Новости электростанция по составу

Обе электростанции работают на базе энергоблоков типа SGT-700 производства Siemens (Сочинская ТЭС) и LMS100PB производства General Electric (Джубгинская ТЭС). "Росатом" планирует строить на Урале, в Сибири и на Дальнем Востоке энергоблоки АЭС средней мощности по 600 МВт, конкретный проект такого блока намечено выбрать РИА Новости, 29.04.2023. Плавучие солнечные электростанции в Германии по-прежнему остаются редкостью и, как правило, имеют небольшие размеры. «Росатом» построит плавучие электростанции для Приморского края «Росатом» планирует к 2029 году построить для Приморского края первую плавучую электростанцию. Проект принципиально новой твердотельной аккумулирующей электростанции (ТАЭС) разработали специалисты новосибирской компании «Энергозапас», резидента инновационного центра «Сколково.

В Якутии введена в эксплуатацию самая северная солнечная электростанция в России

Как раз работа в составе «большой» ЕЭС позволяет наиболее эффективно вырабатывать электроэнергию на тех электростанциях, которые в настоящий момент работают в сети и готовы нести нагрузку. В портфеле зарубежных заказов на АЭС – 33 проекта в 10 странах мира, 22 из них – в стадии сооружения. Как раз работа в составе «большой» ЕЭС позволяет наиболее эффективно вырабатывать электроэнергию на тех электростанциях, которые в настоящий момент работают в сети и готовы нести нагрузку. Перспективы создания виртуальной электростанции в России обсудили участники сессии «Применение цифровых решений в ВИЭ» в рамках РМЭФ-2024.

Навигация по записям

  • Новости партнеров
  • "Русгидро" ввела в эксплуатацию четыре ВИЭ-энергокомплекса в Якутии
  • Подробности
  • Все новости

В Омске построят солнечную электростанцию «под ключ»

Не будем забывать, что в составе этих 245 ГВт есть установленная мощность солнечных электростанций, вклад которых в покрытие декабрьского вечернего максимума нагрузки будет равен нулю, ветровых электростанций, фактическая нагрузка которых, как правило, существенно ниже установленной. Фактическая мощность гидроэлектростанций зависит от напора, условий ледостава и иных ограничений в конкретный год, мощность ТЭЦ с определённым оборудованием — от наличия тепловых нагрузок, а на атомных станциях необходимо производить перезагрузку топлива. Для любого вида оборудования требуется проведение ремонтов. Все эти факторы приводят к тому, что реальная мощность оборудования, готового к несению нагрузки, ниже установленной. Объём такого снижения является существенным. Максимальных значений он достигает в период летней ремонтной кампании. Так, например, в июле 2021 года средняя за месяц величина снижения мощности составляла 62,7 ГВт. Но и в зимний период объём снижений достаточно высок — так, в январе 2021 года он составил 24,2 ГВт. Следует отметить, что в последние годы и температуры, при которых ЕЭС России проходит годовые пики потребления, далеки от наиболее низких температур, регистрировавшихся в предшествующие годы, соответственно, и уровень потребления мощности был ниже потенциально возможного. Некорректный учёт вышеуказанных факторов может привести к невозможности обеспечения электроснабжения потребителей.

Поэтому необходимо иметь методику расчёта резервов, учитывающую указанные факторы. В настоящее время «Системный оператор» ведёт работу по имплементации подхода по расчёту необходимой величины резерва на основании расчёта балансовой надежности. Предполагается включение этой нормы в новую редакцию методических указаний по проектированию развития энергосистем. Это позволит нам, исходя из актуальных параметров работы энергосистемы, отвечать на вопрос, достаточно или нет генерирующих мощностей в конкретном энергорайоне или в целом по ЕЭС для покрытия потребления с заданной вероятностью. Принципиально важным является указание на заданную вероятность. Чем большими резервами обладает энергосистема, тем выше её надежность и меньше вероятность отключения потребителей. Но чем выше надёжность, тем больше за неё в итоге платит потребитель. В энергосистеме экономически нецелесообразно иметь как «сверхнизкий», так и «сверхвысокий» уровень надёжности. В обоих случаях страдают потребители: в первом — от частых отключений, ущербов и отсутствия нормальных условий развития, во втором — от высокой финансовой нагрузки.

