Новости гипотеза рнк мира

Понятно, что существенный аргумент гипотезы РНК-мира состоит в том, что эта гипотеза создает "простой" переходный мостик между абиогенной органикой и клетками. В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами). Гипотеза РНК-мира заключается в том, что первые репликаторы на Земле представляли собой РНК-молекулы, которые могли инициировать собственное воспроизведение без помощи белковых ферментов.

Ученые нашли новые доказательства РНК-мира

Это означает, что молекулы РНК с трудом отделяются друг от друга и действуют как матрицы для дальнейшей репликации в отсутствие ферментов. У Кришнамурти теперь есть экспериментальные доказательства, чтобы продемонстрировать, что жизненный процесс на Земле мог начаться с молекул, которые выглядели как смесь РНК и ДНК. В последнем выпуске Nature Chemistry он и первый автор исследования, Субхенду Боумик, доктор философии, также из Научно-исследовательского института Скриппса, сообщают, что эти смешанные молекулы образуют нестабильные дуплексы и имеют меньшую аффинность к себе. Фактически, исследователи смогли сформировать эти химеры в лабораторных условиях и показать, что они обладают потенциалом для репликации РНК и ДНК, и, таким образом, образованные РНК и ДНК способны воспроизводить химеры. Такое поведение может привести к кросс-каталитической амплификации РНК и ДНК - ключевому шагу к эволюции сложных организмов.

DOI: 10.

На праймер отжигается матрица коричневый для синтеза участка РНК, превращающего шпильку с биотином в рибозим — молекулу РНК типа «головка молота» hammerhead , которая разрезает сама себя. Полимераза синтезирует hammerhead голубой на матрице, и вся конструкция захватывается на магнитные шарики со стрептавидином. Если hammerhead успешно синтезирован а в нем есть участок, крайне чувствительный к ошибкам , он вносит разрез в оранжевый участок, полимераза высвобождается, подвергается обратной транскрипции и ПЦР-амплификации; затем с помощью транскрипции синтезируются дочерние молекулы полимеразы, и цикл повторяется. Десятки раундов эволюции в этой системе улучшили свойства РНК-полимеразы, существенно сократили время получение полноразмерного продукта. Однако точность синтеза РНК оставалась недостаточно высокой, и лишь незначительная доля молекул лигазы, которые они синтезировали, обладала каталитической активностью.

Авторы отмечали, что понадобится более строгий отбор, чтобы получить РНК-полимеразы с высокой точностью, которые смогли бы синтезировать более длинные молекулы. В новой работе Джойс и соавторы получили РНК-полимеразы, способные синтезировать целую молекулу РНК-лигазы с достаточно низким уровнем ошибок. Стратегия эволюции, которая использовалась в эксперименте, аналогична вышеописанной.

Используя химическую систему на основе цианистого водорода, имитирующую среду ранней стадии развития Земли, исследователи создали четыре основания, своего рода «буквы» генетического алфавита. Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки. Удивительно, что из четырех молекулярных оснований два были в форме, обнаруженной в ДНК, а два другие — в виде, существующем в РНК. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно.

Соединенные вместе они образуют последовательности генов, которые клетки переводят в белки. Удивительно, что из четырех молекулярных оснований два были в форме, обнаруженной в ДНК, а два другие — в виде, существующем в РНК. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Стоит отметить, что ученые, не участвовавшие в исследовании, ставят под сомнение достоверность условий, созданных для исследования.

Ученые обнаружили новые доказательства гипотезы РНК-мира

Сторонники гипотезы РНК-мира считают, что на начальном этапе зарождения жизни на нашей планете возникли автономные РНК-системы, которые катализировали «метаболические» реакции (например, синтеза новых рибонуклеотидов) и самовоспроизводились. Главная/Биология/Моделирование происхождения жизни: Новые доказательства существования "мира РНК". Ученые из Института биологических исследований Солка провели исследования, подтверждающие гипотезу о мире РНК. В новом прорыве, который может кардинально изменить наше понимание происхождения жизни на Земле, исследователи из Брукхейвенской национальной лаборатории обнаружили свидетельства гипотезы РНК-мира. Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. Сегодня Зоя Андреева рассматривает гипотезу РНК-мира, необязательно верную, но способную свергнуть центральную догму.

