Нильс Хенрик Давид Бор был датским физиком, который внес основополагающий вклад в понимание атомной структуры и квантовой теории, за что получил Нобелевскую премию по физике в 1922 году. На это Нильс Бор, сторонник квантовой механики, ответил ему: «Эйнштейн, перестань указывать Богу, что он должен делать со своими игральными костями!». По характеру чрезвычайно мягкий и интеллигентный, Нильс Бор не высказывался критично по отношению к религии. Однако мы решили остановить свой выбор на Терлецком — он мог бы произвести своей широкой эрудицией и осведомленностью нужное впечатление на Нильса Бора. Нильс Хенрик Давид Бор был датским физиком, который внес основополагающий вклад в понимание атомной структуры и квантовой теории, за что получил Нобелевскую премию по физике в 1922 году.
135 лет со дня рождения Нильса Бора: лучшие приложения «МЭШ» по физике
В отличие от младшего брата, блестящего лектора, Бор-главный был не мастер говорить перед большой аудиторией, да и в общении с начальством утомлял мучительно тихим голосом и слишком подробным анализом очевидностей в которых-то, как правило, и таятся ошибки. Все, что я произношу, не ленился повторять Бор, следует рассматривать как вопрос, а не как утверждение. А когда Бора спрашивали, как ему удалось создать едва ли не величайшую в истории научную школу, он неизменно отвечал: «Я не боялся называть себя дураком». Бор и слава Хорошо называть себя дураком, когда в это не поверит даже последний идиот… Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко. В 1910 году золотая медаль Датской академии за экспериментальное исследование сил поверхностного натяжения. В 1911 докторская диссертация по непривычной еще «электронной теории металлов», которую в легендарном Кембридже знаменитый «Джи Джи» Томсон, открывший электрон, рекомендовал по-видимому, правда, не читая к печати, только Бор отказался сократить ее вдвое.
Но зато в Манчестере у великого Резерфорда пришло сначала признание его таланта, а затем и революционное открытие. Пришла мировая слава, лавина последователей, иногда выхватывавших открытие у него из-под носа, но по-настоящему сердился он только тогда, когда дело касалось чужих приоритетов. В 1917 году в военном конфликте он был на стороне своей страны и радовался, что ей вернули последнюю отнятую территорию по подписке специально для него в Копенгагене было начато строительство института теоретической физики, будущей Мекки всех теоретиков. Как всякий громкий научный принцип, принцип дополнительности породил свой социальный фантом: все объекты вообще, а объекты микромира в особенности описываются сразу двумя взаимоисключающими теориями. Тем не менее, каждому наблюдателю открыта своя часть правды: «противоположности суть дополнения», отчеканено на золотой медали, учрежденной в Дании в честь ее национального гения.
Из 29 участников пятого Сольвеевского конгресса 1927г. Бор и атомная бомба После расщепления атомного ядра Бор первым угадал и тот изотоп урана, и тот еще не открытый элемент плутоний , из которых впоследствии и были изготовлены обе бомбы, «Малыш» и «Толстяк», уничтожившие Хиросиму и Нагасаки. Нильс Бор под именем Николаса Бейкера «дядюшки Ника» , доставленный в Лос-Аламос после многочисленных приключений чего стоит один только перелет из Швеции в Англию в бомбовом отсеке, из коего в случае опасности классика надлежало сбросить в море , служил консультантом Манхэттенского проекта, многим участникам которого он самолично помог спастись от Гитлера. Однако успех проекта немедленно пробудил в нем пророка: в соответствии с принципом дополнительности он принялся неутомимо убеждать сначала Рузвельта, а потом Черчилля немедленно поделиться атомными секретами со Сталиным для дальнейшего взаимного контроля. В итоге Рузвельт отправился на тот свет, а Черчилль потребовал пригрозить Бору арестом или, по крайней мере, открыть ему глаза на то, что он «находится на грани государственного преступления».
Добился он и строительства исследовательского центра с тремя реакторами в самой Дании, неустанно при этом подчеркивая, что материальные выгоды от этого будут еще не скоро. Присутствие на парламентских дебатах привело его к заключению, что ученые стремятся к максимальному согласию, а политики к максимальному разногласию. В результате наибольшее количество запросов относилось не к огромным суммам на строительство, а к затратам на флагшток и конуру для сторожевого пса. Дерзость праведника Прожившему последние тридцать лет в Доме чести, предназначенном для самого почетного гражданина Дании дворец был построен для этой цели основателем пивоваренных заводов «Карлсберг» , осыпанному всеми мыслимыми наградами и почестями, судьба подарила Бору и кончину праведника: прилег и уже не встал. Случилось это 18 ноября 1962 года.
