Периодом называется совокупность элементов, которая начинается щелочным металлом и заканчивается инертным газом (особый случай — первый период). В 1871 году в книге "Основы химии" Менделеевым была включена "Естественная система элементов Д. Менделеева" – первая классическая короткая форма Периодической системы химических элементов. Периодическая система имеет семь периодов. Первый период, содержащий 2 элемента, а также второй и третий, насчитывающие по 8.
Период в химии
То есть при движении слева направо металлические свойства ослабевают, а неметаллические - усиливаются. Это связано с увеличением заряда ядра и числа электронов в атоме. Поэтому для элементов в конце периода характерны неметаллические свойства. Кроме того, в больших периодах присутствуют декады d-элементов, обладающих переходными свойствами между металлами и неметаллами. Например, медь, цинк, хром. Этот закон химии был открыт Д.
Менделеевым в 1869 году и гласит: Свойства элементов, а также формы и свойства образуемых ими соединений находятся в периодической зависимости от величины заряда ядра. Именно эта периодическая повторяемость свойств элементов при увеличении зарядов ядер и легла в основу структуры таблицы. Расположив элементы по возрастанию заряда, Менделеев смог сгруппировать их в периоды и группы, что наглядно продемонстрировало схожесть их химических свойств.
Идущий за ним C — типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным.
Последующие N, O, F и Ne — неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne. Третий период периодической системы элементов Третий период Na — Ar также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность.
Si, Р, S, Cl, Ar — типичные неметаллы, но все они кроме Ar проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов малых, по его терминологии типическими. Существенно, что они принадлежат к числу наиболее распространённых в природе, а С, N и O являются наряду с H основными элементами органической материи органогенами.
Все элементы первых трёх периодов входят в подгруппы а. Четвёртый период периодической системы элементов Четвёртый период K — Kr содержит 18 элементов первый большой период, по Менделееву. После щелочного металла K и щёлочноземельного Ca s-элементы следует ряд из десяти так называемых переходных элементов Sc — Zn , или d-элементов символы даны синим цветом , которые входят в подгруппы б соответствующих групп П. Большинство переходных элементов все они металлы проявляет высшие степени окисления, равные номеру группы.
Исключение — триада Fe — Co — Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr р-элементы , принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения главным образом с F , но степень окисления VIII для него неизвестна. Пятый период периодической системы элементов Пятый период Rb — Xe построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов Y — Cd , d-элементов.
Специфические особенности периода: 1 в триаде Ru — Rh — Pd только рутений проявляет степень окисления VIII; 2 все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3 у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров. Шестой период периодической системы элементов Шестой период Cs — Rn включает 32 элемента. В нём помимо 10 d-элементов La, Hf — Hg содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu символы чёрного цвета.
Элементы от La до Lu химически весьма сходны. В короткой форме П. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П.
Особенности периода: 1 в триаде Os — Ir — Pt только осмий проявляет степень окисления VIII; 2 At имеет более выраженный по сравнению с 1 металлический характер; 3 Rn, по-видимому его химия мало изучена , должен быть наиболее реакционноспособным из инертных газов. Седьмой период периодической системы элементов Вертикальными чертами разделены периоды П. Под обозначениями подоболочек проставлены значения главного n и орбитального l квантовых чисел, характеризующие последовательно заполняющиеся подоболочки. Из вышеприведённой схемы легко определяются ёмкости последовательных периодов: 2, 8, 8, 18, 18, 32, 32… Каждый период начинается элементом, в атоме которого появляется электрон с новым значением n.
Первый — третий периоды П. Особый случай представляют собой элементы первого периода H и He. Высокая химическая активность атомарного водорода объясняется лёгкостью отщепления единственного ls-электрона, тогда как конфигурация атома гелия 1s2 является весьма прочной, что обусловливает его химическую инертность. Поскольку у элементов а-подгрупп происходит заполнение внешних электронных оболочек с n, равным номеру периода , то свойства элементов заметно меняются по мере роста Z.
Так, во втором периоде Li конфигурация 2s1 — химически активный металл, легко теряющий валентный электрон, a Be 2s2 — также металл, но менее активный. Металлический характер следующего элемента B 2s2p выражен слабо, а все последующие элементы второго периода, у которых происходит застройка 2р-подоболочки, являются уже неметаллами. Восьмиэлектронная конфигурация внешней электронной оболочки Ne 2s2p6 чрезвычайно прочна, поэтому неон — инертный газ.
Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в… … Википедия Второй период периодической системы — Ко второму периоду периодической системы относятся элементы второй строки или второго периода периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов в … Википедия Третий период периодической системы — К третьему периоду периодической системы относятся элементы третьей строки или третьего периода периодической системы химических элементов. Строение периодической таблицы основано на строках для иллюстрации повторяющихся периодических трендов … Википедия Восьмой период периодической системы — включает гипотетические химические элементы, принадлежащие к дополнительной восьмой строке или периоду периодической системы. Ни один из этих элементов пока не был… … Википедия Период периодической таблицы — Период строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки.
Однако они расположены на противоположных краях, так как принадлежат к разным группам. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке. Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах.
В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу». Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами. Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки.
Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21. Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов. Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей.
Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы. При движении вдоль строки слева направо говорят, что вы «просматриваете период». Научитесь различать металлы, металлоиды и неметаллы. Вы лучше будете понимать свойства того или иного элемента, если сможете определить, к какому типу он относится. Для удобства в большинстве таблиц металлы, металлоиды и неметаллы обозначаются разными цветами. Металлы находятся в левой, а неметаллы - в правой части таблицы. Металлоиды расположены между ними.
Часть 2 Обозначения элементов Каждый элемент обозначается одной или двумя латинскими буквами. Как правило, символ элемента приведен крупными буквами в центре соответствующей ячейки. Символ представляет собой сокращенное название элемента, которое совпадает в большинстве языков. При проведении экспериментов и работе с химическими уравнениями обычно используются символы элементов, поэтому полезно помнить их. Обычно символы элементов являются сокращением их латинского названия, хотя для некоторых, особенно недавно открытых элементов , они получены из общепринятого названия. К примеру, гелий обозначается символом He, что близко к общепринятому названию в большинстве языков. В то же время железо обозначается как Fe, что является сокращением его латинского названия.
Обратите внимание на полное название элемента, если оно приведено в таблице. Это «имя» элемента используется в обычных текстах. Например, «гелий» и «углерод» являются названиями элементов. Обычно, хотя и не всегда, полные названия элементов указываются под их химическим символом. Иногда в таблице не указываются названия элементов и приводятся лишь их химические символы. Найдите атомный номер. Обычно атомный номер элемента расположен вверху соответствующей ячейки, посередине или в углу.
Он может также находиться под символом или названием элемента. Элементы имеют атомные номера от 1 до 118. Атомный номер всегда является целым числом.
Периодический закон и Периодическая система химических элементов Д.И. Менделеева
- Понятие периода в химии: что это такое и как оно влияет на элементы
- Что означает Nn в химии (нулевой период)?
- Физические и химические свойства
- §4.6 Закономерности в Периодической таблице элементов.
ПЕРИОДИЧЕСКАЯ ТАБЛИЦА МЕНДЕЛЕЕВА
В периоде – свойства химических элементов различаются между собой, т.к. электронные конфигурации валентных электронов их атомов различны. В VIIIa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Kr (четвёртый период) приобретает способность вступать в химические соединения. Периодом в химии называется одна из основных группировок элементов в периодической системе. Закон и периодическая система химических элементов своим появлением разделили химию на два периода: до появления периодической системы Менделеева и после открытия. Элементы одного периода имеют близкие значения атомных масс, но разные физические и химические свойства, в отличие от элементов одной группы. Номер периода отображает общее число энергетических уровней химического элемента, а также число подуровней на внешнем энергетическом уровне.
Периодическая система химических элементов: как это работает
Теория электролитической диссоциации (ТЭД) — что это такое? Основные положения и примеры | это группа элементов, расположенных в одной горизонтальной строке периодической таблицы. |
Натрий Na - Таблица Менделеева - Электронный учебник K-tree | Периодом называется совокупность элементов, которая начинается щелочным металлом и заканчивается инертным газом (особый случай — первый период). |
Что такое период в периодической системе элементов? | Период — строка периодической системы химических элементов, последовательность атомов по возрастанию заряда ядра и заполнению электронами внешней электронной оболочки. |
Период периодической системы | это... Что такое Период периодической системы? | Периоды (кроме 1-го) начинаются щелочным металлом и заканчиваются инертным газом. |
Периоды в химии — что это такое и какие бывают?
Что такое период в периодической системе элементов? | В статье дается развернутое определение того, что такое период в периодической таблице химических элементов. |
Период периодической системы. Периоды развития химии Что можно определить по периоду в химии | Правильный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия. |
Свойства таблицы Менделеева
- 10 комментариев
- Период периодической системы
- Порядок реакции - Химия
- Порядок реакции
- Периодическая таблица химических элементов Д.И.Менделеева
- Что такое периодичность?
Периодические закономерности в химии: что такое период?
