III Всероссийский Фармпробег: автомобильный старт в поддержку лекарственного обеспечения (13.05.2021) Сециалисты группы компаний ЛОГТЭГ (БИАС/ТЕРМОВИТА) совместно с партнером: журналом «Кто есть Кто в медицине», примут участие в III Всероссийском Фармпробеге. Проверьте онлайн для BIAS, значения BIAS и другие аббревиатура, акроним, и синонимы. Биас (от слова «bias», означающего предвзятость) — это участник группы, который занимает особенное место в сердце фаната.
Как выбрать своего биаса в К-поп
- Revision Mind Maps and Revision Notes for Sale
- Что такое BIAS и зачем он ламповому усилителю?
- Home - English 111 - Research Guides at CUNY Lehman College
- Examples Of Biased News Articles (Updated 2024)
Bias in Generative AI: Types, Examples, Solutions
Connecting decision makers to a dynamic network of information, people and ideas, Bloomberg quickly and accurately delivers business and financial information, news and insight around the world. ГК «БИАС» занимается вопросами обеспечения и контроля температуры и влажности при хранении и транспортировке термозависимой продукции. Recency bias can lead investors to put too much emphasis on recent events, potentially leading to short-term decisions that may negatively affect their long-term financial plans. Новости Решения Банка России Контактная информация Карта сайта О сайте. Negativity bias (or bad news bias), a tendency to show negative events and portray politics as less of a debate on policy and more of a zero-sum struggle for power.
Искажение оценки информации в нейромаркетинге: понимание проблемы
Therefore, confirmation bias is both affected by and feeds our implicit biases. It can be most entrenched around beliefs and ideas that we are strongly attached to or that provoke a strong emotional response. Actively seek out contrary information.
Это слово уже обозначило отдельный жанр, так что когда речь заходит о просмотре дорам, мы сразу думаем о классическом сериале в один сезон около 16 серий, но бывают и исключения например, «Императрица Ки». Советуем тебе посмотреть хотя бы одну дораму, чтобы быть в теме. И у корейцев, кстати, есть любопытная тенденция: внутри групп, особенно с большим количеством участников, можно встретить такое понятие, как «ХХ line». Проще говоря, айдолов распределяют относительно их года рождения. Например, артисты 1997 года рождения будут называться 97 line.
Необычно, правда? А знаешь, почему именно его называют словом «макнэ»? Да просто потому что он самый младший участник группы.
Вейценбаум наряду с Хьюбертом Дрейфусом и Джоном Серлем вошел в историю ИИ как один из основных критиков утверждений о возможности создания искусственного мозга и тем более искусственного сознания, сравнимого с человеческим по своим возможностям. В переведенной на русский язык в 1982 году книге «Возможности вычислительных машин и человеческий разум» Вейценбаум предупреждал об ошибочности отождествления естественного и искусственного разума, основываясь на сравнительном анализе фундаментальных представлений психологии и на наличии принципиальных различий между человеческим мышлением и информационными процессами в компьютере. А возвращаясь к AI bias заметим, что более тридцати лет назад Вейценбаум писал о том, что предвзятость программы может быть следствием ошибочно использованных данных и особенностей кода этой самой программы. Если код не тривиален, скажем, не формула записанная на Fortran, то такой код так или иначе отражает представления программиста о внешнем мире, поэтому не следует слепо доверять машинным результатам.
А в далеко не тривиальных по своей сложности приложениях глубинного обучения алгоритмическая пристрастность тем более возможна. Она возникает в тех случаях, когда система отражает внутренние ценности ее авторов, на этапах кодирования, сбора и селекции данных, используемых для тренировки алгоритмов. Алгоритмическая пристрастность возникает не только вследствие имеющихся культурных, социальных и институциональных представлений, но и из-за возможных технических ограничений. Существование алгоритмической предвзятости находится в противоречии с интуитивным представлением, а в некоторых случаях с мистической убежденностью в объективности результатов, полученных в результате обработки данных на компьютере. Хорошее введение в тематику, связанную с алгоритмическими пристрастностями, можно найти в статье The Foundations of Algorithmic Bias [9]. В статье «Вот почему возникают ИИ-привязанности и почему с ними сложно бороться» [10] , опубликованной в феврале 2019 года в MIT Review, выделяются три момента, способствующие возникновению AI bias. Однако, как не странно, их не связывают когнитивными предвзятостями, хотя нетрудно заметить, что в корне всех трех лежат именно они.
Постановка задачи Framing the problem. Проблема состоит в том, что методами машинного обучения обычно хочется опередить нечто, не имеющее строгого определения. Скажем банк хочет определить кредитные качества заемщика, но это весьма размытое понятие и результат работы модели будет зависеть от того, как разработчики, в силу своих личных представлений, смогут это качество формализовать. Сбор данных для обучения Collecting the data. На данном этапе может быть два источника предвзятости: данные могут быть не репрезентативны или же могут содержать предрассудки. Известный прецедент, когда система лучше различала светлокожих по сравнению с темнокожими, был связан с тем, что в исходных данных светлокожих было больше. А не менее известная ошибка в автоматизированных рекрутинговых службах, которые отдавали предпочтения мужской половине, была связаны с тем, что они были обучены на данных, страдающих мужским шовинизмом.
Подготовка данных Preparing the data. Когнитивная предвзятость может просочиться при выборе тех атрибутов, которые алгоритм будет использовать при оценке заемщика или кандидата на работу. Никто не может дать гарантии объективности избранного набора атрибутов. Бороться с AI bias «в лоб» практически невозможно, в той же статье в MIT Review называются основные причины этого: Нет понятных методов для исправления модели. Если, например, модель страдает гендерной предвзятостью, то недостаточно просто удалить слово «женщина», поскольку есть еще огромное количество гендерноориентированных слов. Как их все обнаружить?
Онни Как и «нуна», это «старшая сестренка». Только так именно девушки обращаются к знакомым девушкам и подругам, которые немного старше них.
Оппа А так девушки в корейской культуре называют старших братьев. В последнее время так принято называть своего парня. Уверены, все слышали такое: «Оппа, саранхэ! Хен Это, как и «оппа», означает «старший брат», тольк так именно парни называют молодых людей старше себя. Эгьё Это корейское слово обозначает что-то милое, по-детски непосредственное. Им может быть жестикуляция, голос, выражение лица и т.
Термины и определения, слова и фразы к-поп или сленг к-поперов и дорамщиков
Учебники отражают предвзятость их авторов. Как и у учебников, у наборов данных есть авторы. Они собираются в соответствии с инструкциями, сделанными людьми. Представьте себе попытку обучить человека по учебнику, написанному предвзятым автором — вас удивит, если ученик в конце концов выразит некоторые из тех же предвзятых представлений? Чья это вина? В ИИ удивительно то, насколько он не предвзят в человеческой мере. Если бы у ИИ была своя личность и свои собственные мнения, он мог бы противостоять тем, кто подпитывает его примерами, из которых сочатся предрассудки. В итоге, все наоборот : алгоритмы машинного обучения и ИИ — это просто инструменты для воспроизведения тех шаблонов, которые вы им показываете.
Покажите им плохие примеры, и они будут их повторять. Предвзятость в смысле последних двух пунктов не исходит от алгоритмов машинного обучения и ИИ, она исходит от людей. Искажения исходят не от алгоритмов ИИ, они исходят от людей. Алгоритмы никогда не думают самостоятельно. На самом деле, они совсем не думают они — инструменты , поэтому мы, люди, должны думать за них. Если вы хотите узнать, что можно сделать с отклонениями в ИИ и углубиться в эту кроличью нору — вот вход.
Географическое положение региона позволяет ближневосточным перевозчикам играть важную роль на маршрутах, соединяющих Дальний Восток с Европой и Африкой, а также между СНГ и Африкой. Правительства стран региона поддерживают более открытый доступ для авиации и инвестируют развитие авиационной инфраструктуры. В течение следующих трех десятилетий только в проекты строительства аэропортов будет вложено 48 млрд.
Проще говоря, айдолов распределяют относительно их года рождения. Например, артисты 1997 года рождения будут называться 97 line. Необычно, правда? А знаешь, почему именно его называют словом «макнэ»? Да просто потому что он самый младший участник группы. Еще есть стереотип, что раз он моложе всех, то должен быть миленьким и тихим. Но порой все происходит совершенно наоборот! Если младшенький начинает троллить и издеваться над старшими, то он превращается в «злого макнэ».
Фанчант fanchant Слова, которые фанаты подпевают во время выступления айдолов. Фансервис fan service Кумир ведёт себя так, как хотят его фанаты. Другими словами, у хубэ меньше опыта и они должны проявлять уважение к сонбэ. Ц[ ] Центр centre Участник группы, чьё появление в клипах или на различных выступлениях является наибольшим по сравнению с другими участниками.
Биас — что это значит
A bias incident targets a person based upon any of the protected categories identified in The College of New Jersey Policy Prohibiting Discrimination in the Workplace/Educational Environment. Bias) (Я слышал, что Биас есть и в Франции). это систематическое искажение или предубеждение, которое может влиять на принятие решений или оценку ситуации. Explore how bias operates beneath the surface of our conscious minds, affecting our interactions, judgments, and choices. BBC Newsnight host Evan Davis has admitted that although his employer receives thousands of complaints about alleged editorial bias, producers do not act on them at all.
Что такое технология Bias?
Q3: Can biased reporting contribute to societal polarization? A3: Yes, biased reporting can reinforce existing beliefs, deepen divisions, and hinder constructive dialogue. Q4: What steps can individuals take to mitigate the impact of biased news? A4: Practicing media literacy, diversifying news sources, and critically analyzing information can help mitigate the influence of biased reporting. Conclusion In a media landscape rife with biased narratives, cultivating media literacy is paramount. By recognizing the various forms bias can take and honing critical evaluation skills, individuals can navigate news consumption more effectively.
Эльза Саввина. Анна Таберко.
Это просто невероятно! Masha Kim. Твой биас-Чимин? Вишнёвый Бриз. ТэХёёёён Это судьбаааа. Russian ARMY. Ким Тэ Кекеке.
Глазачева Мария. Что значит быть предвзятым или иметь предвзятое мнение или предвзятый взгляд? Википедия как всегда даст лучший и самый быстрый ответ. Предвзятость является непропорциональным склонением в пользу или против одной вещи, лица или группы по сравнению с другой, как правило, способом, который считается несправедливым. Предубеждения можно изучить, наблюдая за культурными контекстами. Про него я кстати писала статью, почекайте если интересно. Гукки мой биас уже давно.
Я его люблю и по сей день. Мне нравится как его голос, так и внешность почекайте мои стать и еще кое что найдете. Конечно же зайка Намджун. Он мой биас с не давних времен. Я так же люблю и Шугаря и Хосока и Джина и Чимина и Тэхена карочн всех :joy: Но их я люблю особенно, даже если выделять троицу из списка "мои любимчики из BTS " то это сложно, но я все же выберу Чонгука, Намджуна и Шугу Да простят меня парни :joy:. Смещение bias и разброс variance Выбор биаса всегда сложная задача, особенно, если каждый участник чем-то цепляет твое внимание. Только зарегистрированные пользователи могут участвовать в опросе.
Войдите , пожалуйста. Bias — фамилия и топоним:. Материал из Википедии — свободной энциклопедии. Bias — фамилия и топоним: Фамилия Биас, Антон [de] — — немецкий политик, социал-демократ. Биас, Фанни — — артистка балета, солистка Парижской Оперы — , является одной из первых танцовщиц, освоивших танец на пуантах. Биас-Фортис — муниципалитет в штате Минас-Жерайс Бразилия. Если вы попали сюда из другой статьи Википедии, пожалуйста, вернитесь и уточните ссылку так, чтобы она указывала на нужную статью.
Что такое нейрон смещения? Сегодня мы поговорим о таком важном аспекте астросъемки как калибровочные кадры. Наверняка при изучении теории астрофотографии вы натыкались на такие термины как дарки, флеты, биасы или офсеты. Если для вас эти термины — что-то новое, то ознакомьтесь с этой статьей, если же вы в курсе что это, то все равно ознакомьтесь — возможно некоторых тонкостей вы не знали. Начнем с главного — что такое калибровочные кадры? Калибровочными называют те кадры, которые снимаются дополнительно перед или после основной съемки.
Within a story, some details can be ignored, others can be included to give readers or viewers a different opinion about the events reported. Only by comparing news reports from a wide variety of sources can this type of bias be observed. Bias through placement Where a story is placed influences what a person thinks about its importance. Stories on the front page of the newspaper are thought to be more important than stories buried in the back. Many television and radio newscasts run stories that draw ratings first and leave the less appealing for later. Coverage of the Republican National Convention begins on page 26. Bias by photos, captions, and camera angles Pictures can make a person look good, bad, silly, etc.
Почему так сложно его побороть? Что такое "предвзятость искусственного интеллекта" AI bias? С чем связано возникновение этого явления и как с ним бороться? В материале, подготовленном специально для TAdviser, на эти вопросы отвечает журналист Леонид Черняк. В основе всего того, что является практикой ИИ машинный перевод, распознавание речи, обработка текстов на естественных языках, компьютерное зрение , автоматизация вождения автомобилей и многое другое лежит глубинное обучение. Это подмножество машинного обучения , отличающееся использованием моделей нейронных сетей , о которых можно сказать, что они имитируют работу мозга, поэтому их с натяжкой можно отнести к ИИ. Любая модель нейронной сети обучается на больших наборах данных , таким образом, она обретает некоторые «навыки», но то, как она ими пользуется - для создателей остается не ясным, что в конечном счете становится одной из важнейших проблем для многих приложений глубинного обучения. Причина в том, что такая модель работает с образами формально, без какого-либо понимания того, что она делает. Является ли такая система ИИ и можно ли доверять системам, построенным на основе машинного обучения? Значение ответа на последний вопрос выходит за пределы научных лабораторий. Причина высокого интереса к AI bias объясняется тем, что результаты внедрения технологий ИИ в ряде случаев нарушают принципы расового и гендерного равенства Вот почему за последние пару лет заметно обострилось внимание средств массовой информации к явлению, получившему название AI bias. Его можно перевести как «необъективность ИИ» или «пристрастность ИИ». Причина столь высокого интереса к AI bias объясняется тем, что результаты внедрения технологий ИИ в ряде случаев задевают основные ценности современного общества. Они проявляются в нарушении таких важных принципов как расовое и гендерное равенства. Внешне AI bias проявляется в том, что многие аналитические системы, созданные на основе глубинного обучения, неожиданным образом демонстрируют склонность к принятию, скажем так, пристрастных выводов, таких, которые в последующем могут привести к ошибочным решениям, сделанным на их основе. Решения, страдающие AI bias, стали причиной общественных возмущений в связи с несправедливостью некоторых действий пенитенциарной системы США по отношению к афро-американцам, они были вызваны ошибками в распознавании лиц этнических меньшинств. Хорошо известен скандал с запуском корпорацией Microsoft голосового помощника Tay, вскорости замененного на Zo [6]. Игорь Лейпи, ГК Softline: Объем поставок российских операционных систем в ближайшие годы увеличится как минимум вдвое Проявление относительно несложными системами якобы «человеческих качеств» оказалась лакомым куском для тех, кто склонен антропоморфизировать ИИ. Вполне естественно, что первыми на возможные пагубные последствия AI bias обратили внимание философствующие защитники «Азиломарских принципов искусственного интеллекта» [7]. Среди этих 23 положений есть совершенно здравые с 1 по 18 , но другие с 19 по 23 , принятые под влиянием Илона Маска , Рея Курцвейла и покойного Стивена Хокинга носят, скажем так, общеразговорный характер. Они распространяются в область сверхразума и сингулярности, которыми регулярно и безответственно пугают наивное народонаселение. Возникают естественные вопросы — откуда взялась AI bias и что с этой предвзятостью делать? Справедливо допустить, что предвзятость ИИ не вызвана какими-то собственными свойствами моделей, а является прямым следствием двух других типов предвзятостей — хорошо известной когнитивной и менее известной алгоритмической. В процессе обучения сети они складываются в цепочку и в итоге возникает третье звено — AI bias.
How investors’ behavioural biases affect investment decisions
Что такое биас? Биас — это склонность человека к определенным убеждениям, мнениям или предубеждениям, которые могут повлиять на его принятие решений или оценку событий. это источник равномерного напряжения, подаваемого на решетку с целью того, чтобы она отталкивала электроды, то есть она должна быть более отрицательная, чем катод. The understanding of bias in artificial intelligence (AI) involves recognising various definitions within the AI context. это систематическое искажение или предубеждение, которое может влиять на принятие решений или оценку ситуации. Происхождение: bias— звучит как "бАес", но среди фанатов к-поп более распространен неправильный вариант произношения — "биас".
What Is News Bias?
Explore how bias operates beneath the surface of our conscious minds, affecting our interactions, judgments, and choices. Tags: Pew Research Center Media Bias Political Bias Bias in News. news and articles. stay informed about the BIAS. Сервисы БИАС объективно повышают эффективность при выдаче займов/кредитов и существенно снижают бизнес риски, включая возможность взыскания на любом этапе. Происхождение: bias— звучит как "бАес", но среди фанатов к-поп более распространен неправильный вариант произношения — "биас". Quam Bene Non Quantum: Bias in a Family of Quantum Random Number.
Evaluating News: Biased News
О чем думает большинство людей? О том, что наш опыт искажает наше восприятие и реакцию на информацию, особенно в контексте несправедливого отношения к другим людям и плохих поступков вообще. Некоторые люди используют это слово как синоним предрассудков. У термина «искажение» много значений, и некоторые из них более острые, чем другие. О чем идет речь в области машинного обучения и ИИ?
Машинное обучение и ИИ — молодые дисциплины, и они имеют привычку заимствовать термины откуда угодно иногда, как кажется, не обращая внимания на исходный смысл , поэтому, когда люди говорят об отклонениях в ИИ, они могут ссылаться на любое из определений, приведенных выше. Представьте, что вы увидели витиеватую научную статью, обещающую исправить отклонения в ИИ, а в итоге оказывается после прочтения нескольких страниц , что отклонения, о которых они говорят, относятся к статистике. Тем не менее, модно говорить о том, что привлекает внимание средств массовой информации. Речь о жестоких отклонениях человеческого фактора.
Увы, мы отталкиваемся от всевозможных предубеждений прошлого опыта, искажающего наши восприятие и реакции , когда мы читаем и пишем! Весь смысл ИИ в том , чтобы дать вам возможность объяснить свои пожелания компьютеру на примерах данных! Каких примерах? Это ваш выбор в качестве учителя.
Датасеты — это учебники, по которым ваш ученик может учиться.
Monthly visits per person vs Reliability Image by Author Another attempt at trying to see evidence of an echo-chamber effect. Some websites such as the Palmer Report have a very high rate of repeated visits. Unfortunately for neutrality, several of these are assessed to be very unreliable, if not extremist. It also shows that most of the highly reliable news sources are not visited that frequently. The one exception to that is Weather. The constant anger, arguments, and contempt we see in our everyday lives spurred me on to gather and analyze this dataset.
And yet, I find myself now with even more questions than I was able to answer in creating this article. How can we stop such bias from infecting the national discourse? Where is the line between allowing propaganda to permeate freely versus free speech? Is this an absolute argument, or can we somehow find a line to discern the truth from fiction? Can we please stop listening to tinfoil hat-wearing maniacs? As you can see from some of the data above, there are many sites that are clearly spreading false information, opinion, and extremism. This does not bring us together.
Everyone can benefit from combining data with a safe, anonymized approach, and such technological approaches exist today. If we are thoughtful and deliberate, we can remove the existing biases as we construct the next wave of AI systems for healthcare, correcting deficiencies rooted in the past. Let us ensure that legacy approaches and biased data do not virulently infect novel and incredibly promising technological applications in healthcare. Such solutions will enable true representation of unmet clinical needs and elicit a paradigm shift in care access to all healthcare consumers. Do I qualify? Follow me on LinkedIn. Check out my website.
Постановка задачи Framing the problem.
Проблема состоит в том, что методами машинного обучения обычно хочется опередить нечто, не имеющее строгого определения. Скажем банк хочет определить кредитные качества заемщика, но это весьма размытое понятие и результат работы модели будет зависеть от того, как разработчики, в силу своих личных представлений, смогут это качество формализовать. Сбор данных для обучения Collecting the data. На данном этапе может быть два источника предвзятости: данные могут быть не репрезентативны или же могут содержать предрассудки. Известный прецедент, когда система лучше различала светлокожих по сравнению с темнокожими, был связан с тем, что в исходных данных светлокожих было больше. А не менее известная ошибка в автоматизированных рекрутинговых службах, которые отдавали предпочтения мужской половине, была связаны с тем, что они были обучены на данных, страдающих мужским шовинизмом. Подготовка данных Preparing the data. Когнитивная предвзятость может просочиться при выборе тех атрибутов, которые алгоритм будет использовать при оценке заемщика или кандидата на работу.
Никто не может дать гарантии объективности избранного набора атрибутов. Бороться с AI bias «в лоб» практически невозможно, в той же статье в MIT Review называются основные причины этого: Нет понятных методов для исправления модели. Если, например, модель страдает гендерной предвзятостью, то недостаточно просто удалить слово «женщина», поскольку есть еще огромное количество гендерноориентированных слов. Как их все обнаружить? Стандартные практики обучения и модели не принимают в расчет AI-bias. Создатели моделей являются представителями определенных социальных групп, носителями тех или иных социальных взглядов, их самих объективизировать невозможно. А главное, не удается понять, что такое объективность, поскольку компьютерные науки с этим явлением еще не сталкивались. Какие же выводы можно сделать из факта существования феномена AI bias?
Вывод первый и самый простой — не верить тем, кого классик советской фантастики Кир Булычев называл птицами-говорунами, а читать классику, в данном случае работы Джозефа Вейценбаума, и к тому же Хьюберта Дрейфуса и Джона Серля. Очень способствует развитию трезвости сознания и пониманию роли человека в сложных системах. Вывод второй, следующий из первого — системы, построенные на принципах глубинного обучения не обладают ИИ, это ни что иное, как новый и более сложный, чем программирование , способ использования компьютеров в качестве инструмента для анализа данных. Не исключено, что мощности современных и будущих компьютеров позволят предавать условия и методы решения задач еще в каких-то иных, отличных от программирование формах. Сегодня это обучение с учителем, а завтра могут быть и другие подходы к машинному обучению или что-то новое, более совершенное. Вывод третий, возможно самый важный — компьютер был и будет инструментом для расширения интеллектуального потенциала человека, и главная задача заключается не в создании искусственного разума AI, а в развитии систем, которые называют Intelligence amplification усиление интеллекта , Сognitive augmentation когнитивное усиление или Machine augmented intelligence машинное усиление интеллекта. Этот путь хорошо и давно известен.
Словарь истинного кей-попера
Лирическое отступление: p-hacking и publication bias. «Фанат выбирает фотографию своего биаса (человека из группы, который ему симпатичен — прим. Проверьте онлайн для BIAS, значения BIAS и другие аббревиатура, акроним, и синонимы.