При анодировании защитная пленка из окислов образуется из самого защищаемого металла.
Что такое анодирование?
Анодирование алюминия | Re][miLL | Анодирование – это метод обработки, который изменяет химию поверхности различных материалов, в частности, металлов. |
Анодирование, что это такое? (стр. 1 ) | Авторская платформа | Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления. |
Анодированные украшения: что это такое, особенности, уход за изделиями | Ювелирное дело | По своей сути анодирование является востребованным процессом для металлов из-за его впечатляющей способности повышать коррозионную стойкость. |
Что такое анодирование?
Что такое анодирование? Анодирование – электролитический процесс, который приводит к росту толщины естественных оксидов на поверхности изделия. Что такое анодирование и для чего оно нужно - разберем в данной статье. это процесс создания на поверхности алюминия защитной оксидной пленки путем погружения в раствор электролита и воздействия на металл током анодного заряда. Анодирование — это электрохимический процесс, цель которого — создание на поверхности алюминиевой заготовки защитного слоя, устойчивого к коррозии, УФ-излучению и износу. Глубоким, или твёрдым анодированием называют технологический процесс, в результате которого на поверхности алюминиевых сплавов образуется защитный слой толщиной свыше 50 мкм.
Технология анодирования алюминия
Анодирование (техническая информация) | Что такое анодированный алюминий? |
анодирование | это... Что такое анодирование? | Поэтому была разработана технология анодирования – это процесс, в результате которого образуется оксидная пленка Al2O3. |
Что такое анодирование алюминия | Поэтому была разработана технология анодирования – это процесс, в результате которого образуется оксидная пленка Al2O3. |
16 основных преимуществ анодированного алюминия | Анодирование в компании Галарс-СПб, технология процесса, преимущества анодирования. |
Анодирование алюминия | это процесс создания на поверхности алюминия защитной оксидной пленки путем погружения в раствор электролита и воздействия на металл током анодного заряда. |
Принцип анодирования алюминиевого корпуса-обработка алюминиевой поверхности
В процессе анодирования на поверхности металла выделяется кислород и нарастает слой оксида алюминия Al2O3. Между прочим, это- корунд! Тот самый, который приклеивают на наждачную бумагу. Это к вопросу о твердости… Когда его толщина становится достаточной, деталь заметно меняет окраску, приобретая выраженный темный оттенок. Это и служит сигналом к окончанию процесса. Вблизи качественный «холодный» анодный слой выглядит вот так: А если подобраться еще ближе с помощью микроскопа то можно рассмотреть слой и совсем близко. Вид на излом анодного слоя сбоку: Фото качественного слоя сверху: Как видите, все это подозрительно напоминает пчелиные соты.
Так оно и есть. Хороший, твердый и качественный слой на микроуровне напоминает множество вертикальных трубочек, сросшихся друг с другом стенками. При этом сверху трубочки открыты- это важная их особенность. Диаметр трубочек крайне мал- 100-300 ангстрем. Толщина стенки- тоже около 100-200 ангстрем. Кстати диаметр «трубочек»сильно зависит от температуры анодирования: чем холоднее, тем он меньше.
А чем тоньше «трубочки», тем прочнее пленка, из них состоящая!. Но не всегда пленка имеет такой вид. Если анодный слой у нас получился рыхлый, непрочный, в основном, из за завышенной температуры процесса то и смотрится он совсем по другому. Вот так простым трезвым глазом. Царапины сделаны ногтем- настолько мала прочность анодного слоя: а так сверху под микроскопом: Как вы видите, именно в упорядоченности микроструктуры «пчелиных сот» кроется залог прочности анодного слоя! Точность выдерживания техпроцесса анодирования прежде всего- температуры!
А значит- и высокой прочности анодного слоя! Два процесса, две большие разницы. Есть два основных, отличающихся друг от друга процесса анодирования. Коренным образом их отличает лишь температура процесса. Хотя она, эта температура, влияет настолько сильно, что в итоге получаются очень разные результаты. В случае «теплого» процесса размеры «трубочек»велики, что ведет к двум следствиям: во первых анодный слой получается не очень прочным и твердым- это минус.