Это максимально возможное число электронов для первого энергетического уровня. Рис 4. В атоме лития 2 электронных слоя, т. На 1 слое в атоме лития находится 2 электрона этот слой завершен , а на 2 слое —1 электрон. В атоме бериллия на 1 электрон больше, чем в атоме лития рис. Схемы строения атомов лития и бериллия Аналогично можно изобразить схемы строения атомов остальных элементов второго периода рис. Схемы строения атомов некоторых элементов второго периода В атоме последнего элемента второго периода — неона — последний энергетический уровень является завершенным на нем 8 электронов, что соответствует максимальному значению для 2-го слоя. Неон — инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива. Американский химик Гилберт Льюис дал объяснение этому и выдвинул правило октета, в соответствии с которым устойчивым является восьмиэлектронный слой за исключением 1 слоя: т.
После неона следует элемент 3-го периода — натрий. В атоме натрия — 3 электронных слоя, на которых расположены 11 электронов рис. Na Рис. Схема строения атома натрия Натрий находится в 1 группе, его валентность в соединениях равна I, как и у лития. Это связано с тем, что на внешнем электронном слое атомов натрия и лития находится 1 электрон. Свойства элементов периодически повторяются потому, что у атомов элементов периодически повторяется число электронов на внешнем электронном слое. Строение атомов остальных элементов третьего периода можно представить по аналогии со строением атомов элементов 2-го периода. Строение электронных оболочек элементов 4 периода Четвертый период включает в себя 18 элементов, среди них есть элементы как главной А , так и побочной В подгрупп.
Особенностью строения атомов элементов побочных подгрупп является то, что у них последовательно заполняются предвнешние внутренние , а не внешние электронные слои.
В целом d- и f-элементы гораздо охотнее проявляют металлические свойства. Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам. Что такое полуметаллы?
Элементы, занимающие места на границе между металлами и неметаллами, называются полуметаллами. Полуметаллы расположены примерно вдоль диагонали, проходящей по p-элементам от левого верхнего к правому нижнему углу Периодической таблицы Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости электропроводности. Валентных электронов у них либо недостаточно для образования полноценной «октетной» ковалентной связи как в боре , либо они не удерживаются достаточно прочно как в тeллуре или полонии из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер.
Некоторые полуметаллы кремний, германий являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них — существенно меньшая хотя и не нулевая электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек.
Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее. Изменения электроотрицательности элементов. Последняя закономерность распространяется даже на такие необычные элементы, как инертные газы.
У «тяжелых» благородных газов криптона и ксенона, которые находятся в нижней части группы, удается «отобрать» электроны и получить их соединения с сильными окислителями фтором и кислородом , а для «легких» гелия, неона и аргона это осуществить не удается. В правом верхнем углу таблицы находится самый активный неметалл-окислитель фтор F , а в левом нижнем углу — самый активный металл-восстановитель цезий Cs. Элемент франций Fr должен быть еще более активным восстановителем, но его химические свойства изучать крайне трудно из-за быстрого радиоактивного распада. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.
Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее. Электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке например, у фтора по сравнению с кислородом не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода.
Уже греческий философ Аристотель размышлял о сущности и значении химических элементов более 2000 лет назад! Лишь в 1869 году русский ученый Дмитрий Иванович Менделеев сумел расположить известные на тот момент 63 элемента в определенном порядке - по возрастанию их атомного веса. Так появилась Периодическая система химических элементов или Периодическая таблица Менделеева. Структура первых вариантов Периодической таблицы Элементы располагались в 7 периодов и 8 групп Отдельно выделялись главная и побочная подгруппы В основе классификации лежало сходство химических свойств элементов Со временем в Периодическую систему были включены вновь открытые элементы, а сама она претерпела некоторые изменения.
Так, сегодня чаще используется длиннопериодный вариант таблицы с выделением лантаноидов и актиноидов.
Эти знания позволяют: Классифицировать химические элементы Определять закономерности изменения их свойств Предсказывать свойства еще не открытых элементов Понимать принципы образования химических соединений То есть концепция периодичности, реализованная через периоды и группы элементов, является фундаментальной основой всего естествознания. И по праву считается одним из важнейших научных достижений в истории человечества. Размеры периодов Как мы выяснили ранее, периоды бывают малыми и большими. Давайте теперь рассмотрим их размеры, то есть количество элементов в периодах: 1 период - 2 элемента H и He 2 период - 8 элементов от Li до Ne 3 период - 8 элементов от Na до Ar 4 период - 18 элементов от K до Kr 5 период - 18 элементов от Rb до Xe 6 период - 32 элемента от Cs до Rn 7 период - 32 элемента заполнен частично Как видно, с увеличением номера периода растет и количество входящих в него элементов. Это связано с добавлением новых электронных подуровней и орбиталей. Незавершенность 7 периода Седьмой, последний период в периодической таблице пока не заполнен полностью и содержит только 14 элементов. Это связано со сложностью получения сверхтяжелых элементов.
