На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Фото подборка встречающихся в природе или искусственно созданных фракталов. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств.
Открытие первой фрактальной молекулы в природе — математическое чудо
Другими словами, если вы увеличите или уменьшите масштаб, везде будет видна одна и та же. Эти самоподобные циклические математические конструкции, обладающие фрактальной размерностью, встречаются довольно часто, особенно среди растений. Самый известный пример — папоротник. Листья папоротников являются типичным примером самоповторяющегося ряда. Кстати, бесконечная повторяемость невозможна в природе, поэтому все фрактальные закономерности — это только аппроксимации приближения. Например, листья папоротников и некоторых зонтичных растений например, тмин являются самоподобными до второго, третьего или четвертого уровня. Схожие с папоротником паттерны встречаются также у многих растений брокколи, капуста сорта Романеско, кроны деревьев и листья растений, плод ананаса , животных мшанки, кораллы, гидроидные, морские звезды, морские ежи. Также фрактальные паттерны имеют место в структуре разветвления кровеносных сосудов и бронхов животных и человека.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке в результате изучения непрерывных недифференцируемых функций например, функция Больцано, функция Вейерштрасса, множество Кантора. Термин «фрактал» введен Бенуа Мандельбротом в 1975 году и получил широкую известность с выходом в 1977 году его книги «Фрактальная геометрия природы». Множество Мандельброта — классический образец фрактала Особую популярность фракталы обрели с развитием компьютерных технологий, позволивших эффектно визуализировать эти структуры. Многоугольники — инженерный гений При достаточной наблюдательности в живой природе легко обнаружить строгую геометрию. В особом почете оказываются гексагоны — правильные шестиугольники. Например, соты, в которых пчелы хранят золотистый нектар, — это чудеса инженерного искусства, набор ячеек в форме призмы с правильным шестиугольником в основании. Толщина восковых стенок строго определена, ячейки немного отклоняются от горизонтали, чтобы вязкий мед не вытекал, и соты находятся в равновесии с учетом влияния магнитного поля Земли.
А ведь эту конструкцию без чертежей и прогнозов строят множество пчел, которые одновременно работают и как-то координируют свои попытки сделать соты одинаковыми. Если вы подуете на пузырьки на поверхности воды, чтобы согнать их вместе, то они приобретут форму шестиугольников — или, по крайней мере, приблизятся к ней.
Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области. В результате процесса получается древовидная структура, обладающая фрактальными свойствами. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен как описанный выше зачастую приводит к фрактальным структурам. Если же мы говорим не просто о природе, а о живой природе - то здесь также начинают участвовать эволюционные механизмы. Дело в том, что фрактальные структуры во многих случаях показывают высокую эффективность - очень эффективно организовать кровеносные сосуды в виде фрактальной сетки, например.
Ну и добавлю еще одно соображение.
Женская психология и саморазвитие 5 подписчиков Подписаться Фильм посвящен забавным математическим объектам - фракталам. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике.
Этот парадокс называется эффектом Ричардсона Richardson effect. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла.
Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. А экономисты используют фракталы для описания кривых колебания курсов валют это свойство было открыто Мандельбротом более 30 лет назад.
Войти на сайт
Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского. Немного о фракталах и множестве Мандельброта Антон Ступин Что породило само понятие фрактал? Посмотрите потрясающие примеры фракталов в природе. Посмотрите потрясающие примеры фракталов в природе. Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения.
Фрактальные фигуры — новый раздел математики
- Фракталы в Природе
- Исследовательская работа: «Фракталы в нашей жизни». | Образовательная социальная сеть
- Прибыльная торговля с помощью фрактальности существует?
- Фрактальные закономерности в природе | Северные инновации и управление
- Содержание
Исследовательская работа: «Фракталы в нашей жизни».