Ровно через месяц после его семидесятисемилетия.
Создатель первой квантовой теории атома. Лауреат Нобелевской премии по физике за 1922 год. Родился в 1885 году в семье профессора физиологии Христиана Бора, дважды номинировавшегося на Нобелевскую премию. Учился в Копенгагенском университете, где изучал физику, химию и математику.
В 1911 году стажировался в Англии, где работал под руководством отца ядерной физики Эрнста Резерфорда. После возвращения в Копенгаген в 1912 году преподавал в университете и разрабатывал квантовую теорию строения атома. В 1916 году возглавил кафедру теоретической физики в Копенгагенском университете и добился открытия Института теоретической физики.
Много позже американец Мари Гелл-Ман объяснит суть происходящего: распад сопровождается изменением тройки кварков, в результате появляется свободный электрон и та самая частица. За «открытие» кварков на кончике пера Гелл-Ману присудят Нобелевскую премию, но это случится уже после Паули. История гласит, что Паули как-то пожаловался выдающемуся физику, итальянцу Энрико Ферми, что никак не может подыскать имя нейтральной частице, возникающей при бета-распаде.
Недолго думая, Ферми по аналогии с бамбино предложил назвать частицу нейтрино. Альфа- и бета-частицы являются «глашатаями» процессов, происходящих в ядрах радиоактивных элементов. Вот объяснение по аналогии. На Руси объявлявших волю правителя человека называли бирюками — они для привлечения внимания били в «биры» — барабаны. Удар в барабан вызывает колебания натянутой кожи, передаваемые воздуху внутри резонатора. Сходными свойствами обладают и нейтрино, доносящие до нас сообщения о том, что происходит в глубинах космоса.
Но нейтральный «статус» нейтрино и их чрезвычайно малая энергия делают их трудноуловимыми. Тем не менее с помощью изощренных детекторов, улавливающих свет излучения, генерируемого при прохождении частиц через большие баки с водой или в земных глубинах, можно зафиксировать их следы. Есть нейтринный детектор и в Антарктиде — Ice Cube говоря упрощенно, кубокилометр чистейшего льда. Все эти физические приборы позволили говорить о свойствах нейтрино.
В школе Нильс интересовался физикой, математикой, философией. Он также увлекался футболом, в 1908 году в составе сборной Дании Бор выиграл «серебро» на Олимпиаде. В 1903 году поступил в Копенгагенский университет, где выполнил свои первые работы по исследованию колебаний струи жидкости для более точного определения величины поверхностного натяжения воды. В 1906 году этот труд был отмечен золотой медалью Датского королевского общества.
В 1910 году Бор получил степень магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов.
7 интересных фактов из биографии Нильса Бора
Нильс Хе́нрик Дави́д Бор — датский физик-теоретик и общественный деятель, один из создателей квантовой механики. Лауреат Нобелевской премии по физике (1922). Бор Нильс (1885–1962), датский физик, создатель первой квантовой теории атома, президент Датской королевской АН (с 1939). Нильс Бор с женой Маргарет, 30-е годыВ год празднования столетия теории атома, с которой, как принято считать, началась квантовая механика, мне довелось. Нильс Бор писал, что этому открытию он обязан сну.
Открытия, сделанные во сне
В 1912 году, во время свадебного путешествия, Бор передал Резерфорду свою подготовленную к печати статью «Теория торможения заряженных частиц при их прохождении через вещество» она была опубликована в начале 1913 года. Вместе с тем было положено начало тесной дружбе семей Боров и Резерфордов. Общение с Резерфордом оставило неизгладимый отпечаток как в научном, так и в личностном плане на дальнейшей судьбе Бора, спустя много лет написавшего: Очень характерным для Резерфорда был благожелательный интерес, который он проявлял ко всем молодым физикам, с которыми ему приходилось долго или коротко иметь дело. По возвращении в Копенгаген Бор преподавал в университете, в то же время интенсивно работая над квантовой теорией строения атома. Первые результаты содержатся в черновике, посланном Резерфорду ещё в июле 1912 года и носящем название «резерфордовского меморандума» [19]. Однако решающие успехи были достигнуты в конце 1912 — начале 1913 года. Ключевым моментом стало знакомство в феврале 1913 года с закономерностями расположения спектральных линий и общим комбинационным принципом для частот излучения атомов.