Ученые описали, как появилась РНК

Однако, РНК-мир обладал и крайне неприятной слабостью. Все вышеупомянутые чудеса происходили в пробирке. Смоделировать естественные условия, в которых все нужные вещества собрались бы в одном месте в необходимой для протекания реакции синтеза РНК концентрации, оказалось невозможно. Надежды, связываемые с «чёрными курильщиками» зарождение жизни в горячих ключах , не оправдывались. Жирный налёт на внутренней поверхности жерл подводных гейзеров представлял собой нечто похожее… но, всё-таки, не то. Более того, обнаружилось, что часть необходимых реагентов в нём отсутствует в принципе, и попасть в эту среду никак не может, ибов воду поступает не из мантии планеты, а из атмосферы. Косвенно, РНК-мир находился и в противоречии свидетельствам палеонтологии. Если жизнь изначально возникла в глубинах, в перенасыщенных едкой химией горячих ключах, — то есть, в условиях экстремальных, то почему находки свидетельствуют об обратном? Согласно летописи , жизнь очень долго и не охотно распространялась из идиллической среды тропических мелководий в условия даже чуть более суровые.

Если наука признает чудом все, что выходит за рамки естественных объяснений и ответов, то подобных необъяснимых в природе явлений — бесконечное множество. Если наука отказывается признать все эти феномены, феноменами, а пытается выдать их за «чудеса природы», «рефлексы мозга», «наследственность», «чрезмерно развитые физические инстинкты» и прочее, то тем хуже для науки. Ибо этим своим действием она лишает себя права называться подлинной наукой, призванной объяснять научным путем феномены Макрокосмоса и Микрокосмоса. Каждый факт в природе может быть связан с тайнами, которые трудно раскрыть, но мы не имеем права отрицать того или иного факта на том лишь основании, что его загадочность, нами еще не объяснена. Мы не представляем себе, например, чтобы разумный человек способен был отрицать электричество или магнетизм только потому, что нам непонятна их таинственная сущность. Истинная наука должна признать тот факт, что многие вещи могут быть реальными, истинными, хотя они и не могут быть судимы по анализам и результатам. Созерцая Божий чудеса в Мирозданье, мы не можем сказать, что они противоречат законам природы, но в тоже время мы убеждаемся и в том, что они в рамки законов природы не укладываются. Если бы чудо подлежало естественным законам, то оно перестало бы рассматриваться чудом. Чудо не подчинено никакому закону и правилу. Чудо является исключением из общего правила. Чудо не нарушает правила или закона, но только свидетельствует об иных законах, высшего порядка, о которых мы иногда ничего не знаем или очень мало знаем. Чудо противоречит природе такой, какой мы ее знаем.

Такой вывод сделал физик из Массачусетского технологического института Джереми Ингланд. Он рассчитал, сколько требуется энергии на воспроизводство жизни. Оказалось, что самовоспроизведение молекулы РНК термодинамически значительно проще и энергетически выгодней, чем молекулы ДНК. РНК - рибонуклеиновая кислота - играет важнейшую роль в жизнедеятельности всех живых организмов, участвуя в синтезе белков и образовании генетического материала. Вначале "первородство" отдавали белкам, так как считалось, что без них вообще ничего не может появиться. Ведь одна ДНК сама по себе ничего не сделает. Что касается РНК, то ее вообще не замечали.

Исследователи обнаружили, что рибозим, способный расщеплять другие молекулы, может возникнуть спонтанно, так как его функционирование требует всего нескольких классических компонентов. Однако оставалась проблема - как именно это свойство сохранилось в процессе биохимической эволюции. Чтобы прояснить этот вопрос, ученые разработали модель, имитирующую случайные разрывы в простых молекулах РНК без ферментативной активности. Эксперимент показал, что из таких разрывов возникали короткие цепочки РНК, действующие как праймеры для синтеза более длинных цепей РНК.

ELife: выявлено самовоспроизведение молекул, подтверждающее гипотезу РНК-мира

Репликация полимеров происходила благодаря циклическому изменению температуры, напоминающему естественные условия циклов день-ночь на ранней Земле. Это позволяет предположить, что древние РНК-полимеры могли использовать такие температурные циклы для своего размножения. Неорганические поверхности, например, камни, также могли играть важную роль в этом процессе, способствуя стабилизации и размножению РНК-молекул. Это открытие дает новые перспективы для понимания процессов, лежащих в основе зарождения жизни на нашей планете, и подчеркивает важность дальнейших исследований в области преобиотической химии и молекулярной биологии.

Железо могло сыграть гораздо более существенную роль в образовании жизни на Земле, чем предполагалось ранее. Гипотеза мира РНК представляет собой одну из моделей биогенеза.

В соответствие с ней предполагается, что до того, как ДНК эволюционировала и получила способность кодировать синтез белка, молекулы РНК вели себя и как кодирующие нуклеотиды и как биологический катализатор — предок ферментов. Тем не менее, найти доказательства в пользу того, что РНК могла выполнять обе эти функции, гораздо сложнее.

Словом, РНК оказалась этаким универсалом, мастером на все руки. Она способна делать все, правда, не так хорошо. Тогда-то и возникла гипотеза о РНК-мире. Суть в том, что сначала на Земле существовали только универсальные РНК, и только потом стали появляться "специалисты", которые выполняли те же самые функции, но лучше. Первыми возникли белки, потом ДНК, как более стабильный и совершенный архив наследственной информации. РНК отошла на второй план, "играя" вспомогательные роли. Однако новые исследования показали, что это ошибочное представление.

