Сотрудники американской биотехнологической компании Bioquark планируют доказать, что смерть мозга не является необратимой. Лента новостей. Курс евро на 20 апреля EUR ЦБ: 99,58 (-0,95) Инвестиции, 19 апр, 16:51 Курс доллара на 20 апреля USD ЦБ: 93,44 (-0,65) Инвестиции, 19 апр, 16:51. 83 фото | Фото и картинки - сборники. Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы.
Служебные ссылки
- «Комплементарное» лекарство
- Последние комментарии
- Биотехнология Изображения – скачать бесплатно на Freepik
- Аннотация к презентации
Биотехнология — презентация
Биология, презентация, доклад, проект на тему. И каковы перспективы развития биотехнологий и продуктов биотехнологоческого производства? Предмет: Биология 11 класс Слайдов: 18 Формат Размер: 0.6 Мб Тема: Успехи современной биотехнологии.
Биотехнология: изображения без лицензионных платежей
Будут обсуждаться актуальные вопросы и достижения в области пищевых технологий и функциональных продуктов питания в России и за рубежом. В работе Форума примут активное участие молодые специалисты и аспиранты ВУЗов и научных организаций. В рамках Форума пройдет Выставки-презентации инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства. В работе Выставки примут участие представители российских и зарубежных компаний. Будут проведены Конкурсы разработок, проектов и стартапов, победители будут награждены медалями и дипломами Форума.
При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4. Генетическая или генная инженерия — отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы. Биотехнологии клонирования Клонирование — это процесс получения клонов то есть потомков полностью идентичных прототипу. Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном. В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий. Уже в конце ХХ века ученые начали активное обсуждение клонирования человека. Таким образом, термин «клон» стал употребляться в СМИ, а позже и в литературе и искусстве. Что касается бактерий, то у них клонирование — это практически единственный способ размножения. Именно «клонирование бактерий» употребляется в том случаи, когда процесс искусственный и им управляет человек. Этот термин не касается естественного размножения микроорганизмов. Генетическая инженерия Генная инженерия — это искусственные изменения в генотипе микроорганизма, вызванное вмешательством человека, для получения культур с необходимыми качествами. Генная инженерия занимается исследованиями и изучением не только микроорганизмов, но и человека, активно изучает заболевания, связанные с иммунной системой и онкологией. Клеточная биотехнология растений Клеточная биотехнология основывается на применении клеток, тканей и протопластов. Чтобы успешно управлять клетками, необходимо отделить их от растения и создать им все необходимые условия для успешного существования и размножения вне организма растения. Такой метод выращивания и размножения клеток носит название «культуры изолированных тканей» и получил особое значение из-за возможности применения в биотехнологии. Биотехнологии в современном мире и жизни человека Потенциал, который открывает биотехнология для человека, велик не только в фундаментальной науке, но и в других сферах деятельности и областях знаний.
При помощи клеточной инженерии растений стало возможным ускорение селекционных процессов, что позволяет выводить новые сорта сельхоз культур. Теперь выведение нового сорта сократилось от 11 лет до 3-4. Генетическая или генная инженерия — отдел молекулярной биологии, в котором занимаются изучением и выделением генов из клеток живых организмов, после чего над ними проводятся манипуляции для достижения определенной цели. Главными инструментами, которые используются в генной инженерии, являются ферменты и векторы. Биотехнологии клонирования Клонирование — это процесс получения клонов то есть потомков полностью идентичных прототипу. Первый опыт клонирования был проведен на растениях, которые клонировались вегетативным путем. Каждое отдельное растение, которое получилось вследствие клонирования, называлось клоном. В процессе развития генетики это термин начали применять не только к растениям, но и к генетическому выведению бактерий. Уже в конце ХХ века ученые начали активное обсуждение клонирования человека. Таким образом, термин «клон» стал употребляться в СМИ, а позже и в литературе и искусстве. Что касается бактерий, то у них клонирование — это практически единственный способ размножения. Именно «клонирование бактерий» употребляется в том случаи, когда процесс искусственный и им управляет человек. Этот термин не касается естественного размножения микроорганизмов. Генетическая инженерия Генная инженерия — это искусственные изменения в генотипе микроорганизма, вызванное вмешательством человека, для получения культур с необходимыми качествами. Генная инженерия занимается исследованиями и изучением не только микроорганизмов, но и человека, активно изучает заболевания, связанные с иммунной системой и онкологией. Клеточная биотехнология растений Клеточная биотехнология основывается на применении клеток, тканей и протопластов. Чтобы успешно управлять клетками, необходимо отделить их от растения и создать им все необходимые условия для успешного существования и размножения вне организма растения. Такой метод выращивания и размножения клеток носит название «культуры изолированных тканей» и получил особое значение из-за возможности применения в биотехнологии. Биотехнологии в современном мире и жизни человека Потенциал, который открывает биотехнология для человека, велик не только в фундаментальной науке, но и в других сферах деятельности и областях знаний.