Ожидается, что в полном виде 7 период будет выглядеть так же, как и 6 период, то есть включать 32 элемента. Тенденции развития периодической системы Несмотря на кажущуюся завершенность, периодическая таблица продолжает развиваться по мере открытия новых сверхтяжелых элементов.
ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов
В VIIIa-подгруппе ослабляется устойчивость конфигурации ns2np6, вследствие чего уже Kr (четвёртый период) приобретает способность вступать в химические соединения. Периодический закон – один из важнейших законов химии, был сформулирован Дмитрием Ивановичем Менделеевым в 1869 году. Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. В химии термин период относится к горизонтальному ряду таблицы Менделеева. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.
Что такое период в периодической системе элементов?
Теория электролитической диссоциации | Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. |
Что такое период в химии? — Школьные | Получите определение периода в химии и узнайте, какое значение имеют периоды в периодической таблице элементов. |
Натрий Na - Таблица Менделеева - Электронный учебник K-tree | Найди верный ответ на вопрос«Что означает Nn в химии (нулевой период) » по предмету Химия, а если ответа нет или никто не дал верного ответа, то воспользуйся поиском и попробуй найти ответ среди похожих вопросов. |
Период (химия) | ряд горизонтально расположенных химических элементов. 1, 2 и 3 периоды называются малыми, они состоят из одного ряда элементов. |
Период в химии: что это такое, периодический закон и таблица | В 1871 году в книге "Основы химии" Менделеевым была включена "Естественная система элементов Д. Менделеева" – первая классическая короткая форма Периодической системы химических элементов. |
Периоды в химии — что это такое и какие бывают?
Опубликовано: 11-01-2023 Периодическая система химических элементов, или таблица Менделеева Создание периодической системы химических элементов является результатом многовекового опыта и наблюдений исследователей со всего мира. Еще греческий философ Аристотель размышлял о сущности и значении химических элементов более 2000 лет назад! В древности были известны различные элементы, в том числе углерод или сера. В последующие века знания о них постоянно расширялись. Однако только в 1869 году Дмитрий Иванович Менделеев, русский химик, решил систематизировать имеющуюся информацию и разработал периодическую систему химических элементов. Таблица Менделеева — так называлась система — быстро стала ключевым ориентиром для исследователей и химиков. Менделеев первым в истории открыл закон периодичности элементов.
У этих элементов заполняется электронами 1s-подоболочка. У элементов второго и третьего периода происходит последовательное заполнение s- и р-подоболочек.
Для элементов малых периодов характерно достаточно быстрое увеличение электроотрицательности с увеличением зарядов ядер, ослабление металлических свойств и усиление неметаллических. Четвёртый и пятый периоды содержат декады переходных d-элементов от скандия до цинка и от иттрия до кадмия , у которых после заполнения электронами внешней s-подоболочки заполняется, согласно правилу Клечковского , d-подоболочка предыдущего энергетического уровня. В шестом и седьмом периоде происходит насыщение 4f- и 5f-подоболочек, вследствие чего они содержат ещё на 14 элементов больше по сравнению с 4-м и 5-м периодами лантаноиды в шестом и актиноиды в седьмом периоде.
История Современная формулировка периодического закона заключается в следующем: свойства химических элементов, а также формы и свойства соединений элементов находятся в периодической зависимости от заряда ядра атомов элемента. К моменту открытия закона было известно 63 химических элемента. Однако атомные массы многих из этих элементов были определены ошибочно. Сам Д. И Менделеев в 1869 году сформулировал свой закон как периодическую зависимость от величины атомных весов элементов, так как в XIX веке наука еще не имела сведений о строении атома. Однако гениальное предвидение ученого позволило ему более глубоко, чем все его современники, понять закономерности, которые обуславливают периодичность свойств элементов и веществ. Он учитывал не только возрастание атомной массы, но и уже известные свойства веществ и элементов и, взяв за основу идею периодичности, смог совершенно точно предсказать существование и свойства неизвестных на тот момент науке элементов и веществ, исправить атомные массы ряда элементов, правильно расположить элементы в системе, оставив пустые места и сделав перестановки. Существует миф, что периодическая система приснилась Менделееву. Однако это только красивая история, которая не является доказанным фактом.