Но во вторых- в «трубочки» большого диаметра легко ввести краситель , мельчайшие частицы которого еще проходят в эти «ворота». И таким образом- окрасить слой в любой цвет. Причем, что интересно: в качестве красителя применяются самые обычные анилиновые красители. Те, которыми красят джинсы и пасхальные яйца! К тому же существует очень простой способ обеспечить водостойкость подобного окрашивания. Достаточно лишь просто поварить окрашенную деталь в том же красителе, или после окраски обработать паром.
При этом верхушки «трубочек» закупориваются, оставляя краситель запертым внутри. После этого- вода уже не в силах вымыть краситель из анодного слоя. Несмотря на то что сам по себе краситель- водорастворим. Ну и что еще надо отметить- относительная «крупнотрубочность» слоя — это прекрасная основа для сцепления с краской или клеем. Такие детали можно красить нитро- или даже эпоксидными красками. Результат получается очень эстетичный и надежный в плане защиты от коррозии.
Краска держится очень прочно. Теперь об особенностях «холодного» процесса. Как я уже упоминал, размер диаметр «трубочек» получается значительно меньше, чем в «теплых» условиях. Опять же из этого следуют две вещи: во первых прочность и твердость такого слоя гораздо выше! Выше настолько, что ее смело можно пилить напильником- лишь при сильном нажиме, после растрескивания анодного слоя, напильник доберется до металла! Механическая износостойкость такого покрытия- бешеная!
А что же вы хотели- это ведь корунд! Ну и во вторых- есть все же и минус. Хотя это как посмотреть. Дело в том, что опять же из за крайне малого диаметра «трубочек», частицы красителя попросту не могут в них протиснуться! Потому окрасить такой анодный слой с помощью анилиновых красителей невозможно. С другой стороны, анодный слой сам в процессе роста способен приобретать окраску.
Ее оттенок зависит от состава алюминиевого сплава, и бывает от коричнево-зеленого до темно серого. Единственное что следует заметить, цвет у слоя появляется не при любой плотности тока процесса, а лишь начиная с некоторого значения примерно 1,5 ампера на кв дм. При низких плотностях тока, анодный слой хоть и прочен, но бесцветен. Лично меня весьма устраивает способность анодного слоя «самоокрашиваться»- это экономит мои усилия по окраске. Тем более, что получающиеся оттенки- имхо, вполне подходят для подводных ружей. Алгоритмы процесса анодирования.
Если делать это долго- пункт д не нужен. Обработка на пару в течении получаса. Холодный процесс: а обезжиривание детали, надежное закрепление ее в подвеске. Варка в дистиллированной воде или выдержка на пару. Пол часа. Немного об необходимости закрепления слоя.
В случае «теплого» процесса необходимость закрепления уплотнения слоя очевидна. Если этого не сделать- то при попадании детали в воду краска из незакупоренных «трубочек» попросту вымоется. И деталь станет обесцвеченной. Такой результат не устроит никого. Тут все просто. Но не только в эстетике дело.
Дело в том, что разрез слоя с незакупоренными «трубочками» выглядит следующим образом: Механическую защиту он обеспечивает вполне достаточную- высота слоя ведь вполне приличная. А вот химическую- не так чтобы очень… Ведь «трубочки» открыты, и в них свободно заходит вода. И реальная толщина защитного слоя получается очень малой- это лишь «донышко» каждой из «трубочек». А такой тонкий защитный слой все же не способен хорошо защитить металл от коррозии. Таким образом, уплотнение слоя необходимо для повышения защиты от коррозии при обоих процессах. Не ленитесь это делать!
На практике это выглядит несложно: при наличии дистиллированной воды детали надо просто поварить в ней с пол часа. А при отсутствии дистиллированной воды- подержать детали на паровой бане то же время. Кстати, кухонная пароварка- роскошная вещь для этого! Варить в недистиллированной воде не рекомендуется- качество все же страдает. При «теплом» процессе после окраски варить в воде нельзя- поры анодного слоя закрываются не сразу, краситель успеет вымыться. Лучше держать на пару.