Слайд 2 Расшифровать Селекция Массовый и. II вар. Слайд 11 Клонирование - метод получения идентичных организмов путем бесполого и вегетативного размножения. Слайд 13 Клонирование Слайд 14 Клонированные животные 1970 —лягушка 1985 — костные рыбы 1996 — овечка Долли 1997 — первая мышь 1998 — первая корова 1999 — первый козел 2001 — первая кошка 2002 — первый кролик Слайд 15 Клонированные животные 2003 — первые бык, конь, олень 2004 — первый опыт клонирования с коммерческими целями кошки 2005 — первая собака афганская борзая по кличке Снуппи 2006 — первый хорек 2007 — вторая собака 2008 — третья собака лабрадор по кличке Чейс. Клонирована по государственному заказу. Начало коммерческого клонирования собак 2009 — первое успешное клонирование верблюда. Первые успешные полевые испытания трансгенных растений устойчивые к вирусной инфекции растения табака были проведены в США в 1986 г. Уже через 1-2 года биотехнологические фирмы поставили на рынок целый ряд генетически измененных растений: томатов, кукурузы, картофеля, табака, сои, рапса, кабачков, редиса, хлопчатника.
Презентация к статье Перспективные направления биотехнологии
Скачать Первый слайд презентации: Биотехнология «Нет ничего более изобретательного, чем сама природа…А человек - ее венец, который может многое изменить…» Цицерон Биотехнология Изображение слайда Слайд 2: Основополагающий вопрос Ученые утверждают, что биотехнология открывает новую эру взаимодействия человека с окружающей средой и, особенно, с живым веществом биосферы. Миф это или реальность?
На конечной стадии анаэробной очистки происходит выделение метана. Если в медицинских целях необходимо использовать чужеродные для человеческого организма энзимы, то во избежание аллергических реакций ферменты иммобилизируют. Ферменты используют в пищевой промышленности при производстве пива, выпечке хлеба, приготовлении кисломолочных продуктов, осветлении фруктовых соков рис. Например, лактаза — фермент, который гидролизует лактозу дисахарид, содержащийсяв молоке с образованием двух моносахаридов — галактозы и глюкозы, позволяет получать концентрированные молочные продукты, избегать добавления химических стабилизаторов в мороженое, повышать питательность смесей для детского питания.
После этого плазмида начинает работать в клетке как ген, изготавливая в клетке кишечной палочки десятки своих копий, которые обеспечивают синтез новых белков. Слайд 19 Биогеотехнология Слайд 20 Итак, какова же структура биотехнологии? Учитывая, что биотехнология активно развивается и структура её окончательно не определилась, можно говорить лишь о тех видах биотехнологии, которые существуют в настоящее время. Это клеточная биотехнология — прикладная микробиология, культуры растительных и животных клеток об этом шла речь, когда мы говорили о микробиологической промышленности, о возможностях клеточных культур, о химическом мутагенезе.