Знание периодов позволяет химикам и ученым лучше понять устройство элементов и их свойства. Они также играют важную роль в предсказании свойств новых элементов и в объяснении химических реакций. Основные понятия периода В химии периодом называется горизонтальный ряд элементов в периодической системе. Каждый период представляет собой группу элементов, у которых количество электронных оболочек равно номеру периода.
Периодическая система химических элементов: как это работает
Это предположение само по себе способствовало дальнейшей активизации количественных исследований. Ещё одним результатом создания флогистонной теории явилось активное изучение химиками газов вообще и газообразных продуктов горения в частности. К середине 18 века одним из важнейших разделов химии стала пневматическая химия, основоположники которой Джозеф Блэк, Даниил Резерфорд, Генри Кавендиш, Джозеф Пристли и Карл Вильгельм Шееле явились создателями целой системы количественных методов в химии. Во второй половине 18 века теория флогистона завоевала среди химиков практически всеобщее признание. На основе флогистонных представлений сформировалась номенклатура веществ; предпринимались попытки связать такие свойства вещества, как цвет, прозрачность, щёлочность и т. Французский химик Пьер Жозеф Макёр, автор весьма популярного учебника "Элементы химии" и "Химического словаря", писал в 1778 г.
Отличаясь от систем, порождённых воображением без согласия с природой и разрушаемых опытом, теория Шталя — надёжнейший путеводитель в химических исследованиях. Многочисленные опыты… не только далеки от того, чтобы её опровергнуть, но, наоборот, становятся доказательствами в её пользу". По иронии судьбы, учебник и словарь Макёра появились в то время, когда век флогистонной теории подошёл к концу. Нефлогистонные представления о горении и дыхании зародились даже несколько ранее флогистонной теории. Жан Рей, которому наука обязана постулатом "все тела тяжелы", ещё в 1630 г.
В 1665 г. Роберт Гук в работе "Микрография" также предположил наличие в воздухе особого вещества, подобного веществу, содержащемуся в связанном состоянии в селитре. Дальнейшее развитие эти взгляды получили в книге "О селитре и воздушном спирте селитры", которую написал в 1669 г. Открытие кислорода было сделано независимо друг от друга почти одновременно несколькими учёными. Карл Вильгельм Шееле получил кислород в 1771 г.
По мнению Шееле, "огненный воздух" представлял собой "кислую тонкую материю, соединённую с флогистоном". Джозеф Пристли выделил кислород в 1774 г. Пристли считал, что полученный им газ представляет собой воздух, абсолютно лишённый флогистона, вследствие чего в этом "дефлогистированном воздухе" горение идёт лучше, чем в обычном. Большое значение для создания кислородной теории горения имели, кроме того, открытие водорода Кавендишем в 1766 г. Значение сделанного Шееле и Пристли открытия смог правильно оценить французский химик Антуан Лоран Лавуазье.
В 1774 г. Лавуазье опубликовал трактат "Небольшие работы по физике и химии", где высказал предположение о том, что при горении происходит присоединение к телам части атмосферного воздуха. После того, как Пристли в 1774 г. Наконец, в 1777 г. Лавуазье сформулировал основные положения кислородной теории горения: 1.
Тела горят только в "чистом воздухе". Металлы при прокаливании превращаются в "земли". Сера или фосфор, соединяясь с "чистым воздухом", превращаются в кислоты. Новая кислородная теория горения термин кислород — oxygenium — появился в 1877 г. Она более проста, чем флогистонная, не содержала в себе "противоестественных" предположений о наличии у тел отрицательной массы, и, главное, не основывалась на существовании субстанций, не выделенных экспериментально.
Вследствие этого кислородная теория горения довольно быстро получила широкое признание среди естествоиспытателей хотя полемика между Лавуазье и флогистиками длилась ещё много лет. В конце 18 века и начале 19 в философии преобладает течение, называемое Сциентизм от science , которое проявляется в восхищении наукой, культе науки и человеческого знания. Человек гордится своим знанием и разумностью, свободой, уверен в своей способности решить все возникающие задачи. Главными центрами научной деятельности становятся Академии. В это время и в химической науке происходит революция.
Отказ от теории флогистона потребовал пересмотра всех основных принципов и понятий химии, изменения терминологии и номенклатуры веществ. Поэтому с создания кислородной теории начался переломный этап в развитии химии, названный "химической революцией". В 1785-1787 гг. Логика новой номенклатуры предполагала построение названия вещества по названиям тех элементов, из которых вещество состоит. Основные принципы этой номенклатуры используются до настоящего времени.