Другое дело в данном случае- варить в самом красителе, до закрытия пор. Те же пол-часа. Кстати пару слов о химии этого явления. Учебник по химии я скурил еще в 6 классе, так что не ждите формул :. Суть в том, что оксид алюминия Al2O3 при обработке паром варке в воде частично превращается в гидрат, при этом значительно увеличиваясь в объеме. Ну а коль стенки наших «трубочек»распухают, становятся толще и толще, то в итоге они и перекрывают собой отверстие «входа».
Вот так на микроуровне и обстоят дела с уплотнением анодного слоя. Закон Ома, температура и некоторые особенности процесса. У «холодного» процесса есть целый ряд интересных особенностей и зависимостей, которые стоит знать. Знание их- залог грамотного понимания своих ошибок, а значит, и способов их исправления. Потому, вкратце- о них. Это- аксиома.
Дело в том, что температура на поверхности детали и в углу ванны, где стоит ваш термометр,- это две большие разницы. Ведь во время процесса выделяется весьма приличная энергия в виде тепла. Если у вас нет принудительного перемешивания електролита- не верьте термометру! Из любопытства- попробуйте измерить температуру електролита в конвективном потоке над вашей деталью- по ней и ориентируйтесь. Тем более, что и достичь ее не так уж и сложно. Ведь в бытовом морозильнике достижима и температура -24 градуса.
А если на улице- крутая зима, то и -40 не предел… Но на практике такие температуры мало применимы. Дело в том, что при температуре ниже -10 резко возрастает электрическое сопротивление електролита. Возрастает настолько, что для выхода на необходимую для процесса плотность тока, требуется гораздо более высокое напряжение на вашем блоке питания. Понадобятся и 60, и 80 и даже 100 вольт. Категорически не советую делать такой блок питания- эти напряжения опасны для жизни. К тому же, по мере прогрева электролита, столь высокие напряжения могут привести к чрезмерному току через деталь.
Не уследите вовремя за ростом тока- и ваша деталь растравится. Потому и советую начинать процесс при температуре не ниже -10. Чтобы их было меньше, вам следует знать следующее: а площадь свинцового катода должна быть в 2 раза больше площади анода детали. Это необходимо для выравнивания температуры по поверхности детали. Воздухом, насосом, ложкой не металлической … Иначе, будете иметь на детали участки местного перегрева, и как следствие- явление «пробоя» и растрава детали. По мере его роста, его электрическое сопротивление постоянно растет.
Для того, чтобы поддерживать на протяжении всего процесса необходимую плотность тока, приходится несколько раз регулировать силу тока с помощью переменного резистора. Но, в конце процесса, когда анодный слой достаточно толстый, этого может не хватить. Придется добавить напряжения. Это я к тому, что ваш блок питания должен обеспечивать не одно, а хотя бы два напряжения на выходе. У меня это- 25 и 50 вольт. Условия техпроцесса требуют лишь соблюдения плотности тока.
В смысле- силы тока амперы. Но, поскольку цепь наша имеет отнюдь не нулевое сопротивление омы , то и напряжение должно быть немалое. У меня, повторюсь, блок питания выдает два напряжения- 25 и 50 вольт. И еще по блоку питания: он должен быть достаточно мощным. Для примера: вы анодируете ресивер 36мм ружья длиной 70см. При напряжении 50 вольт и плотности тока 2,2 ампера на дм.
Значит, вам нужна сила тока в 18 ампер. То есть, мощность вашей установки- около киловатта. Это совсем не мало. Там все сказано. Два знака и три буквы- и в них вся электротехника!!! Режимы обработки, допуски.
Итак, приступим. Существует много електролитов и способов обработки. Рассуждать о них можно долго, каждый чем то интересен… Но меньше слов, больше дела! Мы с Вами будем заниматься «Сернокислотным твердым толстослойным анодированием». Просто потому что он вполне доступен, легко повторяем и дает очень качественные результаты. Хорош он и тем что электролит для него не имеет срока годности.
Однажды сделанный, он не потеряет своих качеств и через годы. Электролитом нам будет служить раствор серной кислоты в дистиллированной воде. Можно, впрочем, применить и обычную, из крана воду, но если есть вариант с дистиллированной- предпочтите его. Из моих скромных экспериментов могу сделать вывод о том, что вода из крана немного портит равномерность процесса. А именно- распределение плотности тока на поверхности детали. Хотя, повторюсь, лишь немного.
Самый простой вариант добыть серную кислоту H2SO4 , как, впрочем, и дистиллированную воду- это прогуляться в местный автомагазин запчастей.
История технологии Анодирование было впервые использовано в промышленном масштабе в 1923 для защиты дюралюминиевых деталей гидросамолета от коррозии с хромовой кислотой. Этот процесс был тогда назван «процессом Бенгоу-Стюарта» «Bengough-Stuart process». Его модификация, с применением серной кислоты была запатентована в 1927г. Она быстро стала наиболее часто применяющейся и остается таковой в наши дни. Анодированный алюминиевый профиль достиг пика популярности в 1960-1970х годах, с тех пор постепенно вытесняется более дешевыми способами защитных покрытий: пластмассами и порошковыми покрытиями. Технический процесс Основные операции по обработке: Предварительная механическая обработка Шлифование щетками из нержавеющей стали эффект «начеса» или равномерных длинных царапин-бороздок или обработка дробью более ровное покрытие для устранения дефектов прессования или проката профилей полос, царапин, рисок, выбоин. Если покрытие выполняет только защитную функцию деталь не будет видна , то предварительная обработка может отсутствовать.
Обезжиривание и очистка Устраняются масла, жиры и загрязнения, иногда стравливаются в кислотной ванне потертости и очаги начальной коррозии металл «осветляется» Анодирование Электрохимическая обработка током в кислотном растворе Окрашивание Заполнение образовавшихся пор поверхностной корки красителями Герметизация уплотнение Запечатывание пор поверхности после окрашивания Электрохимическая обработка Для создания анодированного покрытия деталь опускают в кислотный электролит — раствор воды и кислоты чаще всего в серную кислоту H2SO4, хромовую кислоту Н2СrO4, иногда — в щавелевую кислоту и подключают к плюсу источника постоянного тока. Обрабатываемая деталь является «анодом» источником положительного заряда , откуда и произошло название процесса. Минус источника отрицательный катод из свинца или легированной стали опускается в раствор. Из-за протекающего тока вблизи поверхности детали вода разделяется на водород и кислород. Отрицательно заряженный кислород притягивается к положительному заряду на алюминии и окисляет поверхность алюминия, образовывая на ней оксидную пленку Al2O3. Кислота из раствора разъедает эту жесткую корку, создавая глубокие в ней микропоры диаметром 10-100нм.
Поэтому в промышленных условиях к этому этапу предъявляются повышенные требования. Размер детали. Анодированный слой отличается большой толщиной.
Поэтому если алюминиевые детали требуют дальнейшей обработки или сборки, то должен быть заранее оставлен определенный припуск. Твердое анодирование может изменить размер элементов, за счет чего они уже не подойдут для применения в тех или иных механизмах. Специальные инструменты и оборудование. В процессе твердого анодирования детали выдерживают высокое напряжение и большое значение электротока. Поэтому все приспособления, инструменты должны справляться с такими нагрузками. Ванна обязательно производится из инертного материала, который отличается хорошими теплоизоляционными свойствами, чтобы не нагреваться и справляться с технологическим процессом. Особое внимание уделяется надежности узлов, которые отвечают за погружение и подъем заготовки. Конечно же, во многом производительность зависит и от правильно подобранной мощности электроустановки. После анодирования происходит контролирование толщины покрытия, а также проверяется качество исполнения технологии, осуществляется детальный внешний осмотр.
Толщина измеряется с помощью специального прибора, работающего на вихревых токах. Анодирование — распространенная технология, которая применяется для защиты от коррозии архитектурных конструкций, повышения отражающих свойств элементов разной техники, при создании пленки диэлектрика и повышение качества, долговечности многих изделий для промышленных отраслей. Большое распространение получили анодированные опоры, которые имеют огромный срок службы и привлекательный внешний вид.
Однако, когда речь идет о традиционном анодировании, цинк не так распространен.
Вместо этого его основные защитные обработки включают гальванизацию и вышеупомянутую пассивацию. Оборудование, используемое в анодировании Электролитический бак Центральное место в процессе анодирования занимает электролитический бак, часто изготовленный из материала, стойкого к выбранной кислоте, в котором содержится раствор электролита, в котором происходит процесс анодирования. Детали, подлежащие анодированию, погружаются в этот резервуар. Крайне важно, чтобы конструкция этого резервуара выдерживала кислую среду и поддерживала постоянный состав электролита для равномерного анодирования.
Напряжение питания Источник питания является важным компонентом, обеспечивающим необходимый постоянный ток DC для облегчения электрохимической реакции во время анодирования. Тип и технические характеристики источника питания будут различаться в зависимости от процесса анодирования, с различными требованиями для процессов, таких как твердое анодирование, по сравнению со стандартным сернокислотным анодированием. Очень важно, чтобы источник питания обеспечивал стабильную и регулируемую мощность, гарантируя, что процесс анодирования можно точно настроить для достижения желаемых результатов. Система охлаждения В процессе анодирования выделяется тепло из-за электрического сопротивления электролита.
Это тепло должно регулироваться для поддержания постоянной температуры ванны, что имеет решающее значение для достижения стабильных результатов анодирования. Система охлаждения обычно состоит из теплообменников и охладителей, которые циркулируют и охлаждают электролит. Поддержание правильной температуры особенно важно в таких процессах, как твердое анодирование, когда ванна работает при более низких температурах. Механизмы управления Чтобы процесс анодирования был успешным и последовательным, необходимо точно контролировать несколько параметров, таких как плотность тока, температура ванны и продолжительность обработки.
Механизмы управления включают в себя различные датчики, таймеры и контроллеры, которые отслеживают и регулируют эти параметры в режиме реального времени. Современные установки для анодирования часто используют компьютеризированные системы для автоматизации и оптимизации этих элементов управления, обеспечивая высокое качество и воспроизводимость результатов. Процесс анодирования Убедитесь, что на поверхности заготовки нет загрязнений, включая масла, смазки и другие остатки. Обычно включает погружение заготовки в растворитель или щелочной раствор.
Для удаления стойких частиц можно использовать ультразвуковую очистку. Кислотное травление: Использует слабый раствор кислоты, чтобы слегка растворить поверхность металла для получения матового покрытия. Удаляет неровности поверхности, легкие царапины или мелкие дефекты. Продолжительность травления кислотой может определить окончательный вид.
Стадия анодирования: Заготовка действует как анод в электролитической ячейке с раствором кислоты в качестве электролита. При подаче постоянного тока на поверхности металла происходит электрохимическая реакция с образованием стабильного оксидного слоя. На характеристики слоя влияют такие факторы, как плотность тока, концентрация кислоты, температура и продолжительность. Окрашивание при необходимости : Свежеанодированную заготовку можно окрасить, если требуется цветная отделка.
Органические красители дают широкий спектр цветов, в то время как неорганические соли металлов обеспечивают большую стойкость, но ограниченный выбор цветов. Еще один метод окрашивания, особенно титана, — это регулировка напряжения во время анодирования. Уплотнительная обработка: Повышает долговечность и коррозионную стойкость анодированного слоя. Закрывает поры на оксидном слое, предотвращая проникновение загрязняющих веществ или коррозионных агентов.
Методы включают запечатывание паром, запечатывание горячей водой и запечатывание холодным ацетатом никеля. Выбор зависит от конкретных требований применения и анодируемого металла. Применение анодирования Aerospace: Анодирование ценится в аэрокосмической промышленности за его способность повышать устойчивость к износу и коррозии в экстремальных условиях. Он предлагает легкое решение, которое не ставит под угрозу долговечность или эстетику.
Учитывая строгие отраслевые стандарты, анодированные компоненты обеспечивают как функциональность, так и внешний вид.
Что такое анодированный алюминиевый профиль и для чего он нужен?
Слой защиты при этом должен быть не меньше 60 мкм. Твердый материал, покрытый пленкой, используется в судо- и авиастроении, при монтаже строительных конструкций, которые должны выдерживать значительные нагрузки. Анодированный слой выступает как электрический изолятор, поэтому материал используется при производстве некоторых видов трансформаторов, электролитических конденсаторов. Покрытие значительно улучшает внешний вид изделий, поэтому из материала производятся системы, требующие высокой эстетики — например, элитные оконные профили.
Нанесение краски позволяет получить различные оттенки, благодаря этому изделия популярны среди дизайнеров, особенно при оформлении помещений в современных стилях — лофт, хай-тек, минимализм. Для поддержания чистоты и гигиены. Неанодированный алюминий может пачкать руки, поэтому материал с защитным слоем используют для производства вязальных спиц, рукояток инструментов, лестничных перил.
Для всех перечисленных и других отраслей в ассортименте нашего магазина найдутся подходящие профили.
Некоторые металлы подвергают обработке для изменения визуальных качеств. В основном, для этих целей используют алюминий как обладающий хорошим соединением с кислородом.
Добавление определенных солей в раствор электролита позволит поменять исходный цвет, придавая окрашенным изделиям ровные и глубокие оттенки. Оксидирование также позволяет скрыть незначительные дефекты поверхности, такие как царапины или потертости. В отличие от обычной нержавеющая сталь плохо поддается обработке как условно инертный металл.
Для решения этой проблемы нержавейку покрывают никелем, а только затем проводят оксидирование. Ученые активно занимаются разработкой специальных паст, которые будут уменьшать инертные свойства наружного слоя нержавеющей стали. Для прочих соединений эти условия могут быть неприемлемыми.
Рассмотрим особенности обработки отдельных металлов и сплавов на их основе. Анодирование меди и ее сплавов Этот металл очень плохо поддается оксидированию. Оптимальным считается электрохимический способ, в результате которого происходит изменение цвета.
В качестве рабочей смеси используют фосфатные или оксалатные растворы. Процесс отличается высокими технологическими требованиями, поэтому на практике встречается крайне редко. Анодирование титана Процедура считается обязательной, поскольку оксидная пленка не только увеличивает прочность заготовки, защищая от механических повреждений, но и меняет цвет в широком спектре в зависимости от уровня напряжения на протяжении рабочего цикла.
Для обработки титана подходит практически любая кислота.
Плюсы и минусы анодирования Анодированный алюминий — что это? Это металл, который прошел процесс соответствующей обработки. Стоит отметить, что обработка может быть различной по степени своей жесткости. Выбирать тот или иной вариант следует в зависимости от ваших целей и особенностей запланированных эксплуатационных мероприятий. Жесткий вариант достаточно часто выбирается для обработки боковой поверхности колесных конструкций.
В результате деталь получается более прочной и устойчивой к внешнему воздействию. Важно помнить о том, что рассматриваемая обработка имеет и свои минусы. В частности, речь идет о том, что у обработанной детали существенно снижается свойство сцепления.
Использоваться для анодного окисления титана могут хромовая, щавелевая или любая другая кислота.
При этом вся анодная обработка металла осуществляется в кислой среде при температуре от 40 до 50 градусов Цельсия. Анодирование стали Анодирование стали является сложным процессом. Для этого используется либо щелочная среда, либо кислая. В результате образуется оксидная пленка, которая придает высокий уровень прочности.
Анодирование меди Чаще всего анодирование меди и ее сплавов осуществляется химическим или электрохимическим способами. В результате поверхность материала в большинстве случаев приобретает цветное покрытия. Для получения пленки из меди применяется кислая или цианистая жидкость. Медные сплавы, в состав которых входят легирующие металлы повергаются анодному окислению намного сложней.
Анодирование серебра Анодное окисление серебра позволяет придать изначально белому металлу черный, фиолетовый либо синий оттенок без изменения структуры и качественных характеристик обрабатываемого материала. Обработку серебряных изделий специалисты рекомендуют производить при помощи серной печени. При проведении анодирования серебро начинает менять цвет примерно через полчаса. После того, как изделие обретет необходимый цвет, его необходимо достать из жидкости и тщательно промыть сначала горячей, потом теплой и, наконец, холодной водой.
Виды анодирования: В зависимости от вида кислородсодержащей среды, заполняющей межэлектродное пространство, различают анодирование: в водных растворах электролитов, в расплавах солей, в газовой плазме, плазменно-электролитическое.
Анодированные украшения: особенности технологии, советы по выбору и уходу
Анодирование образует защитную пленку за счет воздействия на металл электролиза. По описанию анодирование проводится в двух видах электролитов, в Сернокислом и Щавелекислом, т.к. хотел уйти от серняги, как более вредной, перешел на Щавелекислый электролит. Анодирование — что это такое? Анодирование алюминия — это электролитический способ улучшения коррозионной устойчивости путем образования оксидного слоя. Home»НОВОСТИ»СОВРЕМЕННЫЕ ТЕХНОЛОГИИ»Что такое анодирование и зачем его применяют. Мы знаем, что такое анодирование, а теперь следует узнать, какое оборудование для анодирования нужно.
Что такое анодирование металлов и зачем его использовать?
3 способа анодирования металла | это техника нанесения слоя металла на какой-либо предмет путем гальваностергии. |
AbavaNet - Отделка конструкций: анодирование, оксидирование | Что такое анодирование металла? Анодирование представляет собой процедуру образования на поверхности различных металлов оксидной пленки путем анодного окисления. |
Чем отличается анодированный алюминий от обычного | Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. |
Что такое анодирование алюминия? Механизмы процесса. | Анодированный алюминий: черный, матовый, листовой Сферы применения материала, методики и технологии анодирования в промышленности и в домашних условиях. |
Какие преимущества дает анодирование алюминия?
Анодирование производится посредством процесса электролитической диссоциации, когда покрываемую деталь присоединяют к электроду и погружают ее в электролит. В сегодняшней статье мы рассмотрим, что такое анодированный алюминиевый профиль, в чём его преимущества и где он используется. Прежде чем разобраться в технологии, нужно разобраться, что такое анодированный алюминий. Во время процесса анодирования или же анодного оксидирования происходит появление оксидной пленки на поверхности образца за счет химического взаимодействия. Прежде чем разобраться в технологии, нужно разобраться, что такое анодированный алюминий. Во время процесса анодирования или же анодного оксидирования происходит появление оксидной пленки на поверхности образца за счет химического взаимодействия.
Как анодировать металл в домашних условиях?
Существуют различные виды анодирования, в том числе электрохимическое анодирование — процесс получения оксидного покрытия на поверхности различных металлов Al, Mg, Ti, Ta, Zr, Hf и др. Слайд 3 Описание слайда: Широко распространена технология анодирования алюминия, титана, тантала, ниобия, кремния, германия, арсенида галлия. Обычно анодирование проводят при постоянном токе в гальваностатическом или потенциостатическом режиме. Слайд 4 в водных растворах электролитов; в расплавах солей; в газовой плазме; плазменно-электролитическое оксидирование. Слайд 5 Описание слайда: При анодировании в газовой плазме оксид образуется в результате диффузии анионов кислорода из плазмы.
Принцип окисления: процесс электризации алюминиевого сплава в качестве анода и электролита в качестве катода и постепенное образование оксидной пленки на поверхности алюминиевого сплава под действием электронов. Несколько факторов, влияющих на формирование оксидной пленки: материал, ток, температура, концентрация, время, эти пять факторов являются ключевыми факторами, которые непосредственно определяют конечное качество оксидной пленки. Основным компонентом оксидной пленки является оксид алюминия, представляющий собой сотовую микропористую структуру, которая может адсорбировать молекулы красителя в порах, что является принципом окрашивания. Особенности оксидной пленки: высокая твердость, коррозионная стойкость, изоляция, возможность окрашивания. Весь процесс окисления делится на четыре части: предварительная обработка, окисление, окрашивание и постобработка.
Предварительная обработка: обезжиривание, промывка водой, травление щелочью удаление оксидной пленки , химическая полировка повышение яркости. Окисление: как указано выше Крашение: делится на адсорбционное окрашивание и электролитическое окрашивание. Адсорбционная окраска делится на монохромную и колеровочную. Молекулы красителя проникают в микропоры оксидной пленки, и краситель будет претерпевать переходы электронных уровней энергии под действием сильных длин волн, таких как ультрафиолетовые лучи, тем самым изменяя цветовую систему и вызывая существенное обесцвечивание. Электролитическое окрашивание требует электричества, но не используемого красителя, а электролита, который не выгорает. Последующая обработка: в основном герметизация, герметизация - это процесс, в котором оксид алюминия вступает в реакцию с водой и другими добавками с образованием объекта в гелеобразном состоянии и заполнением микропор оксидной пленки. Три степени окисления, пассивация, анодирование, жесткое окисление. Оксидная пленка обычно составляет от 1 до 3 микрон. Слой оксидной пленки образуется путем пропитки алюминиевого сплава сильным окислителем.
Этот слой оксидной пленки очень тонкий, поэтому он может проводить электричество. Точно так же сам алюминиевый сплав образует оксидную пленку в естественной среде, что является реакцией с кислородом, и эта оксидная пленка тоньше. Пассив не может быть окрашен, потому что оксидная пленка не имеет условий для окрашивания. Подойдет только проводящий желтый цвет, светлый цвет с очень маленькими молекулами красителя.
Анодируют, как правило, алюминий и его сплавы, при этом образуются оксидные плёнки толщиной 5 25 мкм,… … Энциклопедия техники анодирование — электрохимическое оксидирование , электролитическое нанесение оксидной плёнки на поверхность металлов, сплавов и полупроводников. Плёнка защищает изделие от коррозии, обладает электроизоляционными свойствами, служит хорошим основанием для… … Энциклопедический словарь Анодирование — Anodizing Анодирование. Формирование покрытия на металлической поверхности путем анодного окисления, наиболее часто применяемое для алюминия. Источник: «Металлы и сплавы.
Эта процедура проводится с помощью погружения изделия в нагретую пресную воду, либо с помощью обработки паром, либо специализированным раствором. Однако если изделие планируется впоследствии покрасить, то закрепление не производится, так как краска сама заполняет пустое пространство в порах. Для цветного анодирования применяется четыре метода: 1. Пропитка пористого слоя специальными красителями метод адсорбции. После ванны с электролитом, изделие погружают в раствор с красителем, разогретым до определенной температуры 55-75 град. Электрохимическое осаждение в поры различных металлов метод электролитического окрашивания, оно же черное анодирование алюминия — это получение сначала бесцветной анодной пленки, а затем продолжение процесса в кислом растворе солей некоторых металлов меди, марганца, олова и т. Цвет готового изделия получается от бронзового до черного. Специальное легирование за счет выпадения частиц в объеме пористого слоя, но не в самих порах — метод интегрального окрашивания. При этом методе, в раствор электролита для анодирования добавляют органические соли, благодаря которым и происходит покраска изделия. Электролитическое окрашивание с помощью специального легирования за счет дополнительного расширения пор вблизи их дна метод интерференционного окрашивания. Технологически сходен с методом интегрального окрашивания, но позволяет получить большее количество оттенков, благодаря формированию специального светоотражающего слоя. В точилках Профиль К03 анодированию в обязательном порядке подвергается рамка поворотного механизма. Эта деталь постоянно подвергается нагрузке во время заточки и трению, от перемещающихся по ней зажимов. Анодирование производится для защиты от чрезмерно быстрой выработки поверхности рамки, оно позволяет укрепить рамку повысив ее износостойкость.
Анодирование, что это такое? (стр. 1 )
Что такое анодирование алюминия. Что такое анодированный алюминий и как анодируют алюминиевый профиль Ссылка на основную публикацию. Узнайте о принципе и преимуществах анодирования алюминиевого корпуса.
Анодирование: определение и различные типы
- Что такое анодирование алюминия
- Анодирование алюминия | Сайт производителя | TSPROF
- Некоторые особенности
- Какие преимущества дает анодирование алюминия?