Читайте «Хайтек» в Исследователи из Токийского университета впервые создали молекулу РНК, которая реплицируется, диверсифицируется и усложняется в соответствии с дарвиновской эволюцией. В результате эксперимента ученые показали, как отдельные виды РНК превратились в сложную систему: сеть репликаторов, состоящую из пяти типов РНК с разнообразными взаимодействиями. Это первое эмпирическое свидетельство того, что простые биологические молекулы могут привести к возникновению сложных систем, похожих на живые. Происхождение жизни согласно дарвиновской теории эволюции основано на переходе от самовоспроизводящихся молекул, таких как РНК, к сложным живым системам. Тем не менее, современная наука не дает четкого ответа на вопрос, каким образом произошел переход от отдельных химических молекул к сложным формам жизни.

Одна из научных гипотез предполагает, что первоначально на Земле существовали несвязанные молекулы РНК, возможно, вместе с белками и другими органическими веществами.

22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА

Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение. Ученые из Университета Иллинойса представили новые доказательства в поддержку гипотезы РНК-мира, которая является важной теорией о происхождении жизни на Земле. Полагаю, что и гипотезу «Мир-РНК», которая по принципу «на безрыбье и рак рыба» пока атеистам кажется убедительной, ждет такое же будущее.

22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА

Картер и Уиллс считают, что они открыли этот короткий путь. Он зависит от небольшой петли обратной связи, которая не выросла бы только из РНК, а могла появиться из комплекса пептидов и РНК. Приобщаем к делу пептиды Картер обнаружил намёки на этот комплекс в середине 1970-х, когда в институте узнал, что определённые структуры, встречающиеся в большинстве белков, «правосторонние». Атомы в структурах могли быть организованы двумя эквивалентными способами, зеркально отличающимися друг от друга, но все структуры используют только один способ. Картер начал считать РНК и полипептиды дополняющими друг друга структурами, и смоделировал комплекс, в котором «они были созданы друг для друга, как рука и перчатка». Это подразумевает возможность элементарного кодирования, основу для обмена информацией между РНК и полипептидами. Он работал над набросками того, как этот процесс мог выглядеть, экстраполируя назад от современного, гораздо более сложного генетического кода. Когда гипотеза, которую в 1986 году назвали «мир РНК», набрала популярность, Картер, по его признанию, был выбит из колеи. Ему казалось, что его мир пептидов и РНК, предложенный за десять лет до этого, полностью проигнорировали.

С тех пор он, Уиллс и другие совместно работали над теорией, возвращающейся к тому исследованию. Их главной целью было вывести простейший генетический код, предшествующий современному, более специфичному и сложному. Поэтому они обратились не только к вычислениям, но и к генетике. В основе их теории лежат 20 «нагрузочных» молекул, аминоацил-тРНК-синтетазы. Эти каталитические ферменты позволяют РНК связываться с определёнными аминокислотами в соответствии с правилами генетического кода. Предыдущие исследования показали, что 20 ферментов можно поровну разделить на две группы по 10 штук на основе их структуры и последовательностей.

Кадры массовой драки появились в сети ещё в… МИД Польши: Дуда не уполномочен обсуждать размещение ядерного оружия Президент Польши Анджей Дуда не уполномочен обсуждать возможность размещения ядерного оружия в стране. Хотя некоторым удается ограничиться незначительным увеличением, для большинства это становится серьезной проблемой. Как сообщает журнал International Immunopharmacology, долгое… SCMP: создана РЛС для обнаружения самолётов-невидимок Китайские ученые совершили прорыв в области обнаружения невидимых для радаров американских самолетов, таких как F-22, F-35 и B-21, что создает серьезную угрозу для военного превосходства США в регионе Тихого океана.