Расчёт балансовой надёжности позволяет оцифровать планируемое состояние энергосистемы с точки зрения вероятности отключения потребителей. Наша энергосистема — не «медная доска», её нельзя представить моделью, в которой вся мощность свободно передаётся между любыми её частями: она включает энергорайоны, которые имеют ограниченные возможности приёма и передачи. В этой связи крайне важно, чтобы расчётная модель, используемая для расчётов балансовой надежности, как можно более точно отражала реальные параметры функционирования энергосистемы. Модель, которую использует «Системный оператор», достаточно подробна. Она включает в себя порядка 100 зон надёжности — энергорайонов, для каждого из которых отдельно считается вероятность бездефицитной работы. Такая подробная модель позволяет выявлять как территории, где существуют локальные проблемы с электроэнергетическим балансом и необходимо принятие решения о строительстве новых сетей или новых генерирующих мощностей, так и территории, где объём генерирующих мощностей заведомо избыточен и, соответственно, возможен вывод невостребованных мощностей. Сформировать расчётную модель и выполнить расчёты балансовой надёжности — это инженерная задача. В «Системном операторе» есть для этого все необходимые ресурсы и компетенции. Определение нормативных уровней надёжности — это уже вопрос технико-экономической политики государства.

Задача состоит в том, чтобы найти оптимум, который с одной стороны не приведет к негативным последствиям для экономики страны в целом из-за ограничений электропотребления, а с другой — не будет перегружать экономику затратами на поддержание избыточной надёжности инфраструктуры. В настоящее время идёт формирование нормативной базы в области вопросов балансовой надёжности. Первым стал приказ Минэнерго РФ от 30. На мой взгляд, именно принципы вероятностной оценки, формируемой на основании статистических и прогнозируемых параметров работы оборудования, являются наиболее корректным методом определения нормативных значений резервов в энергосистеме для любых видов долгосрочного планирования. Напомню, что в марте 2018 года «Системный оператор» провёл конкурентный отбор мощности новой генерации, по результатам которого в Юго-Западном энергорайоне Краснодарского края должна быть введена в работу новая электростанция с ПГУ-энергоблоками — ТЭС Ударная мощностью 500 МВт. Решают эти масштабные вводы ВИЭ проблему дефицита мощности? Ответ — нет. Ввод даже существенных объёмов новых объектов ВИЭ не оказывает значимого влияния на обеспечение надёжности. Объекты ВИЭ — это замечательный источник чистой «зелёной» электроэнергии.

Ключевое слово здесь — «электроэнергия». Чем больше в энергосистеме объектов ВИЭ, тем большую долю в балансе электроэнергии они будут занимать. В балансе мощности ситуация принципиально иная. Пример даже одного дня наглядно показывает, что при формировании баланса мощности бессмысленно учитывать установленную мощность объектов ВИЭ. Какой уровень мощности ВИЭ может быть учтён в балансе мощности? Тот, который может быть гарантированно обеспечен. Как мы видим, для СЭС на сегодняшний день это ноль, для ВЭС расчёт на основе вероятностного подхода показывает, что мы можем рассчитывать на уровень загрузки порядка нескольких процентов от их установленной мощности. Что касается вопроса ограничений выработки электроэнергии, то, на мой взгляд, здесь больше мифов и абстрактных рассуждений, чем реальных оценок масштаба проблемы. В любой точке энергосистемы можно построить любое количество объектов ВИЭ.

Данная система позволяет проводить сбор и обработку информации со всех систем комплекса, а затем централизованно отображать эти сведения на главном пульте управления НГХК. В рамках этих работ специалисты ОАО «СЭМ» проведут монтаж 200 шкафов систем автоматического управления, установку и подключение более 5 тысяч датчиков КИПиА, а также прокладку более 400 километров кабеля и 10 километров импульсных трубопроводов.

К тому же, фактический сброс воды через ГЭС оказывается ниже максимальной мощности гидроагрегатов. К примеру, все четыре главные турбины ГЭС будут работать на полную мощность при сбросе воды в объеме не ниже 1 000 кубометров в секунду. Сейчас же через ГЭС сбрасывается всего 410 кубометров в секунду, а зимой, когда нет навигации, еще меньше. Поэтому к выработке электроэнергии агрегаты подключаются поочередно. Уже 1970 года из-за повторяющихся маоводных лет Цимлянская ГЭС была переведена в вынужденный режим работы, при котором расходы воды через гидроагрегаты определяются потребностями не гидроэнергетики, а водного транспорта и других неэнергетических водопользователей. Но у ГЭС есть две важные функции. Она конструирует качество электроэнергии и быстро восполняет ее нехватку во время вечерних и утренних пиковых часов потребления. Турбина ГЭС может начать работать за считанные минуты, чего электростанции других типов позволить себе не могут.

В 2019 году на станции была модернизирована система телемеханики и связи, а в 2020 году - внедрена система группового регулирования активной и реактивной мощности ГРАРМ агрегатов станции. Это позволило ГЭС автоматически регулировать частоту и мощность в энергосистеме. За это станция получает дополнительный доход в виде надбавки к оплате мощности. Незаметная для посторонних глаз модернизация Базовая конфигурация станции осталась неизменной с 50-х годов, но основное оборудование прошло 2 этапа модернизации. Первый этап модернизации станции стартовал в 70-е годы. Тогда мощность четырех основных гидроагрегатов была увеличена с 40 до 50 МВт. В 1985 году институт «Гидропроект» разработал технико-экономическое обоснование по реконструкции гидроэлектростанции. Реализация этой программы растянулась на много лет и пока только близится к завершению. Тогда в этих работах поучаствовал даже волгодонский «Атоммаш». В 90-е годы было завершено и строительство нового административно-бытового корпуса станции через дорогу от основного здания ГЭС.