Если таблица Менделеева кажется вам сложной для понимания, вы не одиноки! Хотя бывает непросто понять ее принципы, умение работать с ней поможет при изучении естественных наук. Для начала изучите структуру таблицы и то, какую информацию можно узнать из нее о каждом химическом элементе. Затем можно приступить к изучению свойств каждого элемента. И наконец, с помощью таблицы Менделеева можно определить число нейтронов в атоме того или иного химического элемента.
Шаги Часть 1 Структура таблицы Таблица Менделеева, или периодическая система химических элементов, начинается в левом верхнем углу и заканчивается в конце последней строки таблицы в нижнем правом углу. Элементы в таблице расположены слева направо в порядке возрастания их атомного номера. Атомный номер показывает, сколько протонов содержится в одном атоме. Кроме того, с увеличением атомного номера возрастает и атомная масса. Таким образом, по расположению того или иного элемента в таблице Менделеева можно определить его атомную массу.
Как видно, каждый следующий элемент содержит на один протон больше, чем предшествующий ему элемент. Это очевидно, если посмотреть на атомные номера. Атомные номера возрастают на один при движении слева направо. Поскольку элементы расположены по группам, некоторые ячейки таблицы остаются пустыми. Например, первая строка таблицы содержит водород, который имеет атомный номер 1, и гелий с атомным номером 2.
Однако они расположены на противоположных краях, так как принадлежат к разным группам. Узнайте о группах, которые включают в себя элементы со схожими физическими и химическими свойствами. Элементы каждой группы располагаются в соответствующей вертикальной колонке. Как правило, они обозначаются одним цветом, что помогает определить элементы со схожими физическими и химическими свойствами и предсказать их поведение. Все элементы той или иной группы имеют одинаковое число электронов на внешней оболочке.
Водород можно отнести как к группе щелочных металлов, так и к группе галогенов. В некоторых таблицах его указывают в обеих группах. В большинстве случаев группы пронумерованы от 1 до 18, и номера ставятся вверху или внизу таблицы. Номера могут быть указаны римскими например, IA или арабскими например,1A или 1 цифрами. При движении вдоль колонки сверху вниз говорят, что вы «просматриваете группу».
Узнайте, почему в таблице присутствуют пустые ячейки. Элементы упорядочены не только в соответствии с их атомным номером, но и по группам элементы одной группы обладают схожими физическими и химическими свойствами. Благодаря этому можно легче понять, как ведет себя тот или иной элемент. Однако с ростом атомного номера не всегда находятся элементы, которые попадают в соответствующую группу, поэтому в таблице встречаются пустые ячейки. Например, первые 3 строки имеют пустые ячейки, поскольку переходные металлы встречаются лишь с атомного номера 21.
Элементы с атомными номерами с 57 по 102 относятся к редкоземельным элементам, и обычно их выносят в отдельную подгруппу в нижнем правом углу таблицы. Каждая строка таблицы представляет собой период. Все элементы одного периода имеют одинаковое число атомных орбиталей, на которых расположены электроны в атомах. Количество орбиталей соответствует номеру периода. Таблица содержит 7 строк, то есть 7 периодов.
Например, атомы элементов первого периода имеют одну орбиталь, а атомы элементов седьмого периода - 7 орбиталей. Как правило, периоды обозначаются цифрами от 1 до 7 слева таблицы.
Оригинал таблицы Д. Менделеева 1. Период — химические элементы, расположенные в строчку 1 — 7 Малые 1, 2, 3 — состоят из одного ряда элементов Большие 4, 5, 6, 7 — состоят из двух рядов — чётного и нечётного Периоды могут состоять из 2 первый , 8 второй и третий , 18 четвертый и пятый или 32 шестой элементов. Последний, седьмой период незавершен.
Все периоды кроме первого начинаются щелочным металлом, а заканчиваются благородным газом. Во всех периодах с увеличением относительных атомных масс элементов наблюдается усиление неметаллических и ослабление металлических свойств. В больших периодах переход свойств от активного металла к благородному газу происходит более медленно через 18 и 32 элемента , чем в малых периодах через 8 элементов. Кроме того, в малых периодах слева направо валентность в соединениях с кислородом возрастает от 1 до 7 например, от Na до Cl.
В короткопериодном варианте периодической системы, группы подразделяются на подгруппы — главные или подгруппы A , начинающиеся с элементов первого и второго периодов, и побочные подгруппы В , содержащие d-элементы.