Фактором, играющим роль давления отбора, являлась ограниченность субстрата, куда входили олигонуклеотиды, которые рибозим распознавал и присоединял к себе, и нуклеотиды для синтеза РНК и ДНК. При построении копий иногда случались дефекты — мутации — влияющие на их каталитическую активность для ускорения процесса несколько раз смесь подвергалась мутированию с помощью полимеразной цепной реакции с использованием "неточных" полимераз. По этому признаку и происходил отбор молекул: наиболее быстро копирующиеся молекулы быстро начинали доминировать в среде. За 3 суток каталитическая активность молекул за счёт всего 11 мутаций увеличилась в 90 раз. Эти эксперименты доказывают, что первым молекулам РНК не нужно было обладать достаточно хорошими каталитическими свойствами. Они развились потом в ходе эволюции под действием естественного отбора. В 2009 году канадские биохимики из Монреальского университета К. Боков и С. Штейнберг, изучив основную составляющую рибосомы бактерии Escherichia coli, молекулу 23S-рРНК, показали, каким образом из относительно небольших и простых рибозимов мог развиться механизм белкового синтеза. Молекула была подразделена на 60 относительно самостоятельных структурных блоков, основным из которых является каталитический центр пептидил-трансферазный центр, PTC, peptidyl-transferase centre , ответственный за транспептидацию образование пептидной связи. Было показано, что все эти блоки можно последовательно отсоединять от молекулы без разрушения её оставшейся части до тех пор, пока не останется один лишь транспептидационный центр. При этом он сохраняет способность катализировать транспептидацию. Если каждую связь между блоками молекулы представить в виде стрелки, направленной от того блока, который при отрыве не разрушается, к тому блоку, который разрушается, то такие стрелки не образуют ни одного замкнутого кольца. Если бы направление связей было случайным, вероятность этого составляла бы менее одной миллиардной. Следовательно, такой характер связей отражает последовательность постепенного добавления блоков в процессе эволюции молекулы, который исследователям удалось детально реконструировать.

Они, вероятно, были занесены на раннюю Землю кометами. Из них уже сформировались простые аминопиримидины, которые вступили в реакцию с муравьиной кислотой и образовали амидопиримидины. Они в свою очередь в реакции с сахарами и образовали пурины в больших количествах. Таким образом, новое весомое доказательство получила так называемая гипотеза РНК-мира, согласно которой именно молекулы РНК стояли у истоков земной жизни, и они стали первыми сохранять и передавать генетическую информацию.

Происхождение жизни, часть 2: РНК-мир

«Я убежден, что гипотеза РНК-мира неверна», -говорит профессор отделения растениеводства (University of Illinois crop sciences) и Института геномной биологии. В обзоре рассматривается развитие исследований необычных свойств РНК, интенсивно начавшиеся в самом начале 80-ых годов XX века, что привело к формированию концепции «Мир РНК». Гипотеза мира РНК ставит РНК в центр внимания при зарождении жизни. Смелая гипотеза оказалась пророческой, в начале 80-х были найдены первые рибозимы — биокатализаторы на основе РНК. Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира.

Установлено, как первые формы жизни, возможно, упаковывали РНК

Гипотеза мира РНК ставит РНК в центр внимания при зарождении жизни. Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. РНК постепенно превратилась в постоянно совершенствующийся катализатор связывания аминокислот Эта связь между РНК и пептидами или белками сохранилась и по сей день Таким образом, мир РНК-пептидов решает проблему курицы и яйца». Строение РНК Типы РНК Гипотеза РНК мира.

22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА

В качестве центрального звена этого процесса биосинтеза белков выступает совокупность взаимодействующих друг с другом молекул РНК различных типов, прежде всего рибосомной РНК, формирующей аппарат белкового синтеза, тРНК, доставляющей в рибосому активированные аминокислоты для построения полипептидных цепей белков, и мРНК, несущей в своей нуклеотидной последовательности программу для синтеза белка. Оказалось, что нкРНК выполняют множество функций с использованием не известных ранее механизмов: нкРНК участвуют в регуляции транскрипции генов, сплайсинге и регуляции деградации РНК. Они вовлечены в трансляцию и её регуляцию, в процессинг и модификацию рибосомной РНК, в защиту от вирусных инфекций и мутагенной активности мобильных генетических элементов, а также в ряд других процессов. РНК явно потеснили белки на пьедестале главных молекул, обеспечивающих жизнедеятельность клеток [16, 25]. Все рассмотренные аргументы подчёркивают важную, если не исключительную, роль РНК в происхождении жизни на земле. Исследования продолжаются. Современная жизнь - это РНК, передавшая часть свих генетических функций рождённому ею же полимеру - ДНК и синтезирующая белки для всеобъемлющего эффективного функционирования содержащих её компонентов - клеток и многоклеточных организмов [27-29]. Необычные древние особенности РНК нашли в последнее время эффективные практические приложения.

Так как практически каждая наноколония происходит из одной матричной молекулы, с помощью наноколоний можно обнаружить и идентифировать одиночные молекулы ДНК и РНК, в том числе - с диагностическими целями. В настоящее время наноколонии применяются в нашей стране и за рубежом для различных научных и прикладных задач. Важнейшим направлением исследований является разработка ранней диагностики онколологических заболеваний. В России от разных видов рака умирает около 300 000 человек в год, что представляет большую демографическую, экономическую социальную проблему. Лечение осложняется тем, что у большинства больных болезнь диагностируется уже на поздних стадиях. С развитием экономики проблема может только усугубляться, так как частота онкологических заболеваний растёт по мере ухудшения экологической обстановки и увеличения продолжительности жизни населения. Эффективность лечения рака зависит от своевременности диагностики.

