалом для изготовления всевозможных деталей, подделок и прочее. Можно перечислить массу его преимуществ, например, небольшой вес, достаточная прочность, не подвергается коррозии, его легко обрабатывать для дальнейшего использования. Но при всем этом, многих не привлекает его внешний вид. Если вы хоть раз пробовали красить алюминий, то ваши попытки могли заканчиваться безуспешно, ведь краска держится на алюминии очень плохо. Если его использовать без краски, то очень скоро он покроется темными пятнами. Чтобы все это не допустить, была разработана технология анодирования алюминия. Предлагаем вам рассмотреть вопрос о том, что такое анодированный алюминий, какие существуют его разновидности, в каких сферах используется анодированный алюминий и можно ли анодировать этот материал своими руками. Применение анодированного алюминия Существует множество сфер использования для достижения абсолютно разных целей. Сейчас рассмотрим их: Основа для окраски. Защищенное покрытие способно удерживать слой краски продолжительное время. Для этого осуществляется соединение органического покрытия с хромовым анодным. Даже если слой краски повредится, его легко восстановить, а самому изделию не грозит коррозия и прочее. Данная технология эффективна при нанесении органических красок. Защита от коррозии. Эта защита способна справляться с воздействием даже соленой воды. В дизайне. Использование специальных красителей можно придавать алюминию абсолютно разные цвета. Благодаря этому изделиям можно придавать красивый внешний вид. Чистые руки. Нередко алюминий используется для создания перил, рукояток, поручней и прочее. Если он будет без анодного покрытия, то на руках могут оставаться следы. Чтобы это исключить все эти детали анодируют, что позволяет держать руки в чистоте. Для достижения таких результатов поры анодного покрытия наполняются. Отражение в проекторах.

Анодирование алюминия что это такое: анодированный алюминий по выгодной цене

#2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Анодирование в обобщенном смысле – это электрохимический процесс образования стабильных оксидных покрытий на поверхности металлов. Анодированием называется электролитический процесс, который используется для увеличения толщины слоя природных окислов на поверхности изделий.

Анодирование разных металлов, преимущества метода, оборудование

Анодирование — Википедия с видео // WIKI 2 Что такое анодирование и зачем оно нужно?
Что такое анодированный алюминий | Всё о цветных металлах и сплавах (бронза, медь, латунь и др) Ответив на вопрос: анодирование – что это такое, необходимо разобраться с оборудованием, которое предназначено для проведения данного процесса.

Что такое анодирование алюминия

Анодирование – это метод повышения коррозионной стойкости металлического изделия путем формирования слоя оксида на его поверхности. Процесс анодирования Процесс, в результате которого, происходит образование на поверхности металла высокопористых оксидных слоев алюминия, этот процесс является электрохимическим. Анодирование алюминия: создание прочного оксидного слоя, стойкого к коррозии и механическому воздействию Содержание статьи: 1. Что такое анодирование алюминия? Холодное анодирование характеризуется скоростью образования окисной пленки: она гораздо выше, чем скорость растворения металла с внешней стороны. #2 Что такое процесс черного анодирования? Черное анодирование относится к процессу электролитического окрашивания, который превращает поверхность алюминия в прочный черный оксид отделка. Анодирование алюминиевых и стальных конструкций;Статьи/Статьи по алюминиевым конструкциям.

Похожие новости:

Оцените статью
Добавить комментарий