Фракталы в природе презентация - 97 фото | Фракталы — это математические модели, которые появляются снова и снова, повторяясь в разных размерах. |
Обнаружен первый в природе молекулярный фрактал: Наука: Наука и техника: | Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. |
Открытие первой фрактальной молекулы в природе — математическое чудо
Красота фракталов состоит в том, что их "бесконечная" сложность сформирована относительно простыми линиями. 97 фото | Фото и картинки - сборники. Фото подборка встречающихся в природе или искусственно созданных фракталов. Посмотрите больше идей на темы «фракталы, природа, эрнст геккель». Когда вы думаете о фракталах, вам могут прийти на ум плакаты и футболки Grateful Dead, пульсирующие всеми цветами радуги и вызывающие завихрение сходства. Несмотря на то, что фрактальные фигуры были замечены в природе и сконструированы математиками уже довольно давно, впервые научно обосновать существование фракталов смог Бенуа Мандельброт лишь в 1970-х годах.
Физики нашли фракталы в лазерах
Просмотрите доску «Фракталы в природе» пользователя Александрина в Pinterest. О природе ков Виталий7 (Высоцкий В С.). Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе.
Фракталы в природе.
Фракталы в Природе - 24 photos. Елена Лаврина's photos. | По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. |
Молния фрактал - 59 фото | Фракталы кажутся нам слишком совершенными, чтобы существовать в реальности, но они не так уж редко встречаются в природе, в частности реализуя себя в виде растений. |
Открытие первой фрактальной молекулы в природе - математическое чудо • AB-NEWS | ПРОСТО ФРАКТАЛ. Фракталы в природе. |
Обнаружен первый в природе молекулярный фрактал: Наука: Наука и техника: | Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. |
Обнаружен первый в природе молекулярный фрактал: Наука: Наука и техника: | чудо природы, с которым я предлагаю вам познакомиться. |
Открытие первой фрактальной молекулы в природе — математическое чудо
Смотрите 27 онлайн по теме фрактал в природе. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. Таких процессов в природе огромное количество, важно просто понимать, что даже довольно простой по своей сути феномен (как описанный выше) зачастую приводит к фрактальным структурам. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала.
Фракталы в природе
То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба. Фракталы встречаются всюду: в продуктах питания, в бактериях,в растениях, в животных, в горах, в небе и в воде.
Фракталы прячутся в простых вещах: цветной капусте, суккулентах, кактусах Их изучение развивает множество сфер: от астрономической, социальной до IT и точных наук Фракталы в IT-сфере и литературе — что общего? Фракталы и их геометрия незаметно перебралась в технологический мир. Из природы он в передовые 3D иллюстрации, компьютерную графику, децентрализованные сети. К примеру, компания Netsukuku использует принцип фрактального сжатия информации для IP-адресов.
Каждый новый узел состыковывается с общей сети без использования центрального сервера. Удобно же! Ты удивишься, но молния, ионосфера, северное сияние и пламя — тоже фракталы Легче всего такие фигуры описать художникам Фракталы используются также в цифровой области. Теперь не нужно отдельно рисовать детали графических объектов. Фракталы и их алгоритмы задают первоначальные параметры, а остальную работу делает компьютерная система. Айтишники безустанно креативят с двух- и трехмерными геометрическими фигурами для создания объемных текстур.
Есть что-то магическое в любой фрактальной форме Одни их замечают, другие проходят мимо В настоящее время математические фракталы активно используются в нанотехнологиях, у трейдеров, экономистов. Они помогают анализировать курс фондовых бирж, торгового рынка. Область нефтехимии применяет фигуры фракталы для создания пористых материалов, а биологии — для развития популяций, генной инженерии. Люди зашли еще дальше, «скрестив» фрактальную геометрию с текстуальной, структурной и семантической природой. Смотри, как каждый фрагмент точно дублируется в уменьшающемся масштабе! Фракталы в природе: ботаника что-то скрывает Фракталы и их геометрию всегда оберегала природа со своей богатой флорой и фауной.