Это генетическая биотехнология и молекулярная биотехнология они обеспечивают «индустрию ДНК». И наконец, это моделирование сложных биологических процессов и систем, включающее инженерную энзимологию об этом мы говорили, когда рассказывали об иммобилизованных ферментах. Слайд 21 Очевидно, что биотехнология имеет огромное будущее. И дальнейшее её развитие тесно связано с одновременным развитием всех важнейших отраслей биологической науки, исследующих живые организмы на разных уровнях их организации. Ведь как бы ни дифференцировалась биология, какие бы новые научные направления не возникали, объектом их исследования всегда будут живые организмы, представляющие собой совокупность материальных структур и разнообразнейших процессов составляющих физическое, химическое и биологическое единство. И этим — самой природой живого — предопределяется необходимость комплексного изучения живых организмов. Поэтому естественно и закономерно что биотехнология возникла в результате прогресса комплексного направления — физико-химической биологии и развивается одновременно и параллельно с этим направлением. Слайд 22 В заключение надо отметить ещё одно важное обстоятельство, которое отличает биотехнологию от других направлений науки и производства. Она исходно ориентирована на проблемы, которые тревожат современное человечество: производство продуктов питания прежде всего белка , сохранение энергетического равновесия в природе отход от ориентировки на использование невосполнимых ресурсов в пользу ресурсов восполнимых , охрана окружающей среды биотехнология — «чистое» производство, требующее, правда, больших затрат воды. Таким образом, биотехнология — закономерный результат развития человечества, признак достижения им важного, можно сказать поворотного, этапа развития.
Как оказалось, исследования по влиянию ГМО на животные организмы проводились в слишком короткие сроки, недостаточные для полного изучения влияния. Мало того, по признанию некоторых ученых, работающих в биотехнологической отрасли, они были вынуждены изменить данные своих результатов по «настойчивой просьбе» спонсоров. Например, еще первое предмаркетинговое исследование генетически модифицированного томата на безопасность, проведенное в США в 1994 г. Однако позже открылось, что в течение двух недель после его проведения 7 из 40 подопытных крыс умерли, и причина их смерти неизвестна. В конце 90-х годов английские ученые на основании проведенных опытов впервые заявили о том, что употребление подопытными крысами генетически модифицированного картофеля привело к серьезным повреждениям их внутренних органов и иммунной системы. У животных возник целый набор серьезных изменений желудочно-кишечного тракта, печени, зоба, селезенки. Но самое зловещее - уменьшился объем мозга.
Тогда же были вовремя остановлены опыты по введению в сою генов бразильского ореха. В продажу мог быть выпущен аллерген, смертельно опасный для тысяч людей, не переносящих орехи. Причем тестирование животных не выявило опасности, а тестирование ГМ-продуктов на людях-аллергиках не входит в обязательную программу испытаний новых продуктов. Так что аллерген был вовремя замечен только по счастливой случайности. Проведенная в России в 2006 году проверка влияния ГМ-сои, устойчивой к гербициду раундапу, на потомство лабораторных крыс показала повышенную смертность крысят первого поколения, недоразвитость выживших крысят, патологические изменения в органах и отсутствие второго поколения. Возможным ущербом для здоровья людей опасность ГМО-растений не ограничивается. Доказано, что некоторые ГМ-растения смертельно опасны для живущих на поле или рядом с ним грызунов и насекомых.
Последствия нарушения биоценоза в окрестностях плантаций таких ГМ-растений никто не берётся предсказать. Также существует реально доказанная опасность передачи трансгена от культурного растения его дикорастущим сородичам. В результате может получиться устойчивый к действию пестицидов и гербицидов, не боящийся ни жары, ни холода, не угрызаемый жуками и паразитами и страшно плодовитый суперсорняк. По этой причине, в США, являющихся лидером в создании и производстве ГМ-растений, плантации натуральных и генетически модифицированных растений далеко разнесены друг от друга. Например, во Флориде ГМ-хлопок разрешено выращивать только в северной части штата, а натуральный — в южной. Обещанное увеличение урожая оказалось не столь значительным, чтобы закрыть глаза на многочисленные страшилки генно-модифицированных растений. В итоге восторженное настроение в мире сменилось на осторожное.
В Европе целые города и округи позиционируют себя как «зоны, свободные от ГМО». В России производство ГМО запрещено а импорт почему-то разрешён. У нас в продажу допускаются продукты с добавлением ГМО. Есть сведения, что в нашей стране этот порядок не всегда соблюдается. Перспективы: Скептические. В 2008 г. ООН и Всемирный банк впервые выступили против крупного агробизнеса и генетически-модифицированных технологий.