Интерьеры Цимлянской ГЭС до сих сохраняют дух 50-х годов.

Новак сообщил, что правкомиссия по развитию электроэнергетики приняла решение назначить Интер РАО организацией, реализующей проект; в феврале 2023 г. Интер РАО в России компания представлена более чем в 30 регионах; установленная мощность составляет около 31 тыс. МВт; основными акционерами являются:.

Федор Опадчий: «Татарстану в наименьшей степени сейчас нужна АЭС»

Как мы видим, для СЭС на сегодняшний день это ноль, для ВЭС расчёт на основе вероятностного подхода показывает, что мы можем рассчитывать на уровень загрузки порядка нескольких процентов от их установленной мощности. Что касается вопроса ограничений выработки электроэнергии, то, на мой взгляд, здесь больше мифов и абстрактных рассуждений, чем реальных оценок масштаба проблемы. В любой точке энергосистемы можно построить любое количество объектов ВИЭ. Вопрос в том, какую часть их выработки сможет принять энергосистема? И это вопрос прежде всего экономический, а не технологический.

В предельном случае объект генерации может быть построен на территории, где включение объектов ВИЭ будет в принципе невозможно без реализации значительных мероприятий по развитию сети. Если инвестор реализует проект по вводу объекта ВИЭ за счёт собственных средств, все риски, в том числе что его выработка не будет принята энергосистемой, — это его собственные риски. Для объектов ВИЭ, строительство которых оплачивается на рынке мощности через механизм ДПМ, правилами оптового рынка предусмотрены механизмы, исключающие оплату мощности простаивающих объектов. В странах с большой долей ВИЭ ограничение выработки солнечных и ветровых электростанций является нормальной практикой управления режимом работы энергосистемы.

У нас же не вызывает вопросов необходимость разгрузки тепловых электростанций и гидроэлектростанций в период прохождения ночного минимума нагрузки. Другой вопрос, что территорий, где одновременно с высокой инсоляцией или устойчивой ветровой нагрузкой существует развитая сетевая инфраструктура, не так много. Если при реализации программы поддержки выработка объектов ВИЭ замещает выработку низкоэффективных тепловых электростанций, то мы можем говорить, что программа эффективна как минимум с точки зрения снижения выбросов. Если же выработка новых объектов ВИЭ будет замещать выработку АЭС, ГЭС, ранее построенных солнечных и ветровых электростанций, то вряд ли такую программу мы сможем назвать эффективной.

Чтобы такого не случилось, необходимо создать стимулы для разумного территориального размещения объектов. Одним из таких стимулов является предлагаемый нами подход к распределению выработки между объектами ВИЭ при наличии ограничений. В первую очередь предлагается разгружать последние введённые объекты. Чем позже ты пришел на территорию, тем выше твои риски снижения выработки.

Если в энергорайоне на данный момент нет ограничений — хорошо, если есть, то инвестор должен взвесить, что ему выгоднее — построить объект именно на этой территории с хорошими метеоусловиями и рисками снижения выработки или найти другую площадку без рисков регулярных ограничений. При какой доле ВИЭ понадобится перенастройка работы объединённых или, возможно, Единой энергосистемы? Есть большое количество исследований на эту тему, и, как мне кажется, в мире достигнут консенсус по типам задач, требующих решения в зависимости от доли ВИЭ в балансе электроэнергии. Как правило, выделяют следующие этапы.

Ветровые или солнечные электростанции включаются в большие энергосистемы, единичные мощности объектов невелики и переменный режим их работы не оказывает влияния на систему в целом. На фоне естественных флуктуаций потребления изменение загрузки ВИЭ незаметно, и изменение процедур планирования и управления режимом не требуется. На этом этапе главной задачей является корректное формирование требований к техническим характеристикам объектов генерации и требований по присоединению мощностей к энергосистеме, чтобы ввод объектов ВИЭ не приводил к нарушению режимов работы прилегающей сети. Влияние ВИЭ становится заметным и требуется постепенное изменение процедур планирования и управления режимом работы энергосистемы, корректировка рыночных механизмов.

Принципиально важным становится наличие точной системы прогнозирования нагрузки мощности ВИЭ, вводятся механизмы превентивного снижения нагрузки ВИЭ, для того чтобы регулирующие электростанции могли своевременно компенсировать изменение нагрузки ВИЭ. Важно, что на данном этапе все изменения остаются на уровне изменения процедур и регламентов. Режим работы ВИЭ оказывает существенное влияние на режим работы энергосистемы, меняется режим работы традиционных электростанций. Принципиально важным становится поддержание в энергосистеме достаточных ресурсов регулирования.