Удивительные и совершенные формы, фигуры создает природа до сих пор. Растения со свойствами подобия можно заметить в кронах деревьев, листьях папоротника, цветной капусте. А еще листья располагаются по спирали, создавая совершенный фрактал у алоэ Polyphylla, устремленных ввысь стебельков крассулы или «Храм будды». Подобные флоральные мотивы просто не могла обойти стороной восточная мода, стиль бохо и этно в коллекциях одежды на 2022 год. Природа богата на фрактальные «сокровища» Завораживающе на человека действуют усыпанный рубиновыми капельками росолист Lusitanicum, подсолнечник, георгин, листья амазонской кувшинки. Простые фракталы в природе замечай в краснокочанной капусте, когда готовишь вегетарианские салаты, ищешь суккуленты для свадебного букета.
Простые фракталы природы — это и элементы рельефа, и поверхность водоемов.
Алгебраические фракталы Эти фракталы могут быть описаны с помощью алгебраических уравнений или рекурсивных формул. Эти уравнения и формулы определяют правила, по которым точки или фигуры повторяются и изменяются на каждой итерации. Алгебраические фракталы могут иметь сложную и красивую геометрию, которая может быть воспроизведена и визуализирована с помощью компьютерной графики. Они могут быть двухмерными или трехмерными, и их формы могут быть симметричными или случайными. Алгебраические фракталы имеют множество применений в различных областях, включая компьютерную графику, науку, искусство и дизайн. Они могут быть использованы для создания красивых и сложных изображений, моделирования природных явлений, анализа данных и многого другого.
Почему мнимой? Комплексные числа можно складывать, вычитать, умножать, делить, возводить в степень и извлекать корень, нельзя только их сравнивать. Комплексное число можно изобразить как точку на плоскости, у которой координата х - это действительная часть a, а y - это коэффициент при мнимой части b. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка определенного цвета. Результатом оказывается странная фигура, в которой прямые линии переходят в кривые, появляются, хотя и не без деформаций, эффекты самоподобия на различных масштабных уровнях. При этом вся картина в целом является непредсказуемой и очень хаотичной.
Неожиданностью для математиков стала возможность с помощью примитивных алгоритмов порождать очень сложные нетривиальные структуры. Вот несколько примеров алгебраических фракталов: Множество Мандельброта — это один из самых известных алгебраических фракталов. Он создается путем итеративного применения простой математической формулы к каждой точке на комплексной плоскости. Результатом является изображение, которое состоит из бесконечного количества деталей и самоподобных структур. Фрактал Жюлиа — это еще один пример алгебраического фрактала, который создается с помощью итеративного применения формулы к каждой точке на комплексной плоскости. Он имеет разнообразные формы и структуры, которые зависят от выбранной формулы и параметров. Бассейны Ньютона также являются примерами алгебраических фракталов.
Области с фрактальными границами появляются при приближенном нахождении корней нелинейного уравнения алгоритмом Ньютона на комплексной плоскости для функции действительной переменной метод Ньютона называют методом касательных, который обобщается для комплексной плоскости. Алгебраические фракталы обладают приближенной самоподобностью. Фактически, если вы увеличите маленькую область любого сложного фрактала, а затем проделаете то же самое с маленьким участком этой области, то эти два увеличения будут значительно отличаться друг от друга. Два изображения будут очень похожи в деталях, но они не будут полностью идентичными. Фракталы, при построении которых в итеративной системе случайным образом изменяются какие-либо параметры, называются стохастическими.
Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком.
Фракталы вокруг нас
Carpenter в 1967 году начал работать в компании Boeing Computer Services, которая была одним из подразделений известной корпорации, занимающейся разработкой новых самолетов. В 1977 году он создавал презентации с прототипами летающих моделей. В обязанности Лорена входила разработка изображений проектируемых самолетов. Он должен был создавать картинки новых моделей, показывая будущие самолеты с разных сторон. В какой-то момент в голову будущему основателю Pixar Animation Studios пришла в голову креативная идея использовать в качестве фона изображение гор. Сегодня такую задачу может решить любой школьник, но в конце семидесятых годов прошлого века компьютеры не могли справиться со столь сложными вычислениями — графических редакторов не было, не говоря уже о приложениях для трехмерной графики. В 1978 году Лорен случайно увидел в магазине книгу Бенуа Мандельброта «Фракталы: форма, случайность и размерность». В этой книге его внимание привлекло то, что Бенуа приводил массу примеров фрактальных форм в реальной жизни и доказывал, что их можно описать математическим выражением. Такая аналогия была выбрана математиком не случайно.
Дело в том, что как только он обнародовал свои исследования, ему пришлось столкнуться с целым шквалом критики. Главное, в чем упрекали его коллеги, — бесполезность разрабатываемой теории. Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике. Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере.
Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж. Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера. Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений. Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм. Одна из первых визуализаций 3D по фрактальному алгоритму Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году.
Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm. Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» The Wrath of Khan Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности. В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро. Редко кто задается вопросами «Откуда это взялось?
Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью. Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы. Фрактальные рисунки завораживают своими узорами.
Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее. Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн Nathan Cohen после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью. Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах.
Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох Helge von Koch придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом.
Оказывается, что внешне он имеет те же фрактальные признаки, что и атмосферная облачность или корневая система крапивы. Выраженной фрактальной структурой обладают дендриты — отростки от нейронов. При увеличении видно, что каждый из них имеет свои отростки, от которых, в свою очередь, отходят еще более мелкие… Космические фотографии земных ландшафтов часто дают отличные примеры фракталов. Горные и водные системы, русла рек, побережья — практически всё, что особенно хорошо видно на космических снимках, обладает фрактальной структурой. Папоротники — пример природных фракталов, которые очень похожи на компьютерные фракталы. Папоротники — одни из самых эволюционно древних растений, наряду с различными мхами и прочими низшими растениями.
Возможно, в этом есть какая-то закономерность: чем древнее биологическая форма, тем более ясно в ней прослеживается фрактал, что говорит о простых правилах, на которых строится форма организма.
Самые большие умы на планете заняты этой задачей. Грубо говоря, ученые ищут закономерность там, где ее быть не должно.
Тем не менее, даже в хаосе можно найти связь между событиями. И эта связь — фрактал. Сегодня вряд ли можно найти человека, занимающегося или интересующегося наукой, который не слышал бы о фракталах.
Глядя на них трудно поверить, что это не творения природы и за ними скрываются математические формулы. Фракталы поразительно напоминают объекты живой и неживой природы вокруг нас. Словом они "как настоящие".
Скорее всего, именно поэтому, однажды увидев, человек уже не может их забыть. Любопытную мысль приводит в своей книге "Фрактальная геометрия природы" американский математик Бенуа Мандельброт: "Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря.
Облака — это не сферы, линии берега — это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно.
Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные — задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать". Все, что существует в реальном мире, является фракталом — это и есть наша гипотеза, а цель данной работы показать, что математика не бездушный предмет, она может выражать духовный мир человека в отдельности и в обществе в целом.
Объектом исследования выступают фракталы в математике и в реальном мире. В процессе работы нами были выделены следующие задачи исследования: Проанализировать и проработать литературу по теме исследования. Рассмотреть и изучить различные виды фракталов.
Дать представление о фракталах, встречающихся в нашей жизни. Актуальность заявленной темы определяется, в первую очередь, предметом исследования, в качестве которого выступает фрактальная геометрия. Структура исследовательской работы определялась логикой исследования и поставленными задачами.
Она включает в себя введение, две главы, заключение, список использованной литературы, приложения.
Позиции теории естественного отбора подрывает и возникшая в последние десятилетия эволюционная биология развития evo-devo. Получаемые здесь результаты позволяют все увереннее утверждать, что органическая эволюция осуществляется посредством макромутаций, для появления которых оказывается достаточно изменений в нескольких и даже одном-двух генах. В научной литературе обсуждаются и другие аргументы против теории естественного отбора. Я знаю, что ничего не знаю Эти слова, обычно приписываемые Сократу, в полной мере могут быть отнесены к нашим представлениям о Вселенной. После открытия космического расширения стало понятно, что наблюдаемый мир ограничен для нас горизонтом видимости радиусом около 13,8 млрд световых лет. Так как никакой сигнал не может распространяться быстрее света, а расширение началось около 13,8 млрд лет назад, то события, происходящие вне этой сферы, в принципе не могут нами наблюдаться. Весь не ограниченный горизонтом видимости материальный мир называют Вселенной, сферический же ее участок, находящийся в пределах горизонта видимости, то есть наблюдаемый нами мир, — Метагалактикой. Более строго нашей Метагалактикой было бы называть относительно компактную космическую макроструктуру, включающую в себя наблюдаемый нами мир и отделенную от других метагалактик во Вселенной расстояниями, многократно превышающими ее собственные размеры.
Ниоткуда не следует, что размеры нашей Метагалактики совпадают с размерами наблюдаемого мира. Радиус горизонта видимости определяется не законами формирования компактных космических макроструктур, а временем, прошедшим после начала наблюдаемого Большого взрыва. Размеры нашей Метагалактики могут существенно превышать размеры наблюдаемого мира. Из сказанного следует, что у космологии, изучающей Вселенную в целом, начисто отсутствует эмпирическая база. Редчайший или даже единственный случай в естественных науках. Все наши утверждения о Вселенной носят гипотетический характер. Несмотря на это, космологи то и дело переносят результаты наблюдений на всю Вселенную, уверенно говоря о расширении Вселенной, Большом взрыве Вселенной и т. При этом они деликатно забывают сообщить, что всё это — экстраполяция, базирующаяся на гипотезе о макро однородности Вселенной. В такой Вселенной часть наша Метагалактика и на самом деле подобна целому Вселенной.
Однако наблюдения последних лет говорят о фрактальности распределения материи во всем объеме наблюдаемого мира, что делает более правдоподобной гипотезу о фрактальности Вселенной. В такой Вселенной часть может существенно отличаться от целого. Верю — не верю... Это падение описывается эмпирическим законом Эдвина Карпентера 1938 : плотность сферического участка космической структуры пропорциональна его радиусу R в степени D — 3 , где D приблизительно равно 1,23. Структуры такого рода сегодня называют фрактальными, а величину D — их фрактальной размерностью. Существенно, что D меньше 3, то есть размерности нашего трехмерного пространства. Представления о фрактальности космического мира противоречат гипотезе об однородности Вселенной. Чтобы спасти ее, космологи перешли к гипотезе о макрооднородности Вселенной, полагая, что она Вселенная однородна на расстояниях примерно равных или больших 300 млн световых лет. Более точное определение верхнего порога масштабов расстояний, за которым распределение галактик однородно, потребовало составления трехмерных карт распределения галактик на возможно большую глубину.
Эта работа принесла неожиданные результаты: были открыты гигантские космические структуры, размеры которых вполне сравнимы с радиусом горизонта видимости 13,8 млрд св. Мы укажем здесь четыре таких объекта с их размерами: 1. Великая стена Слоуна, около 1,38 млрд св. Громадная группа квазаров светящихся ядер галактик , имеющая размер около 4 х 2,1 х 1,2 млрд св. Великая стена Геркулес — Северная Корона, более 10 млрд св. Гигантская кольцеобразная структура, около 5 млрд св. После этих открытий ничто уже не противоречит гипотезе о фрактальности всего наблюдаемого мира.
Фракталы в живой природе
- Удивительный мир фракталов
- Фракталы в природе (102 фото) »
- Исследовательская работа: «Фракталы в нашей жизни».
- ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ
Фрактальные узоры в природе и искусстве эстетичны и снимают стресс
Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. О природе ков Виталий7 (Высоцкий В С.). Природа создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. Фракталом в прессе и научно-популярной литературе могут называть фигуры, обладающие какими-либо из перечисленных ниже свойств. В природе мы встречаем фракталы в изломах береговой линии, ветвях деревьев, прожилках листьев.
Прекрасные фракталы в природе
Но какое все это великолепие имеет отношение к нашей реальной жизни и к тому, что окружает нас в природе и повседневном мире? Оказывается, самое прямое. Но сначала скажем несколько слов о самих фракталах, как геометрических объектах. Что такое фрактал, если говорить по-простому Первое. Как они, фракталы, строятся. Это довольно сложная процедура, использующая специальные преобразования на комплексной плоскости что это такое — знать не надо. Важно только то, что эти преобразования являются повторяющимися происходят, как говорят в математике, итерациями. Вот в результате этого повторения и возникают фракталы те, которые вы видели выше.
Фрактал является самоподобной точно или приблизительно структурой. Это значит следующее. Если вы поднесете к любой из представленных картинок микроскоп, увеличивающий изображение, например, в 100 раз, и посмотрите на фрагмент попавшего в окуляр кусочка фрактала, то вы обнаружите, что он идентичен исходному изображению. Если вы возьмете более сильный микроскоп, увеличивающий изображение в 1000 раз, то вы обнаружите, что кусочек попавшего в окуляр фрагмента предыдущего изображения имеет ту же самую или очень похожую структуру. Из этого следует крайне важный для последующего вывод. Фрактал имеет крайне сложную структуру, которая повторяется на разных масштабах. Но чем больше мы забираемся вглубь его устройства, тем сложнее он становится в целом.
И количественные оценки свойств первоначальной картинки могут начинать меняться. Вот теперь мы оставим абстрактную математику и перейдем к окружающим нас вещам — таким, казалось бы, простым и понятным. Фрактальные объекты в природе Береговая линия Представьте себе, что вы с околоземной орбиты фотографируете некий остров, например Британию. Вы получите такое же изображение, как на географической карте. Плавное очертание берегов, со всех сторон — море. Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова.
Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты — в одном сантиметре сколько-то там километров. Вот и результат. А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию. Получается картина, похожая на фотографии со спутника. Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши.
Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется. Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно.
Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов. А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках.
Они имеют сложную структуру.
На математическом языке ее так называемая размерность Хаусдорфа—Безиковича тогда больше привычной топологической. Заметим, кстати, что размерность линии, превосходящая 1, при этом не обязательно будет дробной размерность плоской броуновской траектории равна 2. Видимо, мыслима и размерность линии в трехмерном объеме, превосходящая двойку. Вообще же разнообразие здесь велико, и в ряде случаев размерность «предельного объекта» может быть оценена лишь приближенно численно как итог компьютерного моделирования предельного процесса.
В некоторых же объектах она элегантно выражается аналитически. Так, размерность Хаусдорфа—Безиковича знаменитого канторова множества «остаток» от процедуры: из отрезка вырезаем среднюю треть, из оставшихся двух отрезков — тоже, и т. Математический смысл фрактальности довольно абстрактен, и здесь, пожалуй, не стоит пытаться определить фрактал во всей его математической строгости и сложности. Однако геометрический смысл фрактальности весьма нагляден и прост. Это, схематизируя, бесконечная — вверх и вниз — пирамида единообразно на один и тот же множитель изменяющихся ступеней.
Такая лестница масштабов может быть и не откровенно иерархическо-геометрической, а скрытой во временном поведении системы. Например, совокупность броуновских частиц в каждый момент представляется предельно хаотичной. Но траектория броуновского движения каждой частицы в идеале если не подойти слишком близко к характерной величине размера атомов и расстояний между ними выглядит совершенно одинаково при любом масштабе «увеличении микроскопа». Масштабная инвариантность, или самоподобие, фрактальной структуры является ее характернейшим свойством. Она может проявляться бесконечно разнообразно.
Любопытно, что именно через это свойство фракталы не называя их так, естественно , значительно раньше их первооткрывателя Мандельброта увидел талантливый голландский художник с острым взглядом — М. Эсхер 1902—1972 иногда, в более ранней и менее точной транскрипции — Эшер. Физический смысл объекта-фрактала также довольно нагляден. Это структура пространственно-иерархического типа, со все меньшим при удалении от некоторого центра , но убывающим строго закономерно, единообразно, заполнением объема 6. Выразительный пример — крона «зимнего дерева», без листьев.