Впоследствии сам Бор говорил: Как только я увидел формулу Бальмера , весь вопрос стал мне немедленно ясен [20]. В марте 1913 года Бор послал предварительный вариант статьи Резерфорду, а в апреле съездил на несколько дней в Манчестер для обсуждения своей теории. Итогом проведённой работы стали три части революционной статьи «О строении атомов и молекул» [21] , опубликованные в журнале «Philosophical Magazine» в июле, октябре и декабре 1913 года и содержащие квантовую теорию водородоподобного атома. В теории Бора можно выделить два основных компонента [22] : общие утверждения постулаты о поведении атомных систем, сохраняющие своё значение и всесторонне проверенные, и конкретная модель строения атома , представляющая в наши дни лишь исторический интерес. Постулаты Бора содержат предположения о существовании стационарных состояний и об излучательных переходах между ними в соответствии с представлениями Планка о квантовании энергии вещества. Модельная теория атома Бора исходит из предположения о возможности описания движения электронов в атоме, находящемся в стационарном состоянии, на основе классической физики , на которое накладываются дополнительные квантовые условия например, квантование углового момента электрона.
Теория Бора сразу же позволила обосновать испускание и поглощение излучения в сериальных спектрах водорода , а также объяснить с поправкой на приведённую массу электрона наблюдавшиеся ранее Чарлзом Пикерингом и Альфредом Фаулером водородоподобные спектры с полуцелыми квантовыми числами как принадлежащие ионизированному гелию. Блестящим успехом теории Бора стало теоретическое получение значения постоянной Ридберга [23]. Работа Бора сразу привлекла внимание физиков и стимулировала бурное развитие квантовых представлений. Его современники по достоинству оценили важный шаг, который сделал датский учёный. Так, в 1936 году Резерфорд писал: Я считаю первоначальную квантовую теорию спектров, выдвинутую Бором, одной из самых революционных из всех когда-либо созданных в науке; и я не знаю другой теории, которая имела бы больший успех [24]. Нильс Бор и Альберт Эйнштейн вероятно, декабрь 1925 В 1949 году Альберт Эйнштейн так вспоминал о своих впечатлениях от знакомства с теорией Бора: Все мои попытки приспособить теоретические основы физики к этим результатам [то есть следствиям закона Планка для излучения чёрного тела] потерпели полную неудачу.
Это было так, точно из-под ног ушла земля и нигде не было видно твёрдой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточным, чтобы позволить Бору — человеку с гениальной интуицией и тонким чутьём — найти главные законы спектральных линий и электронных оболочек атомов, включая их значение для химии. Это мне кажется чудом и теперь. Это наивысшая музыкальность в области мысли [25]. Весной 1914 года Бор был приглашён Резерфордом заменить Чарльза Дарвина , внука знаменитого естествоиспытателя , в качестве лектора по математической физике в Манчестерском университете Шустеровская школа математической физики [26]. Он оставался в Манчестере с осени 1914 года до лета 1916 года.
В это время он пытался распространить свою теорию на многоэлектронные атомы, однако скоро зашёл в тупик. Уже в сентябре 1914 года он писал: Для систем, состоящих из более чем двух частиц, нет простого соотношения между энергией и числом обращений, и по этой причине соображения, подобные тем, которые я использовал ранее, не могут быть применены для определения «стационарных состояний» системы. Я склонен полагать, что в этой проблеме скрыты очень значительные трудности, которые могут быть преодолены лишь путём отказа от обычных представлений в ещё большей степени, чем это требовалось до сих пор, и что единственной причиной достигнутых успехов является простота рассмотренных систем [27]. В 1914 году Бор сумел частично объяснить расщепление спектральных линий в эффектах Штарка и Зеемана , однако ему не удалось получить расщепление более чем на два компонента. В этом проявилась ограниченность круговых орбит, рассматриваемых в его теории. Преодолеть её стало возможно лишь после того, как в начале 1916 года Арнольд Зоммерфельд сформулировал обобщённые квантовые условия, ввёл три квантовых числа для орбиты электрона и объяснил тонкую структуру спектральных линий , учтя релятивистские поправки.
Бор сразу же занялся коренным пересмотром своих результатов в свете этого нового подхода [28]. Дальнейшее развитие модели. Принцип соответствия 1916—1923 [ править править код ] Летом 1916 года Бор окончательно вернулся на родину и возглавил кафедру теоретической физики в Копенгагенском университете. В апреле 1917 года он обратился к датским властям с просьбой о выделении финансов на строительство нового института для себя и своих сотрудников. Несмотря на большую занятость административными делами, Бор продолжал развивать свою модель, пытаясь обобщить её на случай более сложных атомов, например, гелия. В 1918 году в статье «О квантовой теории линейчатых спектров» Бор сформулировал количественно так называемый принцип соответствия , связывающий квантовую теорию с классической физикой.