Как правило, требуется развитие сетевой инфраструктуры, активное использование механизмов управления спросом, создание специальных механизмов привлечения генерации к «быстрому» регулированию. Выделяют и последующие этапы, но применительно к нашей энергосистеме про них говорить преждевременно. Вопросы учёта выработки солнечных и ветровых электростанций при выборе состава включенного оборудования, ввод ограничений выработки ВИЭ в отдельные часы, установление приоритетов разгрузки при наличии ограничений — это практические задачи, которые мы решаем уже сегодня, а соответствующие положения уже включены в состав регламентов ОРЭМ. Точно ли нужна новая генерация для III этапа?

Как будут увязаны проекты II этапа и электрификация железной дороги для вывоза угля из Якутии? В отношении II этапа имеются все необходимые решения и понятны параметры требуемой электрификации тяговых нагрузок. В отношении III этапа детальная проработка технических решений пока не осуществлялась. Поэтому предлагаю всё же основной упор сделать на II этап.

Этот этап предусматривает значительное — до 2,4 ГВт — увеличение потребления мощности и рост потребления электроэнергии объектами РЖД в Сибири и на Дальнем Востоке. Для обеспечения перевозок предполагается создание необходимой энергетической инфраструктуры, то есть увеличение нагрузки на уже электрифицированных участках Транссиба и БАМа, а также электрификация нескольких участков на территории Дальнего Востока. Такое значительное увеличение невозможно обеспечить только за счёт резервов или дополнительной загрузки имеющихся генерирующих мощностей. Тем более учитывая, что значительная доля этого прироста в Сибири приходится на Северобайкальский участок БАМа, обладающий сегодня слабыми протяжёнными связями, а имевшиеся в ОЭС Востока значительные резервы мощности ввиду активного развития энергосистемы уже практически исчерпаны.

Кроме того, из-за большой доли ГЭС на Востоке и практически базовой нагрузки железной дороги велико влияние снижения выработки гидроэлектростанций в маловодный год на стабильность энергоснабжения. Поэтому для покрытия такого спроса безусловно необходима новая генерация, а также строительство протяжённых электрических сетей класса напряжения 220-500 кВ. Учитывая значительное развитие электрических сетей уже в рамках реализации II этапа расширения Восточного полигона, можно рассматривать вопрос постоянной синхронной работы ОЭС Востока с ЕЭС России по пяти ЛЭП 220 кВ, что позволит оптимизировать потребность в резервах и максимально эффективно использовать все плюсы совместной работы энергосистем. В любом случае при проработке всех вариантов учитывается особое условие — огромная протяжённость территории и распределённость по ней планируемой нагрузки.

Крайне важно найти такое решение, которое позволило бы минимизировать затраты, но при этом создать оптимальную энергетическую инфраструктуру, достаточную для обеспечения предполагаемых объёмов перевозок.

Это от 10 до 20 раз дороже, чем сегодня в США в среднем стоит один киловатт-час электрической энергии, но с точки зрения экологической чистоты эффект обещает быть существенным. Оборудование для станции поставил крупнейший российский производитель солнечных модулей в лице компании «Хевел», а монтаж и подключение выполнили специалисты АО «НЭСК».

Источник изображения: hevelsolar. Благодаря этому СДЭК сможет сократить расходы на электроэнергию на 225 тыс. Отмечается, что СДЭК с 2020 года реализует масштабную экологическую программу, которая включает в себя несколько проектов.

Установка солнечной электростанции позволит нам не только сэкономить на затратах, связанных с содержанием склада, но и продвигать среди клиентов и партнёров СДЭК экологическую повестку», — считает PR-директор СДЭК Анна Иоспа. Отметим, что логистические компании из разных стран мира активно используют «зелёные» технологии и особенно солнечную энергетику. Для них это выгодно, поскольку большие площади кровли складов обычно не используются в производственных процессах.

На днях в стране заключено соглашение о создании крупнейшей в мире плавучей солнечной электростанции мощностью 600 МВт — это на порядок мощнее, чем созданные до сих пор системы. Огромные солнечные поля на воде дадут электричество и сберегут воду от интенсивного испарения, что важно для жизни в период засухи. Источник изображения: swarajyamag.

Также вода прямо охлаждает панели, как и обычно прохладный ветерок над ней, а это путь к сохранению высокой эффективности панелей в процессе преобразования света в электричество. Реализация нового проекта — Omkareshwar Floating Solar — будет проходить в два этапа. Станция будет построена на водохранилище Омкарешвар в штате Мадхья-Прадеш в центральной части Индии.

У индийских операторов богатый опыт управления плавучими солнечными станциями. В прошлом месяце, например, индийская компания NTPC завершила монтаж солнечных панелей мощностью 100 МВт на водохранилище в городе Рамагундам в штате Телангана на юге страны. Площадь плавучего объекта составила 243 га.