На эволюционно-биологическом уровне аналог — эволюционное древо жизни Земли, а в еще более общем плане — Мировое Древо ряда религиозных космологии. Открытие фракталов Смотрите, как повсюду окружают нас непонятные факты, как лезут в глаза, кричат в уши, но мы не видим и не слышим, какие большие открытия таятся в их смутных очертаниях. Ефремов Осознание фрактальности мира, как почти все крупнейшие обобщения в науке, началось с весьма частного вопроса — с мысленного опыта американского математика Бенуа Мандельброта: длина участка береговой линии между двумя городами оказалась зависящей от того, как ее измерять, то есть от «длины линейки». Можно сказать, что это заранее очевидно и тривиально. Но те, кто так рассуждали и на этом останавливались в бесконечном множестве «аналогичных случаев» до Мандельброта, и не заметили, не открыли фрактальность Вселенной!
Мандельброт, между тем, вышел за рамки старой научной картины мира, в которой не было места для фракталов. Впрочем, у математиков, знакомых с хаусдорфовской размерностью еще с 1919 г. Но к этим разговорам долго не прислушивались, даже некоторое время и после провозглашения Мандельбротом его открытия. Нобелевская премия по физике Кеннету Вилсону за работу, в которой прямо использовались представления о модели физической системы с дробной размерностью, не особенно изменила положение. Но час пробил!
Наша Вселенная «изменилась» — она «стала» фрактальной 7. А точнее, барьер в догматическом сознании научного сообщества был-таки преодолен. В итоге необратимо изменилась наша картина мира, в том числе — и астрономическая. Несомненно, какие бы с нею дальше ни происходили изменения, какие бы ни совершались научные революции, аспект фрактальности навсегда вошел в ее «твердое ядро» принципов-постулатов и не будет изъят ни при какой ревизии [ 6 ]. Патологические структуры, которые были изобретены математиками, желавшими оторваться от свойственного XDC веку натурализма, оказались основой множества хорошо знакомых, повсюду нас окружающих объектов», — констатировал выдающийся физик XX века Фримен Дайсон [4].
Концепция «раздувания» в космологии и фрактальность пространства Вселенной? В отличие от устойчивости, неустойчивость устойчива. Арнольд Все упоминавшиеся системы, сколь ни много их вокруг нас, от микромира до Метагалактики, — все эти материальные объекты, — находящиеся в трехмерном пусть искривленном пространстве, имеют фрактальную структуру, или же дробную размерность. А мыслимо ли, и какой смысл могло бы иметь само пространство такой дробной размерности? Или, в еще более общем случае, — комплексной дробной размерности?
Лично меня этот вопрос интересует где-то с начала 50-х гг. Очень многозначительным представляется то, что буквально в последние годы появился в теории первый объект, в отношении которого можно думать, что он обладает именно пространством фрактальной структуры и, возможно, дробной размерности. История науки показывает, насколько принципиальным оказывается почти всегда такой первый шаг, открывая новую область явлений, хотя по единственному, уникальному объекту не удавалось, естественно, установить ни меру типичности, ни степень нетривиальности нового объекта. Вспомним из истории астрономии открытие первого кольца у планеты, первой периодической кометы, первого астероида, первого квазара и т. Вернемся, однако, к нашему, по самой своей сути уникальному и единственному известному да и то пока гипотетически объекту с фрактальной размерностью пространства во Вселенной.
Этот объект — сама Большая Вселенная в модели хаотического раздувания Линде [ 1 ]. Фрактальную природу и структуру эта модель имеет «по построению», в силу стохастического по законам случая ветвления процесса раздувания в пространстве и времени 8. Композиция из фрактальных множеств Мандельброта Первые попытки численного моделирования подобного явления были проведены самим А. Имеющиеся последующие оценки пока не позволяют количественно указать размерность пространства стохастически раздувающейся Вселенной. Процесс этот «стабильно неустойчив».