Эксперты ООН убеждены, что в голоде сотен миллионов людей заинтересован крупный агробизнес, который строит свою политику на создании искусственного дефицита продовольствия. Впервые ООН фактически осудила использование в сельском хозяйстве генетически-модифицированных технологий, поскольку они, во-первых, не решают проблемы голода, а во-вторых, представляют угрозу здоровью населению и будущему планеты. В последние годы сложилось впечатление, что крупные агропромышленные корпорации потихоньку сворачивают исследования по генной модификации растений и переключаются на более благодарную сферу деятельности - микроорганизмы. Корни биотехнологии применительно к микроорганизмам уходят в далёкое прошлое и связаны с хлебопечением, виноделием и другими способами приготовления пищи, известными человеку еще в древности. Например, брожение с участием микроорганизмов, было известно и широко применялось еще в древнем Вавилоне. Микроорганизмы синтезируют целый ряд ценных веществ. С развитием генной инженерии удается не только увеличить продуктивность биосинтеза, но и получать вещества, химическое производство которых ранее было невозможно.
Пищевые добавки, аминокислоты, витамины, ароматизаторы, ферменты — вот далеко не полный перечень веществ, которые получают при помощи генетически модифицированных микроорганизмов. В ряде случаев, биотехнологические методы производства этих соединений уже заменили традиционный химический синтез. Преимущества биотехнологического производства с использованием генетически модифицированных микроорганизмов очевидны: микроорганизмы быстро растут и, в большинстве случаев, легко культивируются. В отличие от традиционного химического синтеза, биосинтез протекает при нормальных условиях, а значит, для него не требуется создание таких дополнительных условий как повышенная температура, давление, или применение агрессивных химикатов. Генетически модифицированные микроорганизмы используются в настоящее время для производства фармацевтических препаратов, вакцин, продуктов тонкого органического синтеза, пищевых добавок и других сопутствующих соединений пищевой промышленности. Вот только некоторые примеры продуктов микробного синтеза: витамин B2, витамин С, лимонная кислота, консерванты натамицин, низин, лизоцим, аминокислоты глутамат, аспартам, цистеин. Впечатляющим успехом является производство в промышленных масштабах человеческого инсулина, вырабатываемого генно-модифицированной кишечной палочкой.
Кроме крупных корпораций, биосинтезом сейчас занялись небольшие стартапы, выращивающие генно-модифицированные дрожжи. Роботизированные системы тасуют гены иногда с умыслом, иногда случайным образом, получая и проверяя десятки тысяч штаммов в месяц. Наиболее удачные выращиваются на продажу в чанах вместимостью 200 тыс. Таким образом им удается получать различные вещества, гораздо более дешевые, чем оригиналы — от пряностей ваниль, шафран, экстракты цитрусовых и сандалового дерева до лекарств пока известно о морфине и противомалярийном препарате артемизинине. Методы биосинтеза с использованием микроорганизмов встречают в мире гораздо меньшее сопротивление, чем выращивание генно-модифицированных растений. Связано это с тем соображением, что в качестве продукции биосинтеза человеком употребляются не сами микроорганизмы, а продукты их метаболизма. Считается, что методы контроля качества исключают попадание генетического кода бактерий и грибов в конечный продукт, и этот продукт ничем не отличается от природного оригинала.
Нельзя, правда, не вспомнить о случае в США в конце 80-х годов, когда бактерия, генно-модифицированная для производства пищевой добавки триптофан, стала вдруг по неизвестным причинам также вырабатывать токсичное вещество этилен-бис-триптофан. В результате употребления пищевой добавки погибло 38 человек, и более тысячи стали инвалидами. К счастью, в дальнейшем подобных крупных инцидентов не было зафиксировано.
24.Биотехнология достижения и перспективы развития
Презентация, обзор современных методов биотехнологии и анализ перспектив их развития к разделу Основы селекции растений, животных и микроорганизмов, Биология, 9. Новости из мира биотехнологий. If you have Telegram, you can view and join БиоТехнологии right away. Генная инженерия - Мировые площади занятые трансгенными культурами - Направления клеточной. презентация онлайн. Сегодня биотехнологии являются инструментом для сохранения здоровья практически по всем факторам внешней среды, кроме привычек.
Основные направления биотехнологии презентация - 83 фото
Американские ученые клонировали ухо знаменитого голландского художника Винсента Ван Гога, мочку которого он себе отрезал при жизни. Роль клеточной теории в становлении и развитии биотехнологии Роль клеточной теории в становлении и развитии биотехнологии Создание клеточной теории позволило связать наследственность и изменчивость с их материальной основой — ДНК, а также определить, что клетка является элементарной единицей живых организмов. Уже в середине ХХ века были получены первые растения, выращенные из отдельных клеток на питательной среде, а в 1973 году родился первый «ребенок из пробирки». Операции с клетками генная и клеточная инженерии позволили клонировать сначала холоднокровных животных, а затем и млекопитающих.
Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Значение биотехнологии для развития селекции, сельского хозяйства, микробиологической промышленности, сохранения генофонда планеты Прогресс биотехнологии позволил совершить прорыв в таких отраслях человеческой деятельности, как селекция, сельское хозяйство, медицина, фармация и др. Так, введение в растения бактериальных генов устойчивости к поеданию насекомыми и поражению вирусами, а также способных расти на бедных или загрязненных почвах способствует решению продовольственной проблемы, особенно в странах с быстро растущим населением. В настоящее время значительная часть посевных площадей занята трансгенными культурами в США, Канаде и Китае.
Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до… Культивирование клеток растений на фоне высоких концентраций солей и других соединений позволяет сократить сроки выведения новых сортов пшеницы, сои и других важнейших сельскохозяйственных культур до одного-двух лет. Клонирование животных, особенно с генетически измененными признаками и свойствами, позволяет вывести более продуктивные породы и добиться их быстрого размножения, однако этот процесс пока еще слишком трудоемок и дорог, чтобы применяться в промышленном масштабе. Трансформация бактерий позволила уже в начале 80-х годов Трансформация бактерий позволила уже в начале 80-х годов ХХ века получать биологически активные вещества — инсулин, соматотропный гормон, интерферон, которые применяются в медицине, а также создать новые штаммы микроорганизмов, предназначенных для очистки сточных вод, ликвидации нефтяных разливов и т.
Путем селекции выведены также и формы бактерий, с помощью которых получают антибиотики, извлекают цветные металлы, получают биогаз. В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов… В будущем возможно использование клонирования в сочетании с другими отраслями биотехнологии не только для размножения растений, микроорганизмов и грибов, но и для восстановления исчезнувших видов животных, возобновления природных популяций исчезающих видов. Однако для этого необходимо вначале создать генные банки, поскольку ДНК довольно быстро подвергается разрушению в окружающей среде.
Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома Этические аспекты развития некоторых исследований в биотехнологии клонирование человека, направленные изменения генома С помощью биотехнологии стало возможным преодоление бесплодия, лечение многих наследственных и приобретенных заболеваний, решение продовольственных и экологических проблем современности. С другой стороны, активное вторжение современных технологий в медицину сопряжено с операциями с клетками и тканями человека. Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее… Большинство стран законодательно ограничило эксперименты по клонированию человека в основном по этическим соображениям, поскольку они направлены не просто на воспроизведение человека, но и на последующее использование клеток, тканей и органов зародыша для экспериментов, а также в качестве их донора.
Форум проводился в Москве на площадке ФИЦ Биотехнологии РАН и собрал более 300 представителей научного сообщества и отраслевой индустрии, преподавателей и студентов ведущих профильных вузов из разных стран. На мероприятии были вручены медали и дипломы победителям конкурсов инновационных разработок, проектов и стартапов. В этом году мероприятие проводится в 17 раз и традиционно было организовано при сотрудничестве трех отделений Российской академии наук: Отделения нанотехнологий и информационных технологий, Отделения медицинских наук и Отделения сельскохозяйственных наук РАН. На Форуме были представлены достижения в области фундаментальных и прикладных биотехнологических исследований. На площадке РОСБИОТЕХ-2024 прошли пленарные заседания, тематические сессии, круглые столы, выставка-презентация инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства и награждение научно-исследовательских коллективов за актуальные разработки. Основная цель Форума — предоставить специалистам в фундаментальных и прикладных отраслях биотехнологий, медицины, фармацевтических и пищевых производств возможность презентовать свои исследования, наладить контакты, провести плодотворные научные дискуссии, в том числе для возможности инициирования совместных проектов — междисциплинарных и международных.