Подгруппы также имеют названия по элементу с наименьшим зарядом ядра как правило, по элементу второго периода для главных подгрупп и элементу четвёртого периода для побочных подгрупп. Элементы одной подгруппы обладают сходными химическими свойствами. С возрастанием заряда ядра у элементов одной группы из-за увеличения числа электронных оболочек увеличиваются атомные радиусы, вследствие чего происходит снижение электроотрицательности, усиление металлических и ослабление неметаллических свойств элементов, усиление восстановительных и ослабление окислительных свойств образуемых ими веществ. Остальные ответы.
Для элементов главных групп количество валентных электронов всегда равно номеру группы.
Например, у атома хлора, расположенного в третьем периоде в главной подгруппе VII группы, количество валентных электронов равно семи: Элементы побочных групп имеют в качестве валентных электроны внешнего уровня или нередко электроны d-подуровня предыдущего уровня. Так, например, хром, находящийся в побочной подгруппе VI группы, имеет шесть валентных электронов — 1 электрон на 4s-подуровне и 5 электронов на 3d-подуровне: Общее количество электронов в атоме химического элемента равно его порядковому номеру. Другими словами, общее количество электронов в атоме с номером элемента возрастает. Тем не менее, количество валентных электронов в атоме изменяется не монотонно, а периодически — от 1-го у атомов щелочных металлов до 8-ми для благородных газов. Иными словами, причина периодического изменения каких-либо свойств химических элементов связана с периодическими изменениями в строении электронных оболочек.
При движении вниз по подгруппе атомные радиусы химических элементов возрастают ввиду увеличения количества электронных слоев. Тем не менее, при движении по одному ряду слева направо, то есть с ростом количества электронов для элементов, расположенных в одном ряду, происходит уменьшение радиуса атома. Данный эффект объясняется тем, что при последовательном заполнении одной электронной оболочки атома ее заряд, как и заряд ядра, увеличивается, что приводит к усилению взаимного притяжения электронов, в результате чего электронная оболочка «поджимается» к ядру: Вместе с тем, внутри одного периода с ростом количества электронов происходит уменьшение радиуса атома, а также возрастает энергия связи каждого электрона внешнего уровня с ядром. Это означает, что, например, ядро атома хлора будет удерживать электроны своего внешнего уровня намного сильнее, чем ядро атома натрия единственный электрон внешнего электронного уровня. Более того, при столкновении атома натрия и хлора хлор «отберет» единственный электрон у атома натрия, то есть электронная оболочка хлора станет такой же, как у благородного газа аргона, а у натрия — такой же, как у благородного газа неона.
Способность атома какого-либо химического элемента оттягивать на себя «чужие» электроны при столкновении с атомами другого химического элемента называется электроотрицательностью. Более подробно про электроотрицательность будет рассказано в главе, посвященной химическим связям, но нужно отметить, что, электроотрицательность, как и многие другие параметры химических элементов, также подчиняется периодическому закону Д. Внутри одной подгруппы химических элементов электроотрицательность убывает, а при движении по ряду одного периода вправо электроотрицательность возрастает.
ТАБЛИЦА МЕНДЕЛЕЕВА - периодическая система химических элементов
Что означает Nn в химии (нулевой период). Следует отметить, что период полураспада первого порядка реакции постоянна и не зависит от исходной концентрации реагента. Что такое периодическая таблица элементов Менделеева и как ей пользоваться? Основные группы периодической системы, периоды и атомная масса химических элементов. Металлы и неметаллы в ПСХЭ — их структура в системе. Неон – инертный газ, который не вступает в химические реакции, следовательно, его электронная оболочка очень устойчива. Номер периода отображает общее число энергетических уровней химического элемента, а также число подуровней на внешнем энергетическом уровне.
Определение
- Определение и характеристики периода в химии
- Таблица Менделеева для чайников – HIMI4KA
- определить [Первый ,второй,Нуль] Порядок реакции, Примеры
- Периодическая таблица химических элементов Д.И.Менделеева
- Теория электролитической диссоциации (ТЭД) — что это такое? Основные положения и примеры
- Период в химии: определение и примеры
Период в химии: что это такое, периодический закон и таблица
С увеличением номера периода количество электронных слоев растет, а значит, увеличивается и радиус атома. Но так как к фтору увеличивается электроотрицательность, то электроны все ближе и ближе «прижимаются» к ядру атома: атомный радиус уменьшается. Проще всего это представить в виде снеговика, у которого самая «маленькая» голова и самое «большое» туловище. Именно так увеличивается радиус ядра атома по группе. Ориентир — фтор Перейдем к рассмотрению свойств, которые растут при движении по таблице слева направо и снизу вверх то есть при движении к фтору — F. Электроотрицательность Это способность атомов оттягивать на себя электроны других атомов в химической связи. Электроотрицательность увеличивается при движении в периодической системе слева направо и снизу вверх. Самым электроотрицательным элементом является фтор, это нужно запомнить!
