Ранее ученые ИГМ СО РАН работали с давлением, соответствующим глубине 200 км, напоминает Интерфакс. “Таймырский Телеграф” – Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой. и электро- катализе, а также использовать в литиевых, магниевых, алюминиевых. Красноярские ученые разработали метод получения наночастиц оксида железа, покрытых крахмалом, с помощью которых можно быстро и легко очистить рекомбинантные белки, применяемые в биомедицине в качестве биомаркеров различных болезней.
Топ проектов красноярских ученых в сфере биотехнологий
С помощью биолюминесценции можно наглядно иллюстрировать биологические процессы — их, в буквальном смысле, видно. Это свойство белков используется в образовательных целях в университетах и школах, в том числе и в Красноярске. В перспективе светящиеся белки могут стать основой для создания биосенсора — носимого устройства размером с авторучку или спичечный коробок. Такой сенсор, к примеру, сможет определять степень утомленности организма по уровню токсинов в слюне. Наноалмазы для медицины и экологии Еще одно направление работы Института биофизики СО РАН — более двух десятков лет здесь изучают свойства и прорабатывают вопросы практического использования особых наноалмазов. Искусственно созданные наночастицы получают методом взрывного синтеза — отсюда и их название. Внешний вид порошков вверху и гидрозолей внизу модифицированных наноалмазов. У ученых из ИБФ СО РАН есть наноалмазы, которым они придали уникальные свойства, что открывает возможности применения таких частиц в биологических и медицинских целях. Для биологов, поясняет доктор биологических наук Владимир Бондарь, интерес, главным образом, представляют, адсорбирующие свойства этого материала — способность частиц связывать на своей поверхности самые разные вещества. Каковы перспективы практического применения? Возможности применения наноалмазов в медицине и биологии очень широки.
Так, адсорбирующие свойства этого материала могут быть использованы для выделения нужных и важных белков из сложных смесей. В перспективе это может удешевить и ускорить производство гормонов, ферментов, иммуноглобулинов. Сегодня для этого используется сложное высокотехнологичное оборудование.
Таким образом, можно очень точно оценивать эффективность противоопухолевой терапии. Этот метод уже опробован на лабораторных животных.
Также перспективно применение биолюминесцентных белков для мониторинга состояния окружающей среды. Использование биолюминесцентного белка в диагностике позволяет с точностью до нескольких клеток проследить процесс увеличения или уменьшения опухоли Источник: niipfm. С помощью биолюминесценции можно наглядно иллюстрировать биологические процессы — их, в буквальном смысле, видно. Это свойство белков используется в образовательных целях в университетах и школах, в том числе и в Красноярске. В перспективе светящиеся белки могут стать основой для создания биосенсора — носимого устройства размером с авторучку или спичечный коробок.
Такой сенсор, к примеру, сможет определять степень утомленности организма по уровню токсинов в слюне. Наноалмазы для медицины и экологии Еще одно направление работы Института биофизики СО РАН — более двух десятков лет здесь изучают свойства и прорабатывают вопросы практического использования особых наноалмазов. Искусственно созданные наночастицы получают методом взрывного синтеза — отсюда и их название. Внешний вид порошков вверху и гидрозолей внизу модифицированных наноалмазов. У ученых из ИБФ СО РАН есть наноалмазы, которым они придали уникальные свойства, что открывает возможности применения таких частиц в биологических и медицинских целях.
Для биологов, поясняет доктор биологических наук Владимир Бондарь, интерес, главным образом, представляют, адсорбирующие свойства этого материала — способность частиц связывать на своей поверхности самые разные вещества. Каковы перспективы практического применения?
Если начинает метаться между окопами, дело потерпит фиаско. Я определил для себя, чем должен заниматься. И к этому призываю молодых коллег. Мы занимаемся фундаментальными исследованиями, получаем новые знания, пытаемся объяснить механизм выявленного феномена, эффекта, явления. Потом подвергаем накопленные экспериментальные данные глубокому и всестороннему анализу, на основании которого делаем более взвешенный вывод о возможности или невозможности применения этого знания на практике. Это абсолютно правильный путь — все практические достижения человечества основаны на фундаментальных знаниях и их анализе. К сожалению, сегодня у нас норовят «поставить телегу впереди лошади».