Размерность такой модели Вселенной может оказаться и не обязательно дробной подобно тому, как целочисленной, но более высокой, чем у обычной линии, оказывается размерность броуновской траектории — см. Через несколько лет после пионерской работы Линде фрактальность в космологии — нецелочисленность с изменением — от нормальной тройки в лаборатории до двойки на космологическом горизонте заподозрила А. Попова ГАИШ в цикле работ 90-х гг. Собственный оригинальный подход к этой проблеме развивает известный специалист по общей теории относительности ОТО и релятивистской космологии Р. Правда, еще несколькими годами ранее группа итальянских астрофизиков А.
Грасси и др. По существу, проблема фрактальной размерности пространства Метагалактики лишь начинает входить в науку, и различные исследователи только еще нащупывают варианты существующих здесь возможностей. Какой же окажется размерность нашей локальной и, далее, «Большой Вселенной» в конце концов? Или 50610? Вопрос пока, насколько мне известно, открыт.
Тем более, остается неясной проблема смысла и физической реализации во Вселенной комплексной в частном случае — чисто мнимой размерности пространства. И, пожалуй, совершенно не в наших силах представить себе, что могла бы значить дробная размерность да еще комплексная космологического времени!
Фракталы также имеют связь с хаосом и теорией динамических систем.
Хаос - это состояние системы, когда даже небольшие изменения в начальных условиях могут привести к значительным изменениям в будущем. Фракталы могут помочь понять и описать хаотические системы и предсказать их поведение. Наконец, фракталы имеют важное значение для нашего понимания природы и ее эволюции.
Фрактальные структуры можно найти во многих биологических системах, таких как листья растений, коралловые рифы или формы костей и мышц. Изучение фрактальных структур может помочь понять принципы, которые лежат в основе этих систем, и использовать их для создания новых технологий и материалов. Фракталы часто ассоциируются с мистикой и духовностью.
Некоторые люди считают, что фрактальные формы отражают глубинные законы природы и космоса, а также являются символами бесконечности и единства всего сущего. Фракталы также используются в медитации и визуализации для достижения состояния гармонии и равновесия.
Первое, что мы можем выделить — это подобие графиков движения цены, вне зависимости от инструмента, таймфрема временного масштаба.
Разумеется, что найти абсолютно похожие участки крайне сложно, но ключевое свойство фрактала — это самоподобие, а не идентичность. А найти регулярные и подобные структуры в колебаниях цены — это уже более реальная задача. Получается, что рынок, как минимум, имеет фрактальные свойства.
Само наличие закономерностей в движении говорит об этом. Волны Элиота — также определенная фрактальная закономерность в движении цены Каждая часть графика делится по определенной закономерность на самоподобные части. Что еще интересного можно найти на основе модели Мандельброта?
К примеру, можно взглянуть на соотношение частей этого фрактала: Фрактальную теорию тесно связывают с принципом золотого сечения и числами Фибоначчи. Опять же, не будем вдаваться в сложные математические вычисления и доказательства. Нас тут интересует, что определенное соотношение частей и сторон множества Мандельброта соответствуют принципам золотого сечения и чисел Фибоначчи.
Фракталы в природе.
Обнаружен первый в природе молекулярный фрактал — Странная планета | Открытие молекулярного фрактала в цианобактерии – это не просто научная сенсация, но и философский повод задуматься о роли случайности в возникновении порядка, о сложном взаимодействии хаоса и гармонии в природе. |
Фракталы в природе (53 фото) - 53 фото | Папоротник — один из основных примеров фракталов в природе. |
Фракталы в природе. Мир вокруг нас. Ч.2 - Vya4esLove — КОНТ | Фракталы как узоры и формы, повторяющие себя в разных масштабах, находим в живой и неживой природе. |
Фракталы в природе. Мир вокруг нас. Ч.2 | В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. |
Сейчас на главной
- Открытие первой фрактальной молекулы в природе - математическое чудо • AB-NEWS
- Случайность как художник: учёные обнаружили первую фрактальную молекулу / Оффтопик / iXBT Live
- Исследовательская работа: «Фракталы в нашей жизни». | Образовательная социальная сеть
- Что такое фрактал? Фракталы в природе
- Бесконечность фракталов. Как устроен мир вокруг нас
- Самое популярное