Эта же компания ранее уже ввела в строй две плавучие станции в других частях страны: одну мощностью 25 МВт, другую — 92 МВт. Кроме солнечных электростанций на озёрах и водохранилищах активно развивается направление морских плавучих солнечных электростанций. В этом лидирует Сингапур, хотя другие страны Юго-Восточной Азии стараются следовать тем же маршрутом.

Моря вокруг хватает с избытком, хотя волны усложняют задачу инженерам. Источник изображения: US Army Массив плавучих элементов появился в результате сотрудничества между военными гарнизона и компаниями Ameresco занимается возобновляемыми источниками энергии и Duke Energy одна из энергетических компаний Северной Каролины. Ожидается, что массив фотоэлементов «поможет минимизировать перебои в подаче электроэнергии и повреждения системы во время переходных процессов» или, проще говоря, во время аварийных отключений в распределительной электросети.

Для этого, в частности, в систему встроено решение для автоматического включения подачи энергии после срабатывания защитной автоматики гроза, падение деревьев и тому подобное. В целом в США плавучие солнечные электростанции внедряются медленнее станций с другими вариантами размещения — на полях, крышах и, в общем, на суше. В то же время в США хватает водных объектов достаточной площади для установки солнечных батарей.

И если на озёрах, как в случае установки в Форт-Брэгг, это может отчасти навредить живности и растениям, то при установке батарей над мелиоративными водными каналами они ничему не помешают. Установка солнечных ферм на водной глади имеет свои плюсы и минусы. Главный минус — она обходится дороже за счёт использования плотов и более глубокой изоляции от попадания влаги.

Но в плавающих солнечных фермах есть и весомый плюс — пассивное охлаждение панелей за счёт более прохладной среды, что ведёт к лучшей работе панелей и к увеличению срока их работы. Армия США, как и остальное американское общество, движется к углеродной нейтральности. Запуск первой плавучей солнечной электростанции — это один из многих шагов на этом пути.

Для достижения поставленных целей, если верить источнику, военным необходимо развернуть в США ещё 14 999 подобных электростанций. Поэтому специалисты начали разрабатывать и испытывать подводные приливные электростанции, которые погружают в воду на глубину свыше 50 метров. Успешные испытания ранних прототипов таких электростанций позволяют планировать создание в Японии обширных сетей из 2-МВт стандартных приливных турбин к 2030 году.

К 2017 году партнёры собрали 100-кВт установку в виде трёх 20-м поплавков с двумя 11-м лопастями два генератора по 50 кВт. Глубина погружения 50 м выбрана по соображениям безопасности во время тайфунов, когда 20-м волнами никого не удивишь, хотя чем ближе к поверхности, тем мощнее движение водяных масс. Источник изображения: IHI Самым перспективным местом для установки подводных приливных турбин вблизи Японии считается область Японского течения Куросио у южных и восточных берегов страны в Тихом океане.

Потенциально мощность течения оценивается в 205 ГВт. Распределённая сеть из таких турбин могла бы внести значительный вклад в обеспечение островов электрической энергией.

Такое поручение было дано Госкорпорации «Росатом» Президентом России. Развитие атомных технологий, строительство новых блоков АЭС в России — это новые рабочие места, повышение качества жизни людей в городах-спутниках атомных станций. Россия продолжает обеспечивать стабильную энергетическую безопасность. Отечественный топливно-энергетический комплекс работает на повышение конкурентоспособности национальной экономики, на улучшение качества жизни граждан, способствует развитию и благоустройству регионов страны, городов, поселков.

Российская разработка сочетает в себе преимущества солнечной и дизельной генерации, а также последние достижения в области накопителей электроэнергии и интеллектуальных систем управления, которые позволяют максимально эффективно распределять нагрузку между фотоэлектрической системой, накопителями и дизельными генераторами. По словам заместителя председателя правительства Республики Алтай Роберта Пальталлера, дизель-солнечная электростанция по типу и масштабам первая в России. Гибридные установки способны обеспечить надежное и стабильное энергоснабжение удаленных объектов ЖКХ, социальной, промышленной и сельскохозяйственной инфраструктуры. Аналогичные по составу электростанции различной мощностью от 50 кВт до 1МВт планируется построить в регионах с высоким уровнем дизельной генерации — республиках Якутия, Тыва, Забайкальском крае, регионах Дальнего Востока.

В Новосибирске начали производство гибридных электростанций для удаленных районов

Электростанция состоит из двух газовых турбин SGT-800 Siemens мощностью 45 МВт каждая, работающих по простому термодинамическому циклу. В составе электростанции предусмотрены распределительные устройства 6 кВ и 35 кВ, а также дизель-генераторы, позволяющие производить запуск электростанции при полном отсутствии связи с энергосистемой. Предусмотрен как параллельный, так и изолированный режим работы генераторов. Ввод объекта в эксплуатацию позволит значительно повысить надёжность электроснабжения промысла, тем самым разгрузятся действующие электроподстанции питающей сети, прекратятся перебои с электричеством. Кроме того, новая ГТЭЦ позволит серьёзно снизить тарифы на электроэнергию, что приведёт к существенной экономии средств.

