Новости искусственный интеллект в медицине и здравоохранении

Чем искусственный интеллект лучше «человеческого» врача, почему перегруженные работой медработники пока не доверяют ИИ, возможен ли в медицине симбиоз естественного и искусственного интеллектов, а также причем здесь мораль и врачебная этика? Новый федеральный проект «Цифровые сервисы здравоохранения», в рамках которого предусмотрено внедрение искусственного интеллекта (ИИ) в медицину, станет частью стратегии развития этой сферы.

Тайны искусственного интеллекта и сhatGPT в медицине

И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике.

Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы?

То есть мы должны фактически провести независимую оценку эффективности изделия, применяя методы доказательной медицины. Это довольно сложный процесс, который может тянуться годами. Какая должна быть методика? И разработка методики испытаний входит в состав клинических испытаний. То есть мы должны сначала разработать методику, представить её комиссии, которая подтвердит, что методика соответствует стандартам качества проведения клинических испытаний.

Затем в ходе испытаний мы проходим по всем пунктам этой методики. Пишем научно-технические отчёты. Консилиумы их проверяют, подтверждают, что отчёты соответствуют критериям, описанным в документах. В России IT-продукт с искусственным интеллектом впервые сумел успешно пройти технические и клинические испытания, получить статус медизделия и одобрение Росздравнадзора только в апреле 2020 года. Почему же в больницах до сих пор очень мало таких программ?

MYCIN считается первой интеллектуальной компьютерной системой, разработанной специально для медиков. Её создали в 1970-х годах учёные Стэнфордского университета США. MYCIN предназначалась для подбора антибактериальной терапии. Название было образовано от суффикса «-мицин», часто встречающегося в названиях антибиотиков. Всё дело в доверии.

Медицина — это область доверия. Мы же доверяем врачу самое дорогое — своё здоровье и здоровье наших детей. Поэтому компьютерные системы должны не только выдавать рекомендации, но ещё и обладать функцией объяснения, обоснования предложенных решений. Это важный компонент доверия. Вот почему в сфере медицины очень сложно применять популярные сегодня нейронные сети и другие модели, основанные на методах восходящей парадигмы искусственного интеллекта.

Если система, основанная на нейронных сетях, сможет объяснять свои решения, то, пожалуйста, применяйте. Но обычно нейросети на это неспособны. Вопрос, как я уже сказал, в доверии. Врач или консилиум врачей должен иметь возможность проверить выводы программы. Если ИИ даёт второе мнение по какому-то пациенту, то доктору нужно понимать, почему алгоритм пришёл к таким выводам.

В случаях, когда «Джейн» помогла уточнить диагнозы, фактически решение приняли врачи консилиум. Система лишь обратила внимание на нестыковки и смогла обосновать альтернативное решение. Окончательное решение всегда остаётся за человеком. И поэтому она была основана не на нейросетях, а на наборах хранимых правил. То есть в ней была база знаний, правила вывода, семантические сети.

Другое интересное направление - персонализированная терапия на основе генетической информации: при участии ИИ медицинские учреждения могут создавать индивидуализированные планы лечения, используя генетическую информацию пациента. Это может помочь в создании более эффективных и безопасных терапевтических планов лечения, минимизируя побочные эффекты и увеличивая шансы на успешное лечение. Алгоритмы предсказания реакции на лекарства: ИИ может анализировать большой объем данных о реакциях различных пациентов на лекарства, предсказывая, как конкретный пациент может отреагировать на определенное лекарство или терапию. Это способствует предотвращению нежелательных реакций и повышению эффективности лечения. Повышение точности и уменьшение травматизма: роботизированные хирургические системы, такие как da Vinci, используют ИИ для улучшения точности операций, уменьшения травматизма тканей и ускорения восстановления пациентов после операций. Роботы могут выполнять сложные манипуляции с высокой точностью и стабильностью.