Впервые идея соответствия возникла ещё в 1913 году , когда Бор использовал мысль о том, что переходы между стационарными орбитами с большими квантовыми числами должны давать излучение с частотой, совпадающей с частотой обращения электрона [30]. Начиная с 1918 года, принцип соответствия стал в руках Бора мощным средством для получения новых результатов: он позволил, следуя представлениям о коэффициентах Эйнштейна , определить вероятности переходов и, следовательно, интенсивности спектральных линий; получить правила отбора в частности, для гармонического осциллятора ; дать интерпретацию числу и поляризации компонент штарковского и зеемановского расщеплений [31]. Впоследствии Бор дал чёткую формулировку принципу соответствия: …"принцип соответствия", согласно которому наличие переходов между стационарными состояниями, сопровождающихся излучением, связано с гармоническими компонентами колебания в движении атома, определяющими в классической теории свойства излучения, испускаемого вследствие движения частицы. Таким образом, по этому принципу, предполагается, что всякий процесс перехода между двумя стационарными состояниями связан с соответствующей гармонической компонентой так, что вероятность наличия перехода зависит от амплитуды колебания, поляризация же излучения обусловлена более детальными свойствами колебания так же, как интенсивность и поляризация излучения в системе волн, испускаемых атомом по классической теории вследствие наличия указанных компонент колебания, определяется амплитудой и другими свойствами последних. Именно из него исходил в 1925 году Вернер Гейзенберг при построении своей матричной механики [33].
В 1910 году Бор получил степень магистра, а в мае 1911 года защитил докторскую диссертацию по классической электронной теории металлов. Вклад в науку В 1917 года Нильс Бор вошел в Датское королевское общество, а с 1939 года стал его президентом. Физик получил известность как автор первой квантовой теории атома и активный участник разработки основ квантовой механики. Ученый также внес значительный вклад в развитие теории атомного ядра и ядерных реакций, процессов взаимодействия элементарных частиц со средой. Ученый ушел из жизни 18 ноября 1962 года.
Старого мира больше нет В 30-е годы Бор почти все свои исследования направляет на ядерную физику. Основным его достижением той поры является модель составного ядра. Это не ядро само по себе, а его возбуждённое состояние, которое соответствует времени прохождения нейтрона через него. Начинается изучение механизма деления ядер, связанное с высвобождением огромного количества энергии. Между тем мир приближается к новому грандиозному конфликту. В Германии приходят к власти национал-социалисты. Уже к середине 30-х годов становится ясно, что квантовая механика перестаёт быть отраслью сугубо теоретических познаний, граничащих с философией. Бор активно помогает учёным покидать пределы Рейха, даже создаёт для этого социальный комитет помощи учёным-эмигрантам. В 1940 году Дания оккупирована немецкими войсками.
Несмотря на постоянный риск оказаться под арестом, а затем в лагере, Бор принимает решение до последней возможности не покидать Копенгаген. Арестовать его могли прежде всего по той причине, что его мать, в девичестве Эллен Адлер, была еврейкой, дочерью известного и влиятельного банкира. Но до ареста не дошло... Осенью 1943 года Бор вместе со своим сыном и учеником Оге переправляется на лодке в Швецию, а оттуда на военном самолёте, направленным специально за ним, перелетает в Англию. Из Англии же учёный отправляется в США, где приступает к работе над проектом создания атомной бомбы. Нераспространение ядерного оружия с помощью его распространения Бор и другие физики оказались в сложной ситуации. Они прекрасно понимали, что монопольное владение ядерным оружием крайне опасно, в чьих бы руках оно ни находилось. Начиная с 1944 года Нильс Бор включается в активную политическую борьбу. Он встречается с премьером Британии и поднимает вопрос о совместных действиях против создания и распространения ядерного оружия.
Крупные черты лица делали его обаятельным скандинавским джентльменом, но отнюдь не красавцем, что тоже могло бы вызывать раздражение. Его бесспорное научное лидерство уравновешивалось простодушием, с которым он в виде отдыха предавался просмотрам вестернов: тут уж любой студент лучше его разбирался в том, кто из ковбоев угнал чье стадо и чьей невестой является та блондинка, которую похитил злодей. В отличие от младшего брата, блестящего лектора, Бор-главный был не мастер говорить перед большой аудиторией, да и в общении с начальством утомлял мучительно тихим голосом и слишком подробным анализом очевидностей в которых-то, как правило, и таятся ошибки. Все, что я произношу, не ленился повторять Бор, следует рассматривать как вопрос, а не как утверждение. А когда Бора спрашивали, как ему удалось создать едва ли не величайшую в истории научную школу, он неизменно отвечал: «Я не боялся называть себя дураком». Бор и слава Хорошо называть себя дураком, когда в это не поверит даже последний идиот… Нильса Бора уже на студенческой скамье считали гением, но в противоположность этому титулу карьера его развивалась удивительно гладко. В 1910 году золотая медаль Датской академии за экