В распоряжении ученых нет реактора размером с Солнце, тяготение которого сжимает плазму так, что она становится в 20 раз плотнее стали.
Содержание
- Преимущества и недостатки термоядерных реакторов
- В России запущена уникальная плазменная установка | Новости электротехники | Элек.ру
- Росатом Госкорпорация «Росатом» ядерные технологии атомная энергетика АЭС ядерная медицина
- Zap Energy зажгла в прототипе термоядерного реактора нового поколения FuZE-Q первую плазму / Хабр
Британский термоядерный реактор сгенерировал первую плазму
Команда Zap Energy добилась быстрого прогресса с тех пор, как эта технология вышла за пределы лаборатории, особенно с недавним ростом команды и инвестиций». В термоядерном реакторе Zap Energy используется метод Z-pinch, когда плазменный шнур, несущий электрический ток, генерирует магнитное поле, которое удерживает и сжимает — «зажимает» — плазму. Условия для термоядерной реакции Чем больший ток разряда Z-Pinch, тем горячее и плотнее будет плазма, поэтому переход к все более и более высоким токам является ключевой частью продвижения синтеза Z-Pinch. Прошлой осенью Zap Energy достигла тока в 500 кА и пределов своих текущих аппаратных возможностей, и теперь начнет работу на своей платформе следующего поколения, известной как FuZE-Q, где в конце этого года установит ультрасовременный блок питания. Для коммерческого реактора Q должно быть порядка 15-20 и ток разряда в районе 1,5-2 миллионов ампер. Электрический ток является ключевым фактором выработки энергии при Z-Pinch синтезе, и эксперименты Zap Energy неуклонно продвигаются к получению энергии, необходимой для коммерческого синтеза.
Основатели Zap Energy — слева направо: главный технический директор Брайан А.
Такие установки нового поколения на базе импульсных плазменных ускорителей наряду с токамаками могут рассматриваться как один из вариантов внешнего нейтронного источника для гибридного термоядерного реактора, особенно на начальной стадии разработки его компонентов. Высокая энергетическая эффективность, компактность и относительно низкая стоимость по сравнению с ядерными реакторами делают их также конкурентоспособными при производстве ряда изотопов для ядерной медицины, особенно короткоживущих. Для справки: Разрабатываемый источник на базе столкновения сгустков дейтериевой плазмы должен обеспечить получение нейтронного выхода реакции синтеза 1013 нейтронов за импульс в 2023 году. При условии завершения реконструкции энергетической базы питания плазменных ускорителей в 2023 году, к концу 2024 года нейтронный выход планируется увеличить до 1014 нейтронов за импульс. Нейтроны — это нейтральные частицы, способные гораздо глубже проникать в материалы, чем пучки ионов или рентгеновские лучи.
Катушка PF1 относится к элементам, необходимым для получения первой плазмы на установке, сообщает портал «Атомная энергия 2. Соглашение об изготовлении и поставке катушки PF1 было заключено еще в 2011 г. Это одна из двух катушек полоидального поля, изготовление которых происходит в странах-участницах проекта. Остальные четыре ввиду большого размера собираются непосредственно на площадке сооружения будущей установки. Ранее сообщалось, что завершена отправка очередной партии российского электротехнического оборудования для термоядерного реактора ИТЭР — первого в мире международного термоядерного экспериментального реактора нового поколения, строящегося усилиями международного сообщества в Провансе. Задача проекта заключается в демонстрации научно-технологической осуществимости использования термоядерной энергии в промышленных масштабах, а также в отработке необходимых для этого технологических процессов. По его данным, тела были найдены со связанными руками и зашитыми животами, что вызывает подозрения в изъятии внутренних органов. Тела завернуты в нейлоновые черно-синие саваны, которые отличаются по цвету от саванов, используемых в Газе, передает ТАСС. Представители чрезвычайных служб считают, что это могло быть сделано с целью повышения температуры тел для ускорения процесса их разложения и сокрытия улик. Также агентство отмечает, что на некоторых телах обнаружены следы огнестрельных ранений в голову. Ранее палестинские экстренные службы обнаружили на территории медицинского комплекса «Насер» в Хан-Юнисе массовое захоронение с 50 телами погибших. Авиация, ракетные войска и артиллерия поразили эшелон у поселка Удачное в ДНР, указало ведомство в своем Telegram-канале. Кимаковский отметил, что отступление вооруженных сил Украины произошло «на одном из наиболее крупных и важных укрепрайонов». Напомним, российские силы прорвали оборону ВСУ и ворвались в Красногоровку. По информации местных Telegram-каналов, агрессором является Богдан Ш. На видеороликах, которые сам блогер публикует в социальных сетях, видно, как он нападает на прохожих, бьет их по лицу и издевается над ними. Сообщается, что от его действий уже пострадали около 50 человек. Мотивы своих поступков он не объясняет. Помимо видео избиений, в блоге Ш. Ранее в петербургском метро пожилой мужчина напал с ножом на серебряного призера чемпионата России по фигурному катанию Владислава Дикиджи. Экс-сотрудник французской контрразведки Николя Чинкуини утверждает, что определение «наемник» в Уголовном кодексе Франции слишком узкое, что позволяет им избежать наказания. МИД Франции отрицает наличие в рядах ВСУ французских наемников, называя заявления об этом якобы «российской дезинформацией». Чинкуини объясняет это тем, что понятие «наемник» во Франции табуировано, так как за это грозит уголовное преследование, передает РИА «Новости».
При такой высокой температуре кинетическая энергия ядер становится достаточной, чтобы кулоновский барьер был преодолён и термоядерная реакция «зажглась». После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность. Ожидается, что термоядерная реакция станет самоподдерживающейся. Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток. За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы. Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру. В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с. Всего гиротронов 24. Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон. Все гиротроны предполагалось поставить в ITER в начале 2018 года [27]. Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза. Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм. Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28]. Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля. При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ. Эти атомы, сталкиваясь с частицами плазмы, передают им свою кинетическую энергию и тем самым нагревают плазму. Поскольку разогнать в электрическом поле нейтральный атом невозможно, его нужно сперва ионизировать. Затем ион по сути, ядро дейтерия разгоняется в циклотроне до необходимой энергии.
Эра термоядерного синтеза
Сахарова, который предложил использовать магнитное поле для удержания плазмы с целью достижения управляемого термоядерного синтеза. Сейчас учёные продвигаются в решении различных проблем и технических вопросов, связанных с разработкой будущего термоядерного реактора.
Его встречал председатель Шанхайского партийного комитета Чэнь Цзинин. Встреча главы Госдепа китайской стороной оказалась весьма сдержанной. Одна из них действительно заключается в эффективности российских дронов против бронированной техники, сказал газете ВЗГЛЯД военный эксперт Александр Бартош.
Если говорить о танках Abrams, то больше всего проблем им создают «Ланцеты». За время спецоперации они продемонстрировали высокую эффективность в борьбе с бронированными целями. Так как аппарат работает в паре с дроном-разведчиком, беспилотник способен сначала выявить цель, а затем нанести удар аккурат в уязвимое место танка», — сказал Александр Бартош, член-корреспондент Академии военных наук. Впрочем, по мнению собеседника, российские дроны хотя и являются основной причиной отвода Abrams, есть еще несколько немаловажных аспектов. Эксперт допускает, что решение было принято также из-за складывающегося не в пользу ВСУ положения на поле боя.
Пентагон попросту опасается, что кадры с горящей американской техникой, которую они представляют как неуязвимую, нанесут существенный ущерб коммерческим интересам США», — уточнил Бартош. Кроме того, ВСУ могут на время спрятать танки в расчете на то, что ими можно будет воспользоваться при отражении полномасштабного наступления ВС России, добавил спикер. По словам Бартоша, противник опасается продвижения российских военных в районе Одессы и Харькова. Как показали предыдущие месяцы, мы успешно уничтожаем эту технику», — подчеркнул военный эксперт. Существует и третья причина отвода танков.
Собеседник не исключает, что в Пентагоне решили продумать более надежную систему защиты от дронов. При этом ранее противник не прибегал к сооружению тех навесов, которые российские танкисты делают для наших танков. Бартош напоминает, что до определенного момента на Западе высмеивали наши конструкции, получившие прозвище «мангал». Если раньше они считали защитные конструкции малоэффективным средством и не хотели демонстрировать свою слабость перед возможными атаками беспилотников, то теперь они начнут копировать российский опыт», — считает аналитик. По информации Associated Press , одной из причин такого решения стала возросшая возможность российских дронов быстро обнаруживать и уничтожать эту технику.
AP отмечает, что на брифинге 25 апреля высокопоставленный представитель Пентагона заявил — распространение беспилотников в зоне боевых действий на Украине означает, что «нет открытой местности, по которой вы могли бы просто проехать, не опасаясь быть обнаруженными». Зампредседателя американского Объединенного комитета начальников штабов адмирал Кристофер Грейди подтвердил отвод Abrams от линии соприкосновения, добавив, что США вместе с украинской стороной будут работать над тем, чтобы изменить тактику. Позднее в Киеве также признались в выводе Abrams с поля боя. Как заявил депутат Верховной рады Украины Максим Бужанский, украинские военные перестали использовать на передовой американские танки из-за уязвимости перед российскими беспилотниками. Недвижимость в центре Москвы, площадью 317 кв.
Использование установки позволит испытать прототипы теплозащитной облицовки камеры для будущего термоядерного реактора ИТЭР, которые создаются в России", - сказали ТАСС в университете. НИУ "МЭИ" также исследует методы охлаждения при длительной эксплуатации компонентов будущего экспериментального реактора, расположенных внутри камеры, уточнили в вузе. Установка ПЛМ представляет собой магнитную ловушку для получения и нагрева плазмы.
Термоядерный реактор HL-2M, который ученые еще называют "искусственным солнцем", имеет тороидальную камеру с магнитными катушками, о чем также указывает его название Tokamak. Катушки реактора могут генерировать очень сильное комбинированное магнитное поле, что и позволяет так долго удерживать разогретую плазму. В результате нагрева материала в камере реактора до очень высокой температуры, он превращается в плазму, при этом от атомов вещества начинают отделяться электроны. Далее электроны, представляющие собой свободно движущиеся заряженные частицы, удерживаются сильным магнитным полем.
Компактный реактор установил рекорд по нагреву плазмы
Telegram: Contact @plazma_station | Сварка защитной оболочки плазменного реактора установки плазменной газификации ПЛАЗАРИУМ MGS-100. |
Впервые в мире термоядерную плазму протестировали в токамаке нового поколения | • Термоядерный реактор Zap сначала вдувает газ в камеру, затем мощный импульс энергии ионизирует его в плазменную нить, проводящую сверхсильный ток. |
#Плазменный_реактор_Мехрана_Кеше.День №3 Отслоился #нано_слой_плазма_стала_четкой
Личным рекордом по длительному удержанию разогретой плазмы может похвастаться термоядерный реактор под названием Experimental Advanced Superconducting Tokamak (EAST. Термоядерный реактор основан на реакции синтеза изотопов водорода, поэтому он гораздо более экологичный и безопасный по сравнению с существующими атомными реакторами. Плазменный двигатель — разновидность электрического ракетного двигателя (ЭРД), расходуемое вещество которого получает ускорение в состоянии плазмы.
Эра термоядерного синтеза
НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР | Это одна из шести катушек полоидального поля в магнитной системе, которая служит для удержания плазмы в реакторе ИТЭР. |
Эра термоядерного синтеза | В комплексе термоядерного синтеза NIF обнаружили аномальные энергии ионов плазмы. |
Компактный реактор установил рекорд по нагреву плазмы - Hi-Tech | Ионные температуры свыше 5 кэВ ранее не достигались ни в одном СТ и были получены только в гораздо более крупных устройствах со значительно большей мощностью нагрева плазмы. |
Прототип российского термоядерного реактора: для чего он необходим? | Владелец реактора — Институт физики плазмы при Академии наук КНР. |
Проблема термоядерного реактора оказалась преимуществом для плазменного двигателя | Собираем плазменные реакторы Кеше. Изготавливаем Тензорные кольца, гармонизаторы и нановосьмерки. |
Меню сайта
Достоинство этого метода заключается в том, что его можно будет применять непосредственно в реакторе, замеряя количество поглощенного водорода между плазменными разрядами. Катушка полоидального поля нужна для удержания плазмы в термоядерном реакторе ИТЭР. Термоядерный реактор ИТЭР возводят уже несколько десятков лет недалеко от Марселя. Указ об этом подписал президент Владимир Путин Федеральный проект "Термоядерные и плазменные технологии".
В РФ успешно получена первая термоядерная плазма на токамаке Т-15МД
В рамках эксперимента внутри реактора плазму разогрели до 50 миллионов градусов Цельсия. Специалисты Национального исследовательского университета "МЭИ" запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции.
Российские учёные разработали новый материал для термоядерного реактора
Схема плазмы в сферическом токамаке. Фото: sciencealert. Это тороидальная установка со сферической вакуумной камерой. В ней формируется и удерживается плазма, пишет ScienceAlert.
Термоядерный синтез считается наиболее перспективным и безопасным способом добычи энергии. Атомы легких ядер сталкиваются, чтобы образовать ядра тяжелых атомов. Проведенные за последние 40 лет исследования показали, что наиболее перспективный способ управления реакциями синтеза — использование установок типа токамак ТОроидальная КАмера с МАгнитной Катушкой , изобретенных в СССР в 60-е годы. Чтобы изучать реакции синтеза и отрабатывать основные принципы управления реактором, сейчас строят Международный термоядерный экспериментальный реактор ИТЭР во Франции. Он поможет продемонстрировать возможность коммерческого использования реактора. Токамак Глобус-М2 Токамаки представляют собой тороидальную камеру похожую на бублик с магнитными катушками. Внутрь такой конструкции помещают газ, например, изотопы водорода тритий и дейтерий, после чего нагревают до миллионов градусов Цельсия.
При этом образуется газ из заряженных частиц ионов и электронов — плазма. Разогретые ионы сталкиваются друг с другом, благодаря чему выделяется энергия, превышающая затраченные на нагревание ресурсы.
В поселке Металлострой на испытательной площадке госкорпорации «Росатом» приступили к тестированию оборудования для международного проекта ИТЭР. Ккрупнейший научно-технический проект современности должен дать человечеству принципиально новый источник мирной термоядерной энергии. Пуск реактора и получение на нем первой плазмы планируется в 2025 году. Будущее мировой энергетики рождается в Металлострое. За неприступными стенами научно-исследовательского института электрофизической аппаратуры тестируют одну из деталей первого в мире экспериментального термоядерного реактора.
С платформы, которая установлена над вакуумной камерой, хорошо виден элемент дивертора — узла, который в будущей термоядерной установке будет отвечать за очистку плазмы от ненужных примесей. По команде деталь медленно задвигается в камеру. Как только огромная, как бы уложенная на бок кастрюля оказывается закупоренной, внутри начинается электронная бомбардировка.
В самом распространенном типе реактора, который у нас в стране называется ВВЭР водо-водяной энергетический реактор , а на Западе PWR pressurized water reactor , в качестве теплоносителя используется вода. При этом в активной зоне реактора вода нагревается до 360 С — однако не закипает и не превращается в пар, поскольку находится под огромным давлением порядка 170 атмосфер. Одновременно, под влиянием порождаемой ядерным топливом радиации в воде происходит процесс радиолиза, в результате которого образуются химически активные ионы и радикалы продукты развала молекул воды. Итак, вода, окружающая топливный элемент в реакторе, нагрета до высокой температуры, находится под огромным давлением и при этом насыщена химически активными частицами.
Надо ли говорить, насколько агрессивна такая среда по отношению ко всему, с чем она соприкасается? Особенно несладко приходится как раз оболочкам твэлов. Водная среда наносит ей двойной удар: кислород создает подверженный растрескиванию оксидный слой на поверхности оболочки, а водород, проникая в цирконий, делает его более хрупким, что тоже способствует развитию трещин. Из-за недостаточной коррозионной стойкости оболочки, топливо отрабатывает лишь небольшую долю своего ресурса, прежде чем твэл приходится извлекать из реактора. А повышение мощности реакторов вообще выглядит несбыточной мечтой, поскольку оно сопряжено с увеличением температуры активной зоны реактора, что неизбежно приведет к резкому ускорению коррозионных процессов в оболочках твэлов. Таким образом, перспективы развития всего направления легководных реакторов при нынешних материалах оболочек твэлов представляются туманными. Ученые всего мира начали работать над усовершенствованием материалов оболочек еще в середине XX века, и эти работы продолжаются до сих пор.
Разрабатываются новые коррозионностойкие циркониевые сплавы, способные эффективнее сопротивляться агрессивному воздействию теплоносителя. Кроме того, рассматриваются различные варианты обработки поверхности циркониевых оболочек твэлов и нанесения на них защитных покрытий.
Петербургские инженеры испытывают детали для экспериментального термоядерного реактора
После первого запуска британский термоядерный реактор выпустил расплавленную массу заряженного газа. Вот что касается ее плазменного тока (течения электрического тока по плазме), тут проектные параметры действительно больше, чем на других российских токамаках. Плазменный физический реактор – сложное оборудование, обеспечивающее нормальное выполнение химической реакции. Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. Это связано с высокой плазменно-тепловой нагрузкой, которая будет оказывать воздействие на стенки камеры будущего реактора-токамака при длительной эксплуатации.