Главное опасение — как бы такие клетки не представляли риска в отношении развития рака. Потому что главная опасность эмбриональных стволовых клеток заключается в том, что они генетически нестабильны и обладают способностью развиваться в некоторые опухоли после трансплантации в организм Cлайд 15 Генная инженерия Приёмы генной инженерии позволяют выделять необходимый ген и вводить его в новое генетическое окружение с целью создания организма с новыми, заранее предопределёнными признаками. Методы генной инженерии остаются ещё очень сложными и дорогостоящими. Но уже сейчас с их помощью в промышленности получают такие важные медицинские препараты, как интерферон, гормоны роста, инсулин и др. Селекция микроорганизмов является важнейшим направлением в биотехнологии. Развитие бионики позволяет эффективно применять для решения инженерных задач биологические методы, использовать в различных областях техники опыт живой природы. Cлайд 16 Трансгенные продукты: за и против? В мире уже зарегистрировано несколько десятков съедобных трансгенных растений. Это сорта сои, риса и сахарной свеклы, устойчивых к гербицидам; кукурузы, устойчивой к гербицидам и вредителям; картофеля, устойчивого к колорадскому жуку; кабачков, почти несодержащих косточек; помидоров, бананов и дынь с удлиненным сроком хранения; рапса и сои с измененным жирнокислотным составом; риса с повышенным содержанием витамина А. Генетически модернизированные источники могут встречаться в колбасе, сосисках, мясных консервах, пельменях, сыре, йогуртах, детском питании, кашах, шоколаде, конфетах мороженом. Cлайд 17 Перспективы развития биотехнологии Все шире на промышленной основе применяется метод вегетатив- ного размножения сельскохозяйственных растений культурой тканей. Он позволяет не только быстро размножить новые перспективные сорта растений, но и получить незараженный вирусами посадочный материал. Биотехнология позволяет получать экологически чистые виды топлива путем биопереработки отходов промышленного и сельскохозяйственного производств. Например, созданы установки, в которых используются бактерии для переработки навоза и других органических отходов. Cлайд 18 Явившись прямым результатом научных разработок, биотехнология оказывается непосредственным единением науки и производства, еще одной ступенькой к единству познания и действования, еще одним шагом, приближающим человека к преодолению внешней и к постижению внутренней целесообразности. Презентации этого автора.
Крайне важны биотехнологии и в медицине. Именно благодаря им удается получить лекарства и вакцины от новых вирусов. Для этого нужны подготовленные специалисты. Начинать профильное обучение необходимо еще в школе. Для этого и создаются специальные классы.
Биотехнологии – медицине будущего
В этом видеоуроке мы обсудим биотехнологию: узнаем, где она используется, рассмотрим ее современное состояние и перспективы на ближайшее ание. Ученые рассказали ребятам о том, как биотехнологии применяют в современном мире. 83 фото | Фото и картинки - сборники.
РНК-вакцины и 3D-печать органов: главные достижения биотеха. Карточки
В рамках Форума пройдет Выставки-презентации инновационных разработок в области биотехнологий для здравоохранения, пищевой промышленности и сельского хозяйства. В настоящее время прогресс в области биотехнологии тесно связан с применением методов генной и клеточной инженерии, а также клонированием. Биотехнология – это промышленное использование биологических процессов и систем на основе выращивания высокоэффективных форм микроорганизмов. Презентация биотехнологического комплекса в Министерстве науки и образования РФ. В настоящем выпуске информационного бюллетеня представлены три перспективных тренда в области биотехнологий. Новый выпуск журнала «НАУКА из первых рук» вышел «по следам» всероссийской конференции с международным участием «Биотехнология – медицине будущего».
РНК-вакцины и 3D-печать органов: главные достижения биотеха. Карточки
Может осуществляться в пределах одного вида внутривидовая гибридизация и между разными систематическими группами отдалённая гибридизация, при которой происходит объединение разных геномов. Для первого поколения гибридов часто характерен гетерозис, выражающийся в лучшей приспособляемости, большей плодовитости и жизнеспособности организмов. При отдалённой гибридизации гибриды часто стерильны. Слайд 17 Описание слайда: Генная инженерия генная инженерия — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма клеток , осуществления манипуляций с генами и введения их в другие организмы. Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология. Слайд 18 Спасибо за внимание Пока вы это читаете , мы должны уже читать заключительную часть , дождитесь конца Слайд 19.
Именно благодаря им удается получить лекарства и вакцины от новых вирусов. Для этого нужны подготовленные специалисты. Начинать профильное обучение необходимо еще в школе. Для этого и создаются специальные классы. Картина дня.