Однако до сих пор проблема ранней диагностики рака не решена. Наноколонии РНК позволяют создать технологию молекулярной диагностики рака на стадии, когда его ещё невозможно обнаружить существующими методами. Диагностировать болезнь предполагается путём обнаружения в клинических образцах например, в крови, в моче или в мокроте молекул определённых индикаторных "маркёрных" РНК, которые присутствуют во всех раковых клетках независимо от вида рака. Примером такого универсального маркёра является мРНК белковой субъединицы теломеразы - фермента, отвечающего за синтез концевых участков хромосом теломер. Эта мРНК присутствует и в нормальных стволовых клетках, которые, подобно раковым клеткам, способны к неограниченному делению. Однако, в отличие от раковых клеток, стволовые клетки находятся в своих нишах и не распространяются по организму. Поэтому присутствие теломеразной мРНК там, где стволовых клеток быть не должно например, в плазме или в клетках крови , может служить указанием на наличие злокачественного процесса.

Существуют также РНК, которые могут служить групповыми маркёрами всех видов рака кишечника, или всех видов рака молочной железы, или всех видов рака печени. Попытки использовать РНК-маркёры для молекулярной диагностики рака были и раньше, но из-за ограниченной чувствительности и недостаточной специфичности стандартной ПЦР полимеразной цепной реакции они закончились неудачей. Следует отметить исключительно высокий потенциал наноколоний для диагностики любых заболеваний, для которых существуют РНК- или ДНК-маркёры, в т. Например, молекула белка в том числе белка-маркёра рака может быть обнаружена путём размножения суррогатной ДНК-мишени, образованной лигированием фрагментов ДНК, способных одновременно связываться с данной молекулой белка посредством специфических лигандов например, антител. Подобным же образом с помощью наноколоний можно обнаружить одиночные молекулы любого вещества например, наркотика или допинга , достаточно сложные для формирования на своей поверхности, по крайней мере, двух участков специфического связывания лигандов [16]. В помощь антибиотикам Важнейшей проблемой современности является быстрая эволюция бактерий в направлении приобретения устойчивости к антибиотикам, приводящая к возрождению многих заболеваний человека. Профессор Йельского университета США Сидни Альтман, продолжая исследования в области каталитической способности РНК, стал разрабатывать способы борьбы с инфекционными заболеваниями антибактериальная и антималярийная терапия , используя каталитические способности конкретного РНК-фермента - рибонуклеазы Р.

Конечная цель - создать препарат, который мог бы быть альтернативой в случае устойчивости инфекции к антибиотикам. На конкретных объектах исследований разрабатываются фундаментальные основы подходов, которые могли бы быть общими для лечения многих инфекционных заболеваний. В перспективе синтезировать определённые соединения, которые могут быть легко модифицированы для борьбы, как с бактериями, так и с малярией. Это направление исследований представляет перспективную альтернативу применению в медицине антибиотиков, возможности которых стремительно тают. Сидни Альтман разрабатывает это важнейшее направление, в частности, совместно с Институтом химической биологии и фундаментальной медицины СО РАН г. Новосибирск [6]. Как зарождались знания, составляющие основу практического применения теорий и методов молекулярной биологии РНК Лауреат Нобелевской премии за открытие рибозимных свойств РНК Сидни Альтман Олтмен, 1939 г.

Заняться молекулярной биологией начинающему учёному Альтману посоветовал русский физик Георгий Гамов. Он понял, что структуры белков, состоящих из 20 основных природных аминокислот - должна быть зашифрована в последовательности из четырёх возможных нуклеотидов, входящих в состав молекулы ДНК. Исходя из простых арифметических соображений, Гамов показал, что при сочетании 4-ёх нуклеотидов тройками получается 64 различные комбинации, чего вполне достаточно для записи наследственной информации. Таким образом, он был первым, кто предложил кодирование аминокислотных остатков триплетами нуклеотидов [17]. Практически генетический код позволил расшифровать метод бесклеточной системы синтеза белка in vitro. Первые результаты в этом направлении были получены в 1961 году, когда М. Ниренберг и Х.

Матеи синтезировали упрощённую форму мРНК, состоящую из одинаковых нуклеотидов и обнаружили, что в её присутствии происходит образование длинной цепи белковоподобной молекулы, состоящей из аминокислот одного-единственного вида. Искусственная мРНК представляла собой полинуклеотид поли-У, в котором все нуклеотиды содержали только одно основание - урацил. Когда поли-У добавляли к экстракту из клеток бактерии E. Так было обнаружено, что кодон УУУ соответствует фенилаланину. Этот первый успех указал путь, следуя которому в скором времени удалось установить кодоны и для ряда других аминокислот; требовалось только перепробовать различные формы синтетических мРНК. Тогда возник вопрос, каким образом некоторые синтетические мРНК, например поли-У, которые, конечно, не содержат таких кодонов, ухитряются как-то заставлять рибосомы синтезировать полипептиды? Вероятно, это происходит по ошибке - из-за того, что рибосомы ведут себя «не по инструкции».

Следовательно - ирония судьбы! Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки? Один из факторов был вскоре найден. Им оказалась высокая концентрация магния в бесклеточных системах. Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния.

Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25]. Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16]. Но ячмень содержит гораздо больше катионов магния по сравнению с пшеницей [12], что, возможно, и определяло увеличение трансляционной активности рибосом ячменя. Следовательно, увеличение трансляционной активности полирибосом может происходить как за счёт увеличения длины поли-А-хвоста мРНК как энхансера трансляции пшеница , так и за счёт увеличения содержания катионов магния в рРНК ячмень. Можно полагать, что озимый ячмень формирует морозоустойчивость на основе более древнего молекулярного механизма - адаптационного усиление трансляционной активности за счет вариации в содержании магния в рРНК [11, 13, 22]. Но озимая мягкая пшеница реагирует на закаливающие температуры сортоспецифическим усилением полиаденилирования мРНК [2, 16, 23].

Этот молекулярный механизм, вероятно, более поздний и является более прогрессивным по сравнению с вариациями содержания магния в рРНК. Отсюда, возможно, и более высокая морозоустойчивость озимой мягкой пшеницы по сравнению с озимым ячменём. Таким образом, есть основания полагать, что повышение морозостойкости сорта озимой мягкой пшеницы сопровождается стабилизацией мРНК и дестабилизацией рРНК. Предполагается, что стабилизация рРНК определяется укреплением молекулы за счёт катионов магния, в тоже время весьма вероятно, что катионы магния стимулируют укорочение терминальной поли-А-последовательности, определяющей стабильность и трансляционную активность мРНК, через усиление прочности определённых структур мРНК, определяющих скорость её деаденилирования.

Сначала темп синтеза был замедлен ядом, но примерно после девяти «пробирочных поколений» эволюции в процессе естественного отбора вывелась новая порода РНК, стойкая к яду. Путём последовательного удвоения доз яда была выведена порода РНК, стойкая к очень высоким его концентрациям. Всего в эксперименте сменилось 100 пробирочных поколений и намного больше поколений РНК, так как поколения сменялись и внутри каждой пробирки. Хотя в этом эксперименте РНК-репликаза добавлялась в раствор самими экспериментаторами, Оргел обнаружил, что РНК способны и к спонтанному самокопированию, без добавления фермента, правда, намного медленнее. Дополнительный эксперимент был позже проведён в лаборатории немецкой школы Манфреда Ейгена. Она была создана постепенно нарастающей эволюцией. Фактором, играющим роль давления отбора, являлась ограниченность субстрата исходных химических реактивов в среде , из которых РНК строили свои копии. При построении копий иногда случались дефекты — мутации — влияющие на их каталитическую активность. По этому признаку и происходил отбор молекул: наиболее быстро копирующиеся молекулы быстро начинали доминировать в среде. Затем часть их переносилась в новую среду, богатую субстратом, где это повторялось.

Во время инициации трансляции происходит сборка нативной 70S или 80S рибосомы на транслируемой мРНК и подготовка к образованию пептидной связи между первыми двумя N-концевыми аминокислотными остатками синтезируемого полипептида. При элонгации происходит последовательное удлинение растущей цепи полипептида аминокислотными остатками, а терминация трансляции сопровождается прекращением синтеза полипептида и его высвобождением из трансляционного комплекса. При этом наблюдается разделение рибосомы и мРНК, после чего они вступают в новый цикл трансляции. В ходе трансляции рибосома последовательно перемещается вдоль транслируемой молекулы мРНК, считывая заключенную в ней генетическую информацию в виде триплетного генетического кода. При этом биосинтез полипептида начинается с его N-концевой аминокислоты [3]. В процессе транскрипции биосинтезе РНК на матрице ДНК большое значение имеет способность РНК образовывать разнообразные элементы вторичной структуры шпильки , которые влияют как на инициацию, так и на терминацию синтеза РНК. РНК активно участвует в процессе своего собственного созревания — процессинге первичных транскриптов про-РНК. У примитивных одноклеточных организмов выявлена способность РНК к аутостайсингу — вырезанию некодирующих участков интронов и сшиванию кодирующих фрагментов экзонов без участия белков-ферментов. У организмов, утративших способность к аутосплайсингу, в сплайсировании РНК тем не менее принимают участие особые молекулы — малые ядерные РНК мяРНК , необходимые для безошибочного вычленения интронов из молекул РНК-предшественников. Посттрансляционные модификации синтезированных в ходе трансляции полипептидов, в результате которых образуются функционально активные молекулы, также нередко сопряжены с присоединением к ним значительных по размерам молекул РНК. Информосомы, частицы, присутствующие в животных клетках и состоящие из высокомолекулярной нерибосомной рибонуклеиновой кислоты РНК и особого белка. Информосомы обнаружены впервые советским биохимиком А. Спириным с сотрудниками в 1964 в цитоплазме зародышей рыб, где они представлены смесью частиц разных размеров Отношение массы РНК к массе белка в информосомах постоянно около 1:4 и одинаково у всех частиц, независимо от их размера. Аналогичные частицы найдены в клетках млекопитающих, в том числе зараженных вирусами, а также у иглокожих и насекомых. Белок информосом служит, вероятно, для переноса иРНК из ядра в цитоплазму, а также для защиты иРНК от разрушения и регуляции скорости белкового синтеза. Малые ядерные РНК присутствуют в ядрах в комплексах с белками, получившими название малые рибонуклеопротеиновые частицы мяРНП. Стабильным компонентом мяРНП является белок фибрилларин — очень консервативный по структуре белок с молекулярной массой 34 кДа, локализованный в ядрышках. Комплекс, состоящий из множества мяРНП, который катализирует сплайсинг ядерных про-мРНК, носит название сплайсингосомы. Сплайсингосома собирается на интроне перед его выщеплением и содержит несколько различных мяРНП. Малые ядерные РНП собираются в сплайсингосомы в определенной последовательности. И наконец, нельзя обойти вниманием тот факт, что многие катализаторы белковой природы ферменты , катализирующие различные биохимические превращения в клетке, функционируют благодаря содержанию в них коферментов рибонуклеотидной природы NAD, FAD, АТР и др. Хотя тмРНК была открыта более 20 лет назад в пост-рибосомном супернатанте, полученном из клеток Escherichiacoliее функция была установлена тольков 1996 году. В современной модели вторичной структуры тмРНК Е. Второй район представляет собой одноцепочечный участок, кодирующий tag-пептид, а третий соединяет тРНК - и мРНК-подобные части молекулы. Этот район сильно структурирован и содержит четыре псевдоузла рк1, рк2, рк3 и рК4. Матричная часть тмРНК кодирует пептид, являющейся сигналом узнавания специфическими протеазами tag-пептид. В аминоацилированном состоянии тмРНК взаимодействует с рибосомой, запрограммированной мРНК, в которой в результате случайной деградации отсутствует стоп-кодон. В результате tag-пептид присоединяется к недосинтезированному пептиду, который содержится в рибосоме до ее взаимодействия с тмРНК. При этом происходит терминация трансляции на стоп-кодоне матричной части тмРНК, а пептид, освободившийся из рибосомы, содержит участок, узнаваемый специфическими протеазами, что способствует его быстрой деградации. Схема транс-трансляции Цитировано по Зверевой М. В 1996 г. Кейлер предложил в качестве механизма функционирования тмРНК модель транс-трансляции биосинтез полипептидной цепи белка с использованием различных матричных последовательностей. Она предлагает механизм синтеза дополнительного пептида, основанный на наблюдении, что добавление нового пептида происходит в случае трансляции мРНК, в которой отсутствует стоп-кодон. Остановившаяся пептидная цепь переносится на аланил-тмРНК реакция транспептидирования , и рибосома продолжает синтез по матричной части тмРНК. Синтез продолжается до поступления в А-центр стоп-кодона тмРНК, после чего вступает в действие фактор терминации и трансляция завершается. В результате гибридный белок, состоящий из пептидов, соединенных аланином из тмРНК, уходит из рибосомы, а освободившаяся рибосома может участвовать в синтезе другого белка. Особенность такой транс-трансляционной системы состоит в том, что одна пептидная цепь синтезируется с двух различных молекул мРНК. Необходимо отметить, что способ установления рамки считывания ОРС матричной части тмРНК отличен от всех известных способов установления рамки считывания. Первая включаемая аминокислота не определена обычным кодон-антикодоновым взаимодействием, а аденозиновый остаток, отстоящий на 3 н. Это предположение требует дальнейшего экспериментального