В отличие от ядерной бомбы, при взрыве которой происходит неуправляемая цепная реакция деления атомных ядер с одномоментным высвобождением колоссального количества энергии, в ядерном реакторе происходит регулируемая ядерная реакция деления — топливо медленно отдает нам свою энергию.

Тем самым для того, чтобы использовать цепную реакцию деления атома в мирных целях, ученым пришлось придумать, как ее приручить. Атомная электростанция — это целый комплекс технических сооружений, предназначенных для выработки электрической энергии. Ядерная реакция происходит в самом сердце атомной электростанции — ядерном реакторе. Но само электричество вырабатывает совсем не он. На АЭС происходит три взаимных преобразования форм энергии: ядерная энергия переходит в тепловую, тепловая — в механическую, а уже механическая энергия преобразуется в электрическую.

И для каждого преобразования предусмотрен свой технологический «остров» — комплекс оборудования, где происходят эти превращения. Пройдемся вдоль технологической цепочки и подробно посмотрим, как рождается электричество. Ядерный реактор Реактор атомной электростанции представляет собой конструктивно выделенный объем, куда загружается ядерное топливо и где протекает управляемая цепная реакция. Ядерный реактор можно сравнить с мощным железобетонным бункером. Он имеет стальной корпус и помещен в железобетонную герметичную оболочку.

Эффект Вавилова — Черенкова излучение Вавилова — Черенкова — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде. Пространство, в котором непосредственно происходит реакция деления ядер, называется «активной зоной ядерного реактора». В ее процессе выделяется большое количество энергии в виде тепла, которое нагревает теплоноситель. В большинстве случаев теплоносителем выступает обычная вода. Правда, предварительно ее очищают от различных примесей и газов.

Она подается снизу в активную зону реактора с помощью главных циркуляционных насосов. Именно теплоноситель передает тепло за пределы реактора. Он обращается в замкнутой системе труб — контуре. Первый контур нужен для того, чтобы отобрать тепло у разогретого реакцией деления реактора охладить его и передать его дальше. Первый контур является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть, преимущественно ядерный реактор.

В активной зоне ядерного реактора находится ядерное топливо и, за редким исключением, так называемый замедлитель. Как правило, в большинстве типов реакторов в качестве топлива применяется уран 235 или плутоний 239. Для того чтобы можно было использовать ядерное топливо в реакторе, его первоначально помещают в тепловыделяющие элементы — твэлы. Это герметичные трубки из стали или циркониевых сплавов внешним диаметром около сантиметра и длиной от нескольких десятков до сотен сантиметров, которые заполнены таблетками ядерного топлива. При этом в качестве топлива выступает не чистый химический элемент, а его соединение, например оксид урана UO2.

Все это происходит еще на предприятии, где ядерное топливо производится. Для упрощения учета и перемещения ядерного топлива в реакторе твэлы собираются в тепловыделяющие сборки по 150—350 штук. Одновременно в активную зону реактора обычно помещается 200—450 таких сборок. Устанавливают их в рабочих каналах активной зоны реактора. Именно твэлы — главный конструктивный элемент активной зоны большинства ядерных реакторов.

Instagram и Facebook Metа запрещены в РФ за экстремизм. На информационном ресурсе применяются рекомендательные технологии. Сетевое издание «МК в Новосибирске» novos.

В российском посольстве рассказали о реализации проекта АЭС "Руппур" 15 февраля 2023, 09:46 "В связи с этим у нас крайне напряженные задачи по выработке электроэнергии в наступившем году: целевой показатель — 216 миллиардов киловатт-часов, верхний уровень, к которому будем стремиться, — 218,8 миллиардов киловатт-часов", — резюмировал Петров. АЭС в России в 2022 годы установили новый рекорд выработки электроэнергии, выдав 223,4 миллиардов киловатт-часов. Сегодня в состав концерна "Росэнергоатом" на правах его филиалов входят 11 действующих АЭС, в эксплуатации находятся 37 энергоблоков включая блок плавучей атомной теплоэлектростанции в составе двух реакторных установок суммарной установленной мощностью свыше 29,5 ГВт. Официальное издание отечественной атомной отрасли газета "Страна Росатом" сообщило, что в России к 2045 году планируется построить 29 новых атомных энергоблоков, "В настоящее время утверждена схема до 2035 года строительство 12 блоков и обсуждается план до 2045 года плюс еще 17 энергоблоков ", — пишет издание.