И часто задают преждевременный вопрос: где вы собираетесь это использовать? Опережая события, хотят сразу видеть практическую реализацию. Но даже при наличии обоснованности практического применения реализовать научную разработку непросто. Приведу пример из нашего опыта. Несколько лет мы пытались «пробить» практическое применение наноалмазов. В частности, их использование в качестве присадок к автомаслам и консистентным смазкам. Мы собрали кипу экспертных заключений с положительными отзывами из целого ряда крупных предприятий. Но осуществить практическое использование так и не смогли. Конечно, можно переквалифицироваться, но зачем?
Когда мы занимаемся несвойственным себе делом, страдает то, чем мы должны заниматься. И при этом, к сожалению, дело никого не интересует в достаточной мере. Досадно, что сейчас между словами и реализацией получается слишком большой промежуток, оттого и практическое внедрение научных разработок существенно хромает. Мне посчастливилось застать времена, когда была бОльшая стабильность в этих вопросах. Когда ты мог планомерно трудиться, не отвлекаясь на посторонние дела, и ощущал значимость того, что делаешь. Сегодня нужна разумная кооперация между учёными, которые получают результаты, пригодные для практического использования, и специалистами, которые отвечают за вопросы их внедрения в практику и умеют это делать. Чтобы развитие шло эффективно и поступательно, такой альянс просто необходим. Вероятно, это будет как-то меняться в лучшую сторону. Но доживём ли мы до тех радостных времен?
В нашей стране есть прекрасные светлые головы, потенциал учёных огромен. Но реализовать его в должной мере не получается — вот что меня огорчает. Вместо того чтобы заниматься своим делом, приходится оформлять ворох ужасных бумаг. Этот бумажный прессинг просто уничтожает интеллектуальный потенциал страны. Хочется, чтобы всё изменилось к лучшему. Потому что в этой чехарде неясности и неопределённости легко увязнуть и потерять ощущение себя как человека, создающего что-то нужное. Поэтому для себя я решил: нужно заниматься тем делом, для которого был рождён. Пусть результаты моего труда останутся грядущим поколениям — как известно, рукописи не горят. Такой вариант действий я предлагаю молодым коллегам и горд за своих учеников, их желание трудиться и открывать новое вселяет надежду на позитивное будущее нашей отечественной науки.
С чего начиналась ваша карьера учёного? По диплому я — врач-лечебник. Но хорошо, что я достаточно быстро понял: практическая медицина — не моё. И со второго курса серьёзно занялся биохимией.
В Красноярске ученые предлагают проверять воду на яд наноалмазами 14. Вот и сотрудники Красноярского института биофизики РАН, которые создали уникальный метод выявления фенолов в воде, уверяют: все просто. Одно «но» - красноярские ученые предлагают использовать для этого алмазы. Не простые, природные, а «умные» наноалмазы.
Сибирские учёные разработали новый композит из нановолокон и наноалмазов
Красноярские ученые создали материал из наноалмазов и нанотрубок | В результате красноярские ученые не только получили новый материал, но и открыли новое явление – сегрегацию меди. |
Красноярские ученые используют «рентгеновские ножницы» для молекул | Учёные СО РАН выявили способ определения загрязнения воды с помощью наноалмазов. |
Ученые из Красноярска изобрели кристаллы для лечения шизофрении | «Сделать Енисей теплее»: красноярские ученые решают проблему «черного неба». |
Красноярские ученые предлагают проверять воду на яд наноалмазами | В результате красноярские ученые не только получили новый материал, но и открыли новое явление – сегрегацию меди. |
В Красноярске ученые предлагают проверять воду на яд наноалмазами
Учёные Красноярского научного центра СО РАН разработали новое перспективное применение биолюминесцен. Учёные из Красноярского научного центра и Сибирского государственного университета создали новый вид биоразлагаемого пластика, который разлагается в лесной почве всего за семь месяцев. Наночастицы золота с единственными в своем роде спектральными характеристиками в ближней инфракрасной области разработали красноярские ученые. Мы узнаем о достижениях красноярских ученых из случайных новостей и разговоров, но порой недооцениваем значимость этих открытий. Коллектив красноярских ученых, в состав которого вошли исследователи Красноярского научного центра СО РАН, после анализа научных работ ученых со всего мира по магнитным нанодискам выяснил, что новое поколение.
Ученые из Красноярска изобрели кристаллы для лечения шизофрении
Ведущий научный сотрудник Института рассказал, что разработанные учеными наночастицы имеют пик поглощения в инфракрасном диапазоне, который более прозрачен для биологических тканей. По его словам, это позволяет нагревать наночастицы на существенно большей глубине внутри организма. Помимо этого, доктор физико-математических наук поделился, что в скором времени данная разработка будет использоваться в биомедицине, в частности гипертермической терапии онкологических заболеваний. Ранее введенный в мозг человека чип от китайских ученых улучшил Введенный в мозг человека чип от китайских ученых улучшил его состояниеПациент начал самостоятельно есть и пить его состояние.
Специалисты изучили разработанный кристалл в качестве ингибитора белков, связанных с болезнями Альцгеймера, Паркинсона и шизофрении. Результаты исследования показали, что кристаллы успешно проникают в активную среду области рецепторов. Ранее Сиб.
Процедура колориметрического анализа воды на содержание фенола с использованием полученного нами композита происходит следующим образом. На поверхность изготовленного композита, который имеет белый цвет, добавляется водный образец с предварительно внесенными реагентами. Если в образце присутствует фенол, наноалмазы в составе композита запускают цветную реакцию и композит окрашивается в малиновый цвет. Интенсивность цвета пропорциональна содержанию фенола в пробе и может быть легко оценена «на месте» по цветовой шкале», — объяснил один из соавторов работы Никита Ронжин, кандидат биологических наук, научный сотрудник Института биофизики СО РАН Специалисты ФИЦ КНЦ отмечают, что разработанный композит можно применять многократно, в серии как минимум из шести последовательных тестов. После каждого использования необходимо всего лишь промыть композитный диск деионизированной водой для удаления остатков компонентов реакции. Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом.
Тесты подтверждают, что композит можно использовать повторно, он сохраняет каталитическую функцию в течении года при хранении при комнатной температуре. Колориметрическое определение фенола и фенольных соединений очень многообещающе, поскольку результат теста виден невооруженным глазом. Количественное определение фенола может быть выполнено с помощью спектрофотометра. В качестве альтернативы изображение цветного продукта может быть снято камерой даже обычного телефона. Проанализировать результаты можно будет специально созданной программой. Полученные результаты открывают перспективы для разработки нового класса систем индикации многоцелевого использования, например, 2D и 3D сенсоров. Кроме того, предлагаемый композит может быть использован в качестве матрицы-хозяина для иммобилизации ферментов, что создает предпосылки для создания новых многоразовых систем медицинской диагностики», — рассказал Илья Рыжков, доктор физико-математических наук, ведущий научный сотрудник Института вычислительного моделирования СО РАН. Новости по теме Все новости 22.
Биолюминесцентные тесты откроют дорогу нанометериалам в медицину
В Красноярске придумали использовать наночастицы золота для лечения рака | ОТР | Ученые из Красноярского научного центра Сибирского отделения РАН предложили способ обнаружения фенолов в воде с помощью наноалмазов. |
Красноярские ученые разработали биопластырь » Запад24 | Научный коллектив Федерального исследовательского центра «Красноярский научный центр СО РАН» совместно с учеными Сибирского федерального университета разработал новый метод синтеза алюминиевых сплавов, применение которого позволит создавать новые виды. |
Ученые из Красноярска разработали способ разрушения раковых клеток наночастицами золота | Красноярские ученые объяснили успешное применение магнитных наночастиц из оксида железа в лечении злокачественной опухоли карциномы Эрлиха. |
Красноярские ученые получили магнитные наночастицы для медицины биогенным путем
Ученые из Красноярска создали материал из наноалмазов и нанотрубок | Красноярские ученые использовали наноалмазы. Наука в Красноярском крае. |
Красноярские ученые разработали метод лечения переломов наночастицами - Новости | В лечении переломов ученые используют доработанные специалистами наночастицы и слабые магнитные поля, приводит ТАСС слова руководителя «Биомета», доктора биологических наук Анны Кичкайло. |
Красноярские ученые разработали метод лечения переломов наночастицами | Смотрите свежие новости на сегодня в Любимом городе | Красноярские ученые научились определять токсичность наночастиц. |
Наноалмазы «в шубе»
Новости Красноярска Новости общества. Ученые добавляют, что новый светящийся материал можно использовать в различных отраслях: в медицине, электронике и других. Новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов для обнаружения токсичных веществ (например, фенола) в производственных сточных водах разработал коллектив ученых из ФИЦ «Красноярский научный центр СО РАН». JRSNZ: ученые открыли новый вид ископаемых дельфинов — Aureia rerehua. Ученые «Енисейской Сибири» с коллегами-исследователями Красноярского научного центра СО РАН и Красноярского государственного медицинского университета разработали магнитный наноскальпель для адресной и малоинвазивной микрохирургии трудноизлечимых опухолей. Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской а.
Новый многоразовый композит из нановолокон и наноалмазов выявит токсичные вещества в воде
В результате красноярские ученые не только получили новый материал, но и открыли новое явление – сегрегацию меди. Российские ученые создали реактор, перерабатывающий отходы в экологичное топливо 16+. Новый композитный материал на основе нановолокон оксида алюминия и детонационных наноалмазов для обнаружения токсичных веществ (например, фенола) в производственных сточных водах разработал коллектив ученых из ФИЦ «Красноярский научный центр СО РАН». “Таймырский Телеграф” – Ученые Института физики им. Л.В. Киренского Красноярского научного центра СО РАН научились синтезировать магнитные наночастицы с ядром из никеля и непроводящей ток углеродной оболочкой. Домой Новости Ученые использовали наноалмазы для обнаружения загрязнений в воде.
Красноярские ученые научились находить яды в воде с помощью наноалмазов
Фенол — один из наиболее распространенных загрязнителей природных вод. Он используется в производстве пластмасс, фармацевтических препаратов, пестицидов и гербицидов. Существующие высокочувствительные методы определения фенола занимают много времени, требуют многоэтапных и трудоемких процедур пробоподготовки и использования дорогостоящего специализированного оборудования. В то же время для эффективного мониторинга промышленных сточных вод необходимы быстрые и недорогие методы определения опасных веществ. Он имеет сетчатую структуру, в которой кластеры наноалмазов распределены по поверхности нановолокон. Такие мембранные структуры обладают рядом преимуществ перед материалами из полимерных нановолокон.
Например, они имеют более высокую термическую и механическую стабильность, повышенную химическую и биологическую стойкость, простоту очистки и более длительный срок службы.
Вы здесь: Главная Интересно Ученые из Красноярска создали материал из наноалмазов и нанотрубок Ученые из Красноярска создали материал из наноалмазов и нанотрубок Опубликовал Абдрахманов Ленар в 31. Как говорят сами инженеры, новейший материал, люминесцирующий голубым оттенком в слабом электрическом поле, будет очень даже востребован во многих отраслях мирового производства.
Первые применяются в машиностроении и во многих аналитических приборах для отвода тепла, снижения трения или создания герметичного соединения, вторые используются для снижения потерь энергии при нагреве трансформаторов. По словам доктора технических наук, профессора, заведующего лабораторией аналитических методов исследования вещества Института физики им. В данном случае на углеродную поверхность наносят каталитически активный металл.
Такие катализаторы найдут применение в медицине, химическом производстве и малой энергетике. Вследствие того, что каждое ядро с оболочкой обладает магнитными свойствами, врачи и химики смогут управлять наночастицами, покрытыми благородными металлами, тогда как раньше они использовали в работе инструменты из золота или платины без управляемых характеристик.
Учредитель — Федеральное государственное унитарное предприятие «Всероссийская государственная телевизионная и радиовещательная компания». Главный редактор Панина Елена Валерьевна.
Новый многоразовый композит из нановолокон и наноалмазов выявит токсичные вещества в воде
Главная Новости Наука Красноярские ученые научились находить яды в воде с помощью наноалмазов. Новый композиционный материал создали ученые из Красноярска и Новосибирска на основе нанотрубок и наноалмазов. Специалисты Красноярского научного центра СО РАН разработали на основе нановолокон и наноалмазов материал, способный легко обнаруживать загрязняющие вещества в сточных водах промышленных предприятий.
Ученые из Красноярска разработали уникальные наночастицы золота для биомедицины
Наночастицы благородных металлов уже давно применяются в противораковой терапии. Медицинские специалисты используют оптическое излучение для нагрева наночастиц. При таких условиях происходит избирательная гибель опухолевых клеток. Однако такое поглощаемое обычными наночастицами излучение видимого диапазона длин волн попадает в полосу поглощения тканей, наполненных кровью, что резко снижает глубину проникновения света в ткани человека.
Об этом сообщили в пресс-службе Института физики им. Наночастицы благородных металлов уже давно применяются в противораковой терапии. Медицинские специалисты используют оптическое излучение для нагрева наночастиц. При таких условиях происходит избирательная гибель опухолевых клеток.
Ученые отмечают, что адресная доставка по сравнению с традиционными методами введения лекарств позволит снизить дозу вводимого вещества и минимизировать его побочное действие на организм. Полученные результаты исследования опубликованы в журнале Physics of the Solid State. Источник: ТАСС.
Препараты гадолиния перспективны для диагностики онкологических заболеваний благодаря особым парамагнитным свойствам этого металла. Однако токсичность таких лекарств является проблемой для их использования.
По оценке ученых, чтобы снизить токсичность фуллеренола, содержащего гадолиний, во время синтеза следует уменьшить количество кислородных заместителей. Выяснилось, что фуллеренолы с меньшим количеством кислородосодержащих заместителей не так токсичны, как фуллеренолы с большим количеством кислородосодержащих заместителей. Чтобы снизить токсичность мы рекомендуем уменьшить количество кислородсодержащих групп, присоединенных к углеродному каркасу. Наша работа показывает, что биолюминесцентные тесты можно использовать для сравнения и выбора углеродных наночастиц с определенными токсическими и антиоксидантными характеристиками», — рассказала Екатерина Ковель, одна из участниц исследования, аспирант Красноярского научного центра СО РАН. Таким образом, биолюминесцентные методы, используемые красноярскими биофизиками, позволяют изучать токсичные и антиоксидантные эффекты нанормазмерных материалов.
Биолюминесцентные тесты просты в использовании, характеризуются высокой скоростью анализа, дают возможность одновременно исследовать большое число проб-образцов. Ученые отмечают, что такие биолюминесцентные методы помогут предсказывать свойства водорастворимых углеродных наноматериалов на этапе их синтеза, что чрезвычайно важно для создания новых медицинских препаратов на их основе.
Сибирские ученые создали материал из наноалмазов
Красноярские ученые разработали способ разрушения раковых клеток с помощью наночастиц золота, сообщили в понедельник в пресс-службе Красноярского научного центра Сибирского отделения Российской а. Следовательно, наноалмазы можно использовать для нейтрализации, например, микотоксинов — метаболитов низших грибов, в частности плесневых. Это делает возможным использование наноалмазов для оперативного обнаружения фенола в воде. Сейчас ученые подбирают и культивируют наиболее подходящие к условиям среды и живущие в смеси измельченных руд с водой штаммы. и электро- катализе, а также использовать в литиевых, магниевых, алюминиевых.
Орфографическая ошибка в тексте:
- Форма поиска
- Красноярские учёные разработали уникальный способ анализа воды - Столица 24
- Российские ученые научились делать наноалмазы в лабораторных условиях // Видео НТВ
- Красноярские учёные создали экологичный пластик
Новый многоразовый композит из нановолокон и наноалмазов выявит токсичные вещества в воде
Доставку терапевтических наночастиц к опухоли осуществляют специальные молекулы. Под воздействием лазерного облучения частицы нагреваются и разрушают злокачественную ткань опухоли, оставляя здоровые ткани нетронутыми. Метод подходит для случаев, когда хирургическое удаление опухоли является сложной задачей", - сообщили в Красноярском научном центре.
Красноярские ученые получили магнитные наночастицы для медицины биогенным путем 12. Об этом сообщили в пресс-службе СФУ. В сообщении говорится, что ферригидрит образуется в процессе жизнедеятельности бактерий и располагается на поверхности клеток в виде скоплений нанозерен.
Несколько слоев укладывают на медную микроскопическую сетку-подложку.
Чтобы создать новый материал, необходимы условия, приближенные к метеоритному удару. В огромную установку ученые кладут подложку с наращенном графеном, по которой ударяют ионами ксенона. В результате облучения за доли секунды поднимается высокое давление и температура, под действием которых и образуется новый материал. По своей структуре это не отдельные кристаллы, а целостная пленка со встроенными наноалмазами.
Ученые из Сибири создали светящийся материал на основе наноалмазов - 2x2. Например, для новых типов дисплеев Группа российских ученых из Новосибирска и Красноярска рассказала о своем новом изобретении — материале на основе наноалмазов. Особенность открытия в том, что разработка светится в слабом электрическом поле, что является необычным. Изобретение представляет собой сплав углеродных нанотрубок и наноалмазов.