Это позволяет хирургам заранее спланировать операцию, предвидеть возможные трудности и снизить риски осложнений. Ассистенты на основе ИИ: в операционной ИИ может действовать в качестве ассистента, помогая врачам во время операций с помощью анализа данных пациента, мониторинга витальных показателей и предоставления рекомендаций по оптимальному ходу операции. Виртуальная реальность и обучение: технологии виртуальной реальности VR и дополненной реальности AR , интегрированные с ИИ, могут служить мощными инструментами для обучения молодых врачей и хирургов, предлагая им возможность тренироваться в виртуальной среде перед реальной операцией. Ограничения и риски, связанные с применением ИИ в медицине Несмотря на обширные возможности, применение ИИ в медицине сталкивается с рядом препятствий и сопряжено с некоторыми рисками. Сюда входят вопросы конфиденциальности и безопасности данных, а также потенциальные ошибки в диагностировании или лечении, вызванные ошибками алгоритмов ИИ. Большой вопрос также представляет собой интеграция новых технологий в существующие медицинские системы и обеспечение подготовки персонала к работе с новыми инструментами.

Конфиденциальность данных: с учетом того, что ИИ обрабатывает большое количество личной медицинской информации, вопросы конфиденциальности данных становятся крайне актуальными. Необходимо выработать регламент для защиты приватности пациентов.

Онлайн-консультации Над телемедицинскими приложениями работают многие крупные компании, например, Сбер. Приложение СберЗдоровье использует искусственный интеллект для распознавания симптомов.

Перед онлайн-консультацией оно предполагает диагнозы и исходя из этого советует клиенту врача. Это снижает нагрузку на медицинских работников, при этом позволяя пациентам более внимательно отслеживать свое состояние. Их продукты с использованием ИИ улучшают точность диагнозов, доступность врачей и систематизацию медицинских данных. Преимущество этих больших компаний в наличии средств и квалифицированных сотрудников.

Это позволяет им создавать комплексные продукты, которые включают не доступные ранее возможности. Например, Google Health — это сервис, объединяющий разнообразные услуги как для пациентов, так и для врачей. С помощью ИИ он помогает предотвратить слепоту, выявить рак груди на ранней стадии, поддерживать психическое здоровье и т. Однако новейшим технологиям сейчас противопоставлены их дороговизна и недоверие людей к машинам.

Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. Следовательно, чтобы удовлетворить аудиторию, нужно создавать оптимальные продукты.

Напомним, что в 2022 г. В 2023 г. В целом, к сентябрю 2023 г. Почти половина из них были успешными.

Будущее здравоохранения с искусственным интеллектом

Минздрав рассказал о распространении искусственного интеллекта для медицины в России. Искусственный интеллект. Можно ли использовать ИИ в медицине и здравоохранении? Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. В 2024 году технологии искусственного интеллекта будут более глубоко и масштабно внедряться в здравоохранении. Искусственный интеллект (ИИ) отлично зарекомендовал себя в отечественной медицине.

Искусственный интеллект в медицине

Во избежание повторения событий последних двух лет группа учёных с моим непосредственным участием в настоящее время проводит внедрение предиктивной аналитики, которое реализуется с помощью искусственного интеллекта и позволяет моделировать различные сценарии развития событий и анализировать ход эпидемий, что даёт возможность заранее подготовить систему здравоохранения к вероятности масштабного противостояния очередным заболеваниям и «предсказать» их возможные последствия. Современные технологии необходимы и административному аппарату, и непосредственно в лечении. К примеру, давно установлено, что некоторые элементы высокоточных операций лучше доверить автоматике, исключив тем самым влияние человеческого фактора и снизив вероятность ошибок. Думаю, что в дальнейшем доля участия ИИ в непосредственном лечении, а также в последующем сопровождении пациентов будет только увеличиваться. Как Вы считаете, обоснована ли на данном этапе развития российской медицины такая статья расходов? Несомненно, что потребуются значительные финансовые ресурсы, однако столь же очевидно, что такие вложения имеют долгосрочную отдачу. Постепенное расширение сектора ИИ в медицине способствует повышению качества медицинского обслуживания, а следовательно, позитивно отражается на здоровье нации. Есть, кстати, и обратная зависимость: недостаток финансирования сектора развития ИИ влечёт за собой достаточно масштабные последствия. Их мы могли наблюдать, в частности, на примере первого года борьбы с пандемией.

В целом, вложения в развитие искусственного интеллекта нельзя даже рассматривать как расходы — это скорее инвестиции в оптимизацию сферы здравоохранения.

Предоставляя клеткам точные инструкции, мРНК-терапия может нацеливаться на конкретные молекулы, вызывающие заболевание, и запускать выработку терапевтических белков. Перспективы персонализированной медицины с помощью мРНК-терапии дают надежду на индивидуальные варианты лечения, которые ранее были немыслимы. Виртуальная реальность в медицине В то время как технология мРНК находится в центре внимания, другой технологией, которая добилась значительных успехов в 2023 году, является виртуальная реальность VR. В медицине виртуальная реальность стала мощным инструментом для революционизирования медицинского образования и улучшения ухода за пациентами.