Коломзавод изготовил двигатель для Курской АЭС-2

Обе электростанции работают на базе энергоблоков типа SGT-700 производства Siemens (Сочинская ТЭС) и LMS100PB производства General Electric (Джубгинская ТЭС). ч электроэнергии или 102. Финальным этапом тестов станут 72-часовые испытания электроагрегата АТМ-1000 на базе дизельного двигателя ТМ-1000 в составе электростанции АБКЭхАТМ.

Федор Опадчий: «Татарстану в наименьшей степени сейчас нужна АЭС»

Заодно регулировался объём воды в Каховском водохранилище, откуда подпитывался пруд — охладитель ЗАЭС. Какое-то время АЭС обеспечивала электроэнергией как Украину, так и перешедшую под контроль России часть Запорожской области. Но по мере развития кризиса вокруг станции стало очевидно, что областям нужны резервные источники. Уже к середине лета 2022 года были восстановлены ЛЭП на юге Херсонской области их в 2015 году подорвала украинская сторона , и Крым благодаря строительству двух ТЭС впервые в своей истории превратился из донора в поставщика электроэнергии. Кроме того, в каждом из новых субъектов России есть свои объекты возобновляемой энергетики — солнечные СЭС и ветряные ВЭС электростанции. Часть из них работает, только здесь эффективность зависит от погоды, «ветряки» производят «грязный» с прыгающей частотой переменный ток, который приходится дополнительно обрабатывать. Без прочного «классического» базиса в виде тепловой, атомной и гидроэнергетики зеленую энергетику пока не стоит рассматривать как сколь-либо серьёзные источники электроэнергии для новых регионов. Распределение Серьезной проблемой, о которой говорил на ВЭФ глава Минэнерго России Николай Шульгинов, стало отсутствие связи между областями и республиками. Мы сможем обеспечить компенсацию поврежденной ГЭС. Плюс будет увеличение поставок электроэнергии с Крымского полуострова», — отметил 11 сентября министр энергетики России.

Энергетики реализуют компенсирующие мероприятия, проектируют связь 330 кВ между донецкой и запорожской энергосистемами. Если взять карту европейской энергосистемы, где отображены электростанции, ЛЭП и подстанции, в том числе на территории России и Украины, то чётко видно, что без строительства новых линий и подстанций не обойтись. К сожалению, никакой конкретики по ведущимся работам нет, однако соединительное звено позволит распределить нагрузку между Крымом и ДНР, задействовав профицитный энергопотенциал Зуевской и Старобешевской ТЭС. Заодно вырастет надёжность обеспечения Запорожской и Херсонской областей и будет смягчён дефицит электроэнергии на юге России, который в ближайшие пять лет может достигнуть уровня в 860 МВт. Системный оператор уже указывает на необходимость строительства в Крыму 307—338 МВт мощностей, ещё 550—605 МВт нужно построить в Краснодарском крае, что обойдётся в 80 млрд рублей. В начале августа 2023 года, когда глава Минэнерго дал поручение закончить восстановление магистрального электросетевого комплекса Новороссии к 1 октября, работы были завершены на 25 из 35 объектов.

Накопители работают в составе двух автономных гибридных солнечно-дизельных энергоустановок АГЭУ. Они состоят из солнечных электростанций суммарной мощностью 550кВт, дизельных генераторов ДЭС и накопителей. Реализация проекта обеспечила надежное, качественное и бесперебойное круглосуточное электроснабжение двух удаленных населенных пунктов региона, в которых проживают около 7 тысяч человек. Задача накопителя — обеспечивать количество и качество электроэнергии в системе электроснабжения гибридной электростанции, компенсировать неравномерность выработки электроэнергии солнечной электростанцией и минимизировать потребление дизельного топлива. По словам технического руководителя разработки, директора Института силовой электроники НГТУ НЭТИ профессора Сергея Харитонова, главным преимуществом накопителя являются электронные схемы управления и программы, которые позволяют управлять режимами работы в автономном режиме, без участия человека.

В Киеве заявляли о потере мощности в 7 ГВт. Без них оператор украинской энергосистемы вынужден постоянно запрашивать экстренную аварийную помощь в соседних странах ЕС. Исполнительный директор ДТЭК Дмитрий Сахарук говорил, что после еще нескольких таких ударов на Украине будет доступна только базовая генерация. В системе будет около 10 ГВт. Это базовая генерация, которая покрывает минимальное потребление», — отмечал он. Как сообщало EADaily , рано утром 27 апреля киевский режим попытался совершить массовую атаку дронами по Краснодарскому краю.