подтверждения. С помощью тмРНК клетка решает две задачи: с одной стороны, освобождаются остановившиеся рибосомы, а с другой, неправильные белки быстро расщепляются специфической протеазой, узнающей сигнальный пептид, кодируемый матричной частью тмРНК. Это связано с открытием процесса транс-трансляции, а именно с возможностью синтеза одного белка на основе двух различных мРНК. Кроме того, отсутствие тмРНК у высших организмов указывает на возможность ее использования в качестве хорошей мишени при создании новых антибактериальных средств. Функция тмРНК особенно важна для жизнедеятельности бактерий при повышенных температурах. Известно, что многие бактериальные инфекции сопровождаются повышением температуры, поэтому создание препарата, блокирующего функцию тмРНК, приведет к гибели бактерий и не повлияет на биосинтез белков человека. Регуляция экспрессии эукариотических генов может осуществляться на нескольких уровнях: во время транскрипции, на стадии процессинга РНК, при трансляции и на уровне созревания белка. В последнее время в связи с открытием явления интерференции РНК большое внимание ученых привлекает посттранскрипционный уровень регуляции. Интерференция РНК - высокоспецифичный механизм подавления экспрессии гена на посттранскрипционном уровне за счет деградации считанной с него мРНК. Малые РНК могут регулировать экспрессию генов не только посредством интерференции, но также подавляя трансляцию, транскрипцию или способствуя удалению гена-мишени из клеточного генома. Последнее наблюдается у некоторых простейших в процессе созревания макронуклеуса. Феномен интерференции РНК обнаружен у различных эукариотических организмов, в частности, у одноклеточных, низших грибов, растений, нематод, насекомых, а также у позвоночных, включая мышей и человека. Подобная высокая консервативность механизма интерференции РНК свидетельствует о его большой значимости. И хотя функции некоторых видов малых РНК до сих пор не установлены, предполагают, что основная их роль - защита генома клетки от внедрения мобильных генетических элементов вирусов, транспозонов , а также участие в регуляции дифференцировки многоклеточных организмов. Малые РНК представляют значительный интерес для фундаментальной молекулярной биологии и таких прикладных ее областей, как биомедицина и биотехнология. Одним из наиболее эффективных способов изучения функции гена является анализ фенотипа организмов, у которых этот ген не экспрессируется. Существует ряд методов, позволяющих подавлять экспрессию определенных генов, в том числе, использование антисмысловых олигонуклеотидов, рибозимов, химических блокаторов, а также разрушение нужного гена во всем организме путем внесения соответствующих мутаций в зиготу. Однако эти методики либо сложны, либо не всегда эффективны и не обеспечивают полного сайленсинга гена то есть подавления экспрессии в экспериментальных моделях млекопитающих. В отличие от перечисленных методик, технологии, основанные на явлении интерференции РНК деградация мРНК при введении в клетку соответствующих им 81РНК или экспрессирующих их конструкций , просты в исполнении, эффективны и обладают большой специфичностью распознавания молекулы-мишени. Биохимически и функционально это молекулы практически неразличимы, и принцип их подразделения основан на природе предшественников. По происхождению малые РНК можно разделить на экзогенные индуцируемые или кодируемые вирусами, либо введенные искусственно и эндогенные образующиеся при транскрипции собственных генов клетки. Сигналом для инициации интерференции РНК служит появление в клетке экзогенной вирусной или введенной в ходе эксперимента либо эндогенной транскрибированной с собственных генов клетки дцРНК. Минимальный размер дцРНК, достаточный для индукции интерференции, - 26 п. Скорее всего, такое ограничение защищает от деградации собственную клеточную мРНК с короткими внутримолекулярными самокомплементарными структурами. Предполагают, что расщепление дцРНК у млекопитающих осуществляется последовательно с одного конца молекулы. В результате работы Dicerобразуются двухцепочечные siРНК длиной 20-25 п. Именно такая структура необходима для участия в последующих этапах процесса, приводящего к сайленсингу РНК. Следующие стадии интерференции - распознавание и фрагментация РНК-мишени. Очевидно, именно домен PIWI обусловливает эндонуклеазную активность всего комплекса. У растений и червей может происходить амплификация siРНК. У этих организмов интерференции РНК имеет системный эффект, как следствие передачи сигнала из клетки в клетку или его доставки во все ткани организма.

Во второй модели к пулу РНК-цепочек, способных к спонтанному образованию рибозим, были добавлены ферменты, катализировавшие расщепление. Полимерные цепочки могли спариваться определенным образом, что приводило к образованию молекул РНК, способных к саморазрушению. Репликация полимера осуществлялась за счет циклического изменения температуры, что позволяет предположить, что древние полимеры могли размножаться при помощи циклов день-ночь. Неорганические поверхности, такие как камни, также могли способствовать этому процессу.

Найдено подтверждение гипотезы «РНК-мира»

Мир РНК — это красивая гипотеза о самозарождении жизни, и вчера ее доказательство стало на шаг ближе. Таким образом, новое весомое доказательство получила так называемая гипотеза РНК-мира, согласно которой именно молекулы РНК стояли у истоков земной жизни, и они стали первыми сохранять и передавать генетическую информацию. Сторонники гипотезы РНК-мира считают, что на начальном этапе зарождения жизни на нашей планете возникли автономные РНК-системы, которые катализировали «метаболические» реакции (например, синтеза новых рибонуклеотидов) и самовоспроизводились.

Похожие новости:

Оцените статью
Добавить комментарий