В медицинском образовании виртуальная реальность обеспечивает имитируемую среду, в которой студенты могут изучать и практиковать различные процедуры, операции и медицинские сценарии. Этот захватывающий тренинг позволяет студентам приобрести практический опыт, усовершенствовать свои навыки и повысить уверенность в себе перед выполнением процедур на реальных пациентах. Виртуальная реальность также предлагает ценную платформу для непрерывного медицинского образования, позволяя медицинским работникам быть в курсе новейших технологий и методик. Более того, виртуальная реальность также доказала свою эффективность в улучшении ухода за пациентами. Этот подход может помочь справиться с болью, беспокойством и стрессом, создавая захватывающую обстановку или переживания, которые отвлекают пациентов от их физического дискомфорта.

VR показала себя многообещающей в таких областях, как обезболивание, терапия психического здоровья, физическая реабилитация и даже помощь пациентам справляться с хроническими заболеваниями. Нейротехнология Одной из самых захватывающих областей инноваций в области медицинских технологий за последние годы стала область нейротехнологий. Ученые и исследователи добились огромных успехов в понимании сложной работы человеческого мозга и разработке технологий, которые непосредственно взаимодействуют с ним. С появлением интерфейсов мозг-компьютер BCI люди с параличом теперь могут управлять роботизированными конечностями и общаться с помощью силы мысли. Эти BCI обеспечивают прямую связь между мозгом и внешними устройствами, предлагая новый уровень независимости тем, кто ранее зависел от опекунов даже в выполнении простейших задач.

Кроме того, нейропротезирование достигло значительных успехов, позволив людям с потерей конечностей восстановить не только движение, но и осязание. Имплантируя электроды непосредственно в периферические нервы, нейропротезы теперь могут обеспечить пользователям реалистичные и интуитивные ощущения, позволяя им держать предметы, ощущать текстуру и даже испытывать колебания температуры.

ИИ может преобразовать здравоохранение за счет повышения эффективности, персонализации и результатов лечения пациентов.

От диагностической визуализации, прогнозирования рисков для пациентов до автоматизации административных задач ИИ может обеспечить точность, скорость и экономичность. Кроме того, ИИ помогает разрабатывать персонализированные планы лечения и обеспечивает удаленный мониторинг пациентов, расширяя сферу применения телемедицины. Как ИИ меняет диагностические процедуры в здравоохранении?

ИИ значительно улучшает диагностические процедуры, анализируя медицинские изображения с высокой точностью и скоростью. Алгоритмы машинного обучения могут распознавать закономерности и аномалии при сканировании, которые могут быть пропущены человеческим глазом. Это может привести к раннему выявлению таких состояний, как рак, болезни сердца и неврологические расстройства, что позволит своевременно принять меры.

Какое влияние ИИ окажет на расходы на здравоохранение в будущем? ИИ потенциально может снизить расходы на здравоохранение за счет повышения эффективности и сокращения потерь. Это может упростить административные задачи, уменьшить диагностические ошибки и свести к минимуму повторные госпитализации.

Используя прогностическую аналитику, ИИ также может помочь в упреждающем уходе за пациентами, уменьшая бремя лечения хронических заболеваний. Может ли ИИ улучшить качество обслуживания пациентов в сфере здравоохранения? Да, ИИ может значительно улучшить качество обслуживания пациентов.

Чат-боты на базе искусственного интеллекта могут оказывать помощь круглосуточно и без выходных, отвечая на вопросы и помогая пациентам в их лечении. Индивидуальные планы лечения и удаленный мониторинг с помощью ИИ могут обеспечить более удобное и индивидуальное медицинское обслуживание. Как ИИ помогает в открытии и разработке лекарств?

ИИ революционизирует поиск и разработку лекарств, сокращая время выхода новых лекарств на рынок. Алгоритмы ИИ могут анализировать огромные объемы данных для выявления потенциальных кандидатов в лекарства и прогнозирования их эффективности и безопасности. Это может привести к более целенаправленной терапии и снизить затраты и частоту неудач клинических испытаний.