Тем не менее это уникальное место. Она находится в Охотском море у основания Камчатки — аккурат там, где полуостров стыкуется с материком. Её длина — 300 километров, средняя ширина — 65 километров, максимальная глубина — 62 метра. Во время прилива волна поднимается на 13—15 метров. Через её ворота каждые сутки перемещается до 500 кубических километров воды. К примеру, река Волга перенесёт столько воды за два года, Дон — за 25 лет. Самая полноводная в мире река Амазонка справится с такой нагрузкой за 25 дней. Пенжинской губе на это требуется всего лишь 24 часа. Работает электростанция так: в море устанавливается дамба, в неё монтируются гидроагрегаты, включающие в себя турбину и генератор. Сегодня в России производят гидроагрегаты, составляющие конкуренцию зарубежным аналогам, а в ряде случаев и превосходящие их по показателям эффективности и надёжности. Во время прилива мощный поток воды вращает гидротурбину, вырабатывая большое количество тока. Во время отлива происходит то же самое. То есть турбина никогда не простаивает. Она также пригодна для комбинированного использования с другими типами энергосистем. Пенжинский проект состоит из двух этапов: намечено строительство Северного створа мощность 21 гигаватт и Южного створа мощность 87 гигаватт.

Утверждён первый стандарт по техническим требованиям к солнечным электростанциям

Доменное имя сайта в информационно-телекоммуникационной сети «Интернет» для сетевого издания : kolomna-spravka. Примерная тематика и или специализация: Общественно-информационная, реклама в соответствии с законодательством Российской Федерации о рекламе. Форма периодического распространения вид - для периодического печатного издания : сетевое издание. Территория распространения: Российская Федерация, зарубежные страны. Учредитель: Гомзина Елена Борисовна.

При запуске станции в 1952 году ее мощность составляла 160 МВт.

За последние годы в Ростовской области было введено 610 МВт мощностей ветроэлектростанций. Фактического дефицита электроэнергии в регионе нет, чего не скажешь о стоимости электричества. К тому же, фактический сброс воды через ГЭС оказывается ниже максимальной мощности гидроагрегатов. К примеру, все четыре главные турбины ГЭС будут работать на полную мощность при сбросе воды в объеме не ниже 1 000 кубометров в секунду. Сейчас же через ГЭС сбрасывается всего 410 кубометров в секунду, а зимой, когда нет навигации, еще меньше.

Поэтому к выработке электроэнергии агрегаты подключаются поочередно. Уже 1970 года из-за повторяющихся маоводных лет Цимлянская ГЭС была переведена в вынужденный режим работы, при котором расходы воды через гидроагрегаты определяются потребностями не гидроэнергетики, а водного транспорта и других неэнергетических водопользователей. Но у ГЭС есть две важные функции. Она конструирует качество электроэнергии и быстро восполняет ее нехватку во время вечерних и утренних пиковых часов потребления. Турбина ГЭС может начать работать за считанные минуты, чего электростанции других типов позволить себе не могут.

В 2019 году на станции была модернизирована система телемеханики и связи, а в 2020 году - внедрена система группового регулирования активной и реактивной мощности ГРАРМ агрегатов станции. Это позволило ГЭС автоматически регулировать частоту и мощность в энергосистеме. За это станция получает дополнительный доход в виде надбавки к оплате мощности. Незаметная для посторонних глаз модернизация Базовая конфигурация станции осталась неизменной с 50-х годов, но основное оборудование прошло 2 этапа модернизации. Первый этап модернизации станции стартовал в 70-е годы.

Тогда мощность четырех основных гидроагрегатов была увеличена с 40 до 50 МВт. В 1985 году институт «Гидропроект» разработал технико-экономическое обоснование по реконструкции гидроэлектростанции. Реализация этой программы растянулась на много лет и пока только близится к завершению.

Новоленскую ТЭС построят в 15 км от города Ленска. Ее установленная мощность будет 550 МВт, она станет второй по мощности тепловой электростанцией Якутии. Газ для нее будет поступать со Среднеботуобинского месторождения.

Турбины для электростанции поставит Уральский турбинный завод, генераторы — «Силамаш», рабочая и конструкторская документация на котельное оборудование разработана компанией «Интер РАО — инжиниринг».

На информационном ресурсе применяются рекомендательные технологии. Сетевое издание «МК в Новосибирске» novos. Новосибирск, ул.

На Нововоронежской АЭС построят новые энергоблоки

Уровень удельной выработки электростанции — 1 400 кВт•ч / кВт пик — один из самых высоких в России. Под Новокуйбышевском запустили третью и последнюю очередь солнечной электростанции. Аналогичные по составу электростанции различной мощностью (от 50 кВт до 1МВт) планируется построить в регионах с высоким уровнем дизельной генерации – республиках Якутия, Тыва, Забайкальском крае, регионах Дальнего Востока. В его состав входит солнечная электростанция мощностью 1030 кВт, накопитель энергии мощностью 300 кВт и емкостью 1300 кВт-ч., а также ранее модернизированная и оснащенная современным оборудованием дизельная электростанция мощностью 2310 кВт. Эти реакторы отличаются от обычных АЭС тем, что они маломощные и компактные», — добавил эксперт.

Похожие новости:

Оцените статью
Добавить комментарий