В своих экспериментах китайцы показали, что типовые одноцепочечные олигонуклеотиды хорошо работают в качестве унифицированного сигнала для передачи, что позволяет надёжно интегрировать крупномасштабные цепи с минимальной утечкой и высокой точностью для вычислений общего назначения. Вычисления в пробирке. Источник изображения: Nature В качестве примера учёные создали схему, решающую квадратные уравнения, которая собрана с использованием трёх слоев каскадных ЦВМ, состоящих из 30 логических вентилей и содержащих около 500 нитей ДНК. Иными словами, предложенная платформа сможет не только работать как обычный компьютер, но также будет способна на мгновенную диагностику вирусных и других заболеваний. И ещё большой вопрос, которая из этих возможностей окажется наиболее полезной. Такое кажется невозможным, но поставленный учёными эксперимент показал , что активностью генов в клетках человека можно управлять электрическими импульсами. Учёные представили то, что они назвали «электрогенетическим» интерфейсом. Перспективный интерфейс способен запускать целевые гены по команде в те моменты, когда наш организм будет нуждаться в стимуляции или в коррекции состояния здоровья. Здесь мы предоставляем недостающее звено». Как сообщается в статье учёных в журнале Nature Metabolism, эксперимент был поставлен на мышах, больных диабетом 1-го типа. Мышам имплантировали клетки поджелудочной железы человека. Раздражение этих клеток электрическим током по команде с внешнего устройства приводило к принудительной выработке инсулина. С оговорками, но животных фактически избавили от неизлечимой болезни. Источник изображения: Nature Metabolism Стимуляция клеток происходит в процессе образования активных форм кислорода — очень активных и «агрессивных» молекул, уровень которых, впрочем, контролировался и не достигал концентрации, после которой молекулы кислорода становятся для организма ядом. Молекулы кислорода напрямую воздействуют на ДНК при делении клеток и могут направлять этот процесс в нужное русло, обеспечивая генную терапию с помощью контролируемых электрических импульсов. Очевидно, что такое произойдёт очень и очень нескоро. Но потенциал в этом есть, и он обещает когда-нибудь справиться с генетическими заболеваниями и не только. Например, получить возможность выбрать в меню браслета режим «форсаж» и догнать уходящий поезд. Вместо выбросов в атмосферу, где CO2 будет создавать парниковый эффект, открытая цепочка биохимических реакций приводит к синтезу аминокислоты, необходимой для производства кормового белка. При этом территория под комплекс для синтеза будет ощутимо меньше сельхозугодий под те же задачи. Так можно будет «накормить будущее», уверены учёные. Немецкие учёные придумали реакцию для синтеза аминокислоты L-аланина и намерены разработать процессы для синтеза других необходимых аминокислот, чтобы в конечном итоге из углекислого газа синтезировать полные белковые комплексы. В основе биохимической реакции синтеза L-аланина лежит метанол и не простой, а «зелёный» — полученный из CO2 с использованием возобновляемой энергетики — от ветряных или солнечных ферм. Метанол необходим как промежуточный продукт, потому что напрямую аминокислоту синтезировать из углекислого газа нельзя. Получив из CO2 метанол, учёные запускают с ним серию реакций с использованием синтетических ферментов. На выходе получается необходимая для синтеза кормового белка аминокислота. Для синтеза этой же аминокислоты природным способом необходимы земля, люди и длительные процессы по выращиванию. В случае природного подхода ресурсные затраты и произведённые в его процессе вредные выбросы проигрывают синтетическим, уверены исследователи. К тому же, синтетический способ производства аминокислот и белков не производит вредных выбросов, если использует возобновляемую энергию. Предложенное решение поможет устранить конфликт между растущим населением Земли и производством продуктов. Еды хватит всем, и производиться она будет без ущерба для экологической обстановки. Группа учёных смогла решить эту проблему в сфере 3D-печати живых тканей человека — она создала сложнейшее и дорогое оборудование из обычных наборов LEGO и готова поделиться опытом со всеми желающими. Самыми дорогими, по-видимому, оказались интеллектуальный блок Lego Mindstorms и лабораторный насос. LEGO-принтер печатает биогелем, в котором растворены клетки кожи человека. Сопло принтера создаёт трёхмерную модель тканей кожи в чашке Петри, укладывая в неё слой за слоем. В дальнейшем учёные намерены изучить работу с разными составами геля и соплами разного диаметра, чтобы попытаться максимально точно воспроизводить