Энергия ионизации Это энергия, необходимая для отрыва одного электрона от нейтрального атома. В группах она увеличивается снизу вверх, в периодах — слева направо. Сродство к электрону Это энергия, выделяющаяся при присоединении одного электрона к нейтральному атому. Она изменяется аналогично изменению энергии ионизации. Остальные закономерности Некоторые свойства атомов изменяются по правилам, отличным от вышеупомянутых. Разберем эти свойства. Кислотные и основные свойства водородных соединений В группе кислотные свойства зависят от радиуса атома — чем больше атом, с которым связан водород, тем легче последнему отщепляться от него, поэтому в группе кислотные свойства усиливаются сверху вниз.
Основные свойства противоположны кислотным, поэтому увеличение основных свойств в группе будет происходить снизу вверх. Разберемся на примере. Атому с наименьшим радиусом, то есть фтору, легче всего притянуть водород и сложнее отдать, поэтому его водородные свойства будут минимальными. С дальнейшим увеличением радиуса атома, соответственно, и кислотные свойства возрастают, иодоводород HI будет иметь максимальные кислотные свойства. В периоде кислотные свойства зависят от неметаллических свойств — они увеличиваются слева направо, основные — наоборот, то есть справа налево. Степень окисления — это условный заряд атома элемента, вычисленный на основе предположения, что все связи в данном соединении являются ионными показывает, сколько электронов атом «притянул» или, наоборот, «отдал» при образовании химической связи. Низшая СО определяется, как разность номера группы и восьми: высшая с.
Трифонов Д. Как были открыты химические элементы: пособие для учащихся. Теоретический материал для самостоятельного изучения Научной основой развития естественных наук в XIX веке становится периодический закон и периодическая система элементов Д. Менделеева, которые являются и на сегодняшний день основой познания строения и свойств простых и сложных веществ. Предшественники Д. Менделеева — французский химик Шанкартуа, немецкий химик Дёберейнер, английский ученый Ньюлендс - осуществляли попытки классифицировать элементы, но в основу их классификации были положены свойства веществ осуществлялся подбор элементов по свойствам. Ближе всех к решению задачи систематизации подошёл в 1864г. Изучение свойств элементов, равно как свойств образуемых ими соединений, привело к накоплению богатого фактического материала. В отличии от своих предшественников, Д. Менделеев находит общее среди всех элементов.
И основой его классификации становится атомная масса. Расположив все известные к тому времени химические элементы в порядке возрастания их относительных атомных масс, он увидел периодичность повторения свойств элементов и их соединений. Так Д. Менделеев в марте 1869г. Несмотря на важность сделанного Д. Менделеевым открытия, многие противоречия все же не были разрешены. И было сделано ряд исключений для расположения элементов по атомным массам. Так, была непонятна причина периодичности изменения свойств элементов. Ответы на этот и другие вопросы были найдены лишь после раскрытия внутренней структуры атома. Учение о строении атома подтвердило глубинный смысл периодического закона и скорректировало его формулировку.
Свое выражение периодический закон нашел в построенной Д. Менделеевым периодической системе.
Марганец необходим для здоровья человека, но переизбыток его может нанести вред здоровью. В организме человека он может храниться в митохондриях, костях и органах таких, как печень, почки и поджелудочная железа. Это имеет решающее значение, поскольку вещество вмешивается в метаболизм аминокислот, липидов и углеводов. Он легко разъедается влажным воздухом. Он реагирует с водой при высоких температурах и с кислотами, выделяющими водород.
При повышенных температурах он способен реагировать практически со всеми неметаллическими элементами: такими, как сера, азот, углерод, кремний, фосфор и бор. Многие типы ферментов содержат марганец. Например, фермент, ответственный за превращение молекул воды в кислород во время фотосинтеза, содержит 4 атома марганца. В некоторых почвах низкое содержание марганца, поэтому его иногда добавляют в удобрения, а также дают в качестве пищевой добавки пастбищным животным. В среднем в организме человека содержится около 12 мг марганца.
Периоды представляют собой основную организационную структуру химического элемента, позволяющую классифицировать и систематизировать их свойства и связи. Каждый период имеет свою характеристику: в первом периоде находятся только две элемента - водород и гелий, во втором - восемь элементов, в третьем - восемнадцать, и так далее.
Периоды имеют отношение ко многим основным свойствам элементов, включая их электронную конфигурацию, радиусы атомов и их активность. Кроме того, периоды играют важную роль в предсказании и понимании химических реакций.