Каковы этические соображения при использовании ИИ в здравоохранении? Этические соображения включают конфиденциальность и безопасность данных, алгоритмическую предвзятость и риск чрезмерной зависимости от технологий. Несмотря на то, что искусственный интеллект может улучшить уход за больными, крайне важно обеспечить надежную обработку данных пациентов.

Кроме того, системы искусственного интеллекта должны быть прозрачными и свободными от предубеждений, которые могут негативно повлиять на результаты лечения пациентов. Заменит ли ИИ медицинских работников в будущем? Хотя ИИ может автоматизировать определенные задачи, он не может заменить чуткий уход, оказываемый медицинскими работниками.

ИИ может быть инструментом, который помогает медицинским работникам, снижая их рабочую нагрузку и позволяя им больше сосредоточиться на уходе за пациентами. Будущее здравоохранения, скорее всего, будет сочетанием услуг, управляемых человеком и искусственным интеллектом. Как ИИ может улучшить профилактическое здравоохранение?

ИИ может помочь в профилактическом здравоохранении, анализируя данные пациентов, чтобы выявлять факторы риска и прогнозировать потенциальные проблемы со здоровьем до того, как они возникнут. Это может привести к своевременным вмешательствам и более здоровому образу жизни. Например, носимые устройства, интегрированные с искусственным интеллектом, могут отслеживать показатели жизнедеятельности и предупреждать людей о потенциальных проблемах со здоровьем.

Как ИИ способствует точной медицине? ИИ вносит свой вклад в точную медицину, позволяя анализировать большие наборы данных, таких как геномные данные, для выявления закономерностей, влияющих на здоровье и болезни. Это может помочь в разработке индивидуальных стратегий лечения, основанных на индивидуальном генетическом составе, образе жизни и окружающей среде.

Что мешает внедрению ИИ в здравоохранение?

Для этого достаточно сделать снимок сетчатки глаза, загрузить его в систему, а результат прислать доктору в любой точке страны для постановки полноценного диагноза и подбора лечения», — подчеркнул Каталевский. Он отметил, что компанией создан инструмент, который позволяет доктору и сэкономить время для диагностики, и получить второе мнение, если речь идет о сложном или спорном случае. Также система помогает в обучении молодых врачей.

Систему поддержки принятия врачебных решений для диагностики рака нижних отделов желудочно-кишечного тракта ЖКТ на базе алгоритмов искусственного интеллекта Polyptron при поддержке Фонда содействия инновациям разработали специалисты компании «ЭВА Лаб» из Челябинской области. Как сообщил ИА Регнум директор по продукту Евгений Алханов, система с помощью ИИ помогает врачам в режиме реального времени выявлять ранние признаки рака кишечника. ИИ распознает аномалии прямо во время эндоскопического исследования и информирует об этом врача. Сейчас пилотный проект реализуется в больницах Челябинска, Екатеринбурга и Москвы.

Будущее здравоохранения с искусственным интеллектом

На основе созданного ПО возможно проводить массовый скрининг населения посредством быстрой, качественной и недорогой диагностики. Система может с успехом применяться в телемедицине — например, в отдаленных регионах страны. Для этого достаточно сделать снимок сетчатки глаза, загрузить его в систему, а результат прислать доктору в любой точке страны для постановки полноценного диагноза и подбора лечения», — подчеркнул Каталевский. Он отметил, что компанией создан инструмент, который позволяет доктору и сэкономить время для диагностики, и получить второе мнение, если речь идет о сложном или спорном случае. Также система помогает в обучении молодых врачей.

Систему поддержки принятия врачебных решений для диагностики рака нижних отделов желудочно-кишечного тракта ЖКТ на базе алгоритмов искусственного интеллекта Polyptron при поддержке Фонда содействия инновациям разработали специалисты компании «ЭВА Лаб» из Челябинской области. Как сообщил ИА Регнум директор по продукту Евгений Алханов, система с помощью ИИ помогает врачам в режиме реального времени выявлять ранние признаки рака кишечника.

Речь идет о вероятности самостоятельного применения инструментов пациентом. Между человеком и машиной всегда должно быть промежуточное звено — медицинский специалист. Чтобы пациенты не использовали технологии себе во вред и не занимались самолечением, существует Всероссийский свод этических правил применения искусственного интеллекта в медицине. Что касается повсеместного использования «умных» устройств, которыми пользуется каждый второй, то отнести их к технологиям ИИ нельзя. Гаджеты не анализируют информацию и не могут поставить предположительный диагноз.

Устройства могут считывать пульс, сердцебиение, уровень кислорода, то есть предоставлять данные об одном или нескольких параметрах, но не могут конкретно указать, в чем проблема. Крупные бренды, выпускающие «умные» устройства, всегда советуют обращаться к врачу, если показатели изменились в худшую сторону. Понятно, что нельзя просто прийти к врачу и показать часы, которые, например, сообщили о плохой динамике сердцебиения. Пациенту в любом случае назначат комплексное обследование, прежде чем делать выводы о возможной патологии. Контроль на законодательном уровне Фонд «Сколково» принял участие в разработке норм регулирования применения ИИ в медицине и оказал экспертную поддержку — софт, необходимый для врачебной практики, может попасть в систему здравоохранения только после обязательной регистрации. Это означает, что перед этим он пройдет ряд проверок и испытаний. В рамках системы контроля также установлены определенные классы риска ПО, присвоение которых зависит от данных и решений, принимающихся ИИ.

Самый низкий класс — это учетные медицинские системы, которые никак не влияют на пациента. Максимально высокий класс — это ПО, от которого зависит жизнь человека. Например, есть софт, который отправляет сигналы на имплантированный кардиостимулятор. Зарегистрировать такое ПО можно по истечению нескольких лет клинических исследований. Впервые регистрация продукта на основе ИИ произошла летом 2020 года. Уже в 2021 года пять наших резидентов получили регистрационные удостоверения Росздравнадзора.

И соответствующий модуль «Джейн» как раз напоминал ребёнку или его родителям о том, что прямо сейчас надо выпить ту или иную таблетку. И в качестве подтверждения требовал нажатия соответствующей кнопки на экране смартфона. То есть осуществляла поиск скрытых закономерностей. Например, у одного ребёнка «Джейн» выявила жёсткую причинно-следственную зависимость между фазами Луны и обострениями болезни. Ни родители, ни врачи этой связи не чувствовали и не знали о ней. Они просто отмечали в электронном дневнике дни, в которые происходили приступы. Я, конечно, всё перепроверил, долго копался в научных трудах. И нашёл публикации, в которых учёные отмечали селенозависимость течения эпилепсии у отдельных людей. Но объяснить её, кстати, медики пока не могут. Зачастую эпилептики — очень метеозависимые люди. Циклолептическое течение эпилепсии встречается довольно часто, и система очень быстро научается прогнозировать интервалы этих циклов. Если у ребёнка приступы происходят, например, каждые пять дней, система это спрогнозирует. Напомнит родителям, что сегодня с большой вероятностью будет обострение, и попросит быть внимательнее к своему чаду. Современная медицина не обладает такими средствами. Но, как я уже сказал, к приступу можно будет подготовиться, чтобы он нанёс минимальный вред. В этот день ребёнок должен быть дома и избегать активностей, которые могут быть опасны в случае потери сознания. То есть родители не должны пускать его на горку, на качели, в бассейн и так далее. Почему «Джейн» оказалась не у дел — Почему мы говорим о «Джейн» в прошедшем времени? Всё, что я вам рассказываю, связано с опытной эксплуатацией «Джейн» врачами одной московской больницы, специализирующимися на эпилепсии. Врачи ей пользовались под моим контролем. Наши алгоритмы помогли уточнить диагнозы и скорректировать лечение десятка пациентов. Однако в определённый момент мы столкнулись с проблемой — чтобы продолжать использовать систему, требовалось сертифицировать её в качестве медицинского изделия. Процесс этот довольно сложный, он потребовал бы от нашего коллектива больших затрат времени и сил. Никто не мог дать гарантии того, что после сертификации «Джейн» купят. А делать такую сложную систему просто так, для себя, смысла не было. Поэтому я решил сосредоточиться на развитии других проектов. У нас был чат-бот, у нас была веб-версия, система «крутилась» на сервере. Если бы я не остановил разработку, то следующий модуль, который мы делали, обеспечивал бы вывод по аналогии. Предполагалось, что в систему загрузят большое количество историй болезни. И тогда «Джейн» могла бы находить совпадения, смотреть, как лечится один пациент, как другой, какие у них прогнозы, признаки выздоровления и так далее. И система такая будет очень полезна, если кто-то заинтересуется её покупкой и внедрением. Проект «Джейн» развивался в течение трёх лет. Обнаруженные аналоги могли предложить только электронный дневник. Это были простые информационные системы для записи симптомов и жалоб пациентов. Таких крутых фишек, интеллектуальных функций, настроенных именно на проблему эпилепсии, как в «Джейн», больше ни у кого в мире не было. Встречались с представителями популярных компаний, предоставляющих услуги по лабораторной диагностике. Мы предлагали им войти в проект и развивать его под своим брендом. Мы могли бы сделать полную интеграцию. Но этого не случилось, никто из потенциальных инвесторов так и не решился на сотрудничество. Стоимость разработки интеллектуальной системы, подобной «Джейн», по оценкам АИИ , начинается от 250 тысяч рублей. Что в России нужно сделать, чтобы на законных основаниях продавать медицинские системы?