кожную ткань человека. Всё эту нужно для получения множества образцов живой ткани для проведения медицинских опытов. В обычных условиях биологический материал получают либо от доноров, либо в виде отходов после операций. В обоих случаях процедура и порядок получения биоматериалов достаточно сложные и становятся всё сложнее и сложнее, поэтому даже такой доморощенный принтер из конструктора LEGO может быть приемлемым решением для медицинских экспериментов. Данные о разработке с детальным описанием сборки, настройки и работы принтера изложены в журнале Advanced Materials и свободно доступны по ссылке. Повторить работу может любой желающий. Фермент добывается из бактерий, способных выживать во льдах и в термальных источниках. Чувствительность фермента настолько высока, что он улавливает водород в следовых количествах. Когда-нибудь с его помощью можно будет питать гаджеты и другую электронику. Атомная структура фермента Huc. Обнаруженный исследователями с факультета биомедицинских открытий Университета Монаша в Мельбурне фермент извлекает энергию из водорода, а не из кислорода. Учёных давно занимал тот факт, что некоторые бактерии могут благополучно жить как в условиях экстремально низких, так и высоких температур. Работа с одними из таких бактерий привела к интересному результату — открытию фермента Huc. Никакие другие известные науке катализаторы или ферменты не способны реагировать с водородом в подобных концентрациях. Учёные подробно изучили механизм взаимодействия фермента с водородом и научились добывать его из бактерий в объёмах достаточных для исследований. Также выяснилось, что фермент очень устойчив и может долго храниться, например, в замороженном состоянии. Для серийного производства источников питания на основе ферментов это удобное свойство. Правда, у учёных пока нет рецепта, как массово производить нужный фермент и каким должен быть элемент питания на его основе. На этих задачах они обещают сосредоточиться на следующих этапах исследования. Добавим, статья о работе вышла в журнале Nature.
Оно отражает широко распространенное, хотя и не общепринятое мнение: считается, что применение биологических материалов и принципов в ближайшие десять — пятьдесят лет радикально изменит многие отрасли промышленности и само человеческое общество. Слайд 4 Биотехнология — это интеграция естественныхи инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов или их производные для создания и модификации продуктов или процессов различного назначения. В результате стремительного прогресса разных составных частей физико-химической биологии, возникло новое направление в науке и производстве, получившее наименование биотехнологии. Это направление сформировалось за последние два десятка лет и уже сейчас получило мощное развитие. Слайд 5 Слайд 6 Впервые термин "биотехнология" применил венгерский инженер Карл Эреки в 1917 году Отдельные элементы биотехнологии появились достаточно давно. По сути, это были попытки использовать в промышленном производстве отдельные клетки микроорганизмы и некоторые ферменты, способствующие протеканию ряда химических процессов. Слайд 7 Так, в 1814 году петербургский академик К. Кирхгоф открыл явление биологического катализа и пытался биокаталитическим путём получить сахар из доступного отечественного сырья до середины XIX века сахар получали только из сахарного тростника. В 1891 году в США японский биохимик Дз. Такамине получил первый патент на использование ферментных препаратов в промышленных целях: учёный предложил применить диастазу для осахаривания растительных отходов. Слайд 8 Первый антибиотик — пенициллин — был выделен в 1940 году. Вслед за пенициллином были открыты и другие антибиотики эта работа продолжается и поныне. С открытием антибиотиков сразу же появились новые задачи: налаживание производства лекарственных веществ, продуцируемых микроорганизмами, работа над удешевлением и повышением уровня доступности новых лекарств, получением их в очень больших количествах, необходимых медицине. Слайд 9 Синтезировать антибиотики химически было очень дорого или вообще невероятно трудно, почти невозможно недаром химический синтез тетрациклина советским учёным академиком М.
Презентация - Биотехнология-наука будущего
В данном разделе вы найдете много статей и новостей по теме «биотехнологии». Все статьи перед публикацией проверяются, а новости публикуются только на основе статей из. Фото Пипетка, уронившая синий химикат образца на молодое растение в пробирке, концепция исследования биотехнологии. Эта презентация создана для помощи ученикам и учителям в подготовке к уроку по теме Биотехнологии.