Другой пример: компьютерная томография грудной клетки, где комплексный сервис, обрабатывающий исследования сразу на восемь патологий и наличие жидкости в полости, обнаружил аневризму грудного отдела аорты». По словам Шулькина, многие страны разрабатывают искусственный интеллект или пытаются его применять в том числе в здравоохранении, но в таком масштабе и по такому количеству направлений, как в Москве, технологии искусственного интеллекта в здравоохранении в мире нигде не используют. С этого года в столичных клиниках использование искусственного интеллекта при исследованиях по ОМС стало обязательным. Касается это маммографии. Юрий Васильев, директор Центра диагностики и телемедицины: «Наша научная составляющая — это понимание того, как работает система ИИ. Два года назад было непонятно: что-то он выявляет или что-то он не выявляет. И на этом все. На сегодняшний день мы смотрим на ИИ с разных сторон. Абсолютно постоянно изучаю то, что может он делать, то, где он может принести для нас пользу или эффект». Базу для технологического прогресса в области медицины создают московские ученые. В День российской науки в Центре диагностики и телемедицины медики рассказывают еще об одной разработке. Там создали отечественные фантомы. Эти изделия имитируют органы и ткани тела человека.

Искусственный интеллект в помощь врачам и пациентам

Применение искусственного интеллекта в медицине и здравоохранении: сферы использования и перспективы ИИ. Напомним, цифровизация здравоохранения происходит благодаря нацпроекту «Здравоохранение», который реализуется по решению президента. В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде. Ещё один не менее важный результат – активное развитие технического регулирования систем искусственного интеллекта для клинической медицины. — узнаете, как ИИ меняет рынок здравоохранения и фармацевтики; — разберете реальные кейсы применения Data Science в медицине и познакомитесь с прикладным анализом данных; — поймете с чего начать карьеру в HealthTech. Кто-то встречает эпоху искусственного интеллекта (ИИ) в медицине с восторгом, кто-то – с опасением.

ИИ в частных клиниках: как помогает врачам и пациентам

Разрабатываем решения для медицины будущего с искусственным интеллектом. Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными. Говорить о внедрениях технологий искусственного интеллекта в медицине в целом и в радиологии в частности открыто начали всего несколько лет назад, в период пандемии коронавируса. Искусственный интеллект все активнее применяется в здравоохранении — он помогает в диагностике, принятии клинических решений и управлении данными.

Эксперт объяснил провал искусственного интеллекта в медицине

Роман Душкин: «Медицина — это область доверия» Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает.
ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране Искусственный интеллект анализирует снимки за несколько секунд и определяет патологии органов грудной клетки по пяти клиническим направлениям.

Собянин: искусственный интеллект станет базовой медицинской технологией в Москве

Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Благодаря возможностям искусственного интеллекта (ИИ) здравоохранение в России постепенно трансформируется по мере того, как передовые технологии меняют медицинскую практику, включая диагностику, лечение пациентов и медицинские операции. Министр здравоохранения РФ Михаил Мурашко рассказал корреспонденту "Известий" Виктору Синеоку, как искусственный интеллект внедряют в сферу здравоохранения. Таким образом, применение искусственного интеллекта в медицине стало ведущим трендом здравоохранения. В 2024 году влияние технологий искусственного интеллекта (ИИ) на здравоохранение будет более глубоким и масштабным, чем когда-либо прежде.

Интеллектуальный подход. 7 задач, которые решает ИИ в здравоохранении и фарме

Обращение медицинских изделий на территории РФ возможно только при условии государственной регистрации. С 2020 по 2022 год перечень отечественных зарегистрированных медизделий на основе ИИ постепенно пополнялся, и к концу 2022 года включал в себя 16 программ. Также в указанном перечне присутствуют: программный модуль для анализа флюорограмм и рентгенограмм грудной клетки человека, система для диагностики ковида, нейросеть для анализа маммографии, нейросеть для определения продольного плоскостопия, системы для принятия врачебных решений и многое другое. В России медизделия на основе искусственного интеллекта применяются во многих регионах, однако не во всех. Ситуация изменится совсем скоро: к концу этого года все субъекты РФ обязаны будут внедрить не менее одного медизделия с искусственным интеллектом в одну из централизованных подсистем государственной информационной системы в сфере здравоохранения. Это может быть, например, подсистема ведения интегрированной электронной медицинской карты или централизованный сервис информирования о взаимодействии лекарственных средств.

При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом. Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить. Далее анализатор берёт нужный объём крови на исследование, помещает в реакционную ячейку внутри прибора, добавляет необходимые реагенты, проводит реакцию, одновременно записывая в память её протокол, считывает результат исследования и передаёт его в ЛИС. Врачу остаётся только принять результат и проконтролировать на соответствие установленным требованиям значение, полученное с прибора. Или, если есть необходимость, отправить пробу на повторное исследование". Робот со скальпелем Однако использование роботов в медицине не ограничивается только диагностическими автоматизированными системами. Активно развивается применение искусственного интеллекта и в хирургии. По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения.

Наиболее успешно развиваются направления, связанные с компьютерной диагностикой: скрининг и более глубокий анализ симптомов на базе изучения медицинских изображений — рентгеновских или КТ-снимков. Это подтвердила и врач МРТ Ольга Козловская, отметив, что ИИ уже сейчас становится хорошим помощником рентгенологам благодаря автоматизации рутинной работы и поддержке врачебных решений. Сопредседатель Всероссийского союза пациентов, член СПЧ при Президенте РФ Ян Власов уверен, что в условиях серьезной проблемы дефицита кадров в здравоохранении, когда у врачей не хватает времени на работу с пациентом, ИИ сможет технологически облегчить жизнь медперсоналу за счет поставки первично обработанного объема информации. Он определил роль ИИ в медицине как инструмента, помогающего врачу не только в оптимизировать время на рутинные операции, но и избегать или минимизировать врачебные ошибки. Кроме того, стоит вопрос стандартизации этой технологии: ИИ потребуется признавать медицинской программой для того, чтобы работать со здоровьем населения».

Представитель ведомства рассказала о внедрении тиражируемых решений на базе искусственного интеллекта ИИ в рамках федерального проекта «Создание единого цифрового контура в здравоохранении на основе Единой государственной информационной системы в сфере здравоохранения ЕГИСЗ ». В 2023 году решения на базе ИИ ввели в эксплуатацию 58 регионов страны. В целом за прошлый год субъекты Федерации приобрели 106 медицинских изделий решений с ИИ. На закупку таких решений было направлено 368,8 млн рублей из федерального бюджета и 79,5 млн рублей — из региональных. В 2024 году в практическом здравоохранении каждого региона должны работать по три решения на базе искусственного интеллекта. Директор по акселерации фонда «Сколково» Юлия Щеглова представила доклад, посвященный мерам поддержки стартапов, разрабатывающих ИИ-решения в здравоохранении.

ITM-AI 2024: искусственный интеллект внедряют в практическое здравоохранение по всей стране

Нормативное регулирование искусственного интеллекта в медицине. В фокусе: технологии искусственного интеллекта (ИИ) в здравоохранении и системы поддержки принятия врачебных решений (СППВР). — узнаете, как ИИ меняет рынок здравоохранения и фармацевтики; — разберете реальные кейсы применения Data Science в медицине и познакомитесь с прикладным анализом данных; — поймете с чего начать карьеру в HealthTech. рассказал он РИА Новости. Применение искусственного интеллекта в медицинских нейросетях предлагает обещающие перспективы для будущего здравоохранения в России. рассказал он РИА Новости.

Наши решения

  • Данные на 23 апреля 2024 г.
  • Яндекс Образование
  • Полная роботизация: как искусственный интеллект помогает врачам
  • Искусственный интеллект в здравоохранении внедряют 70 регионов России

Похожие новости:

Оцените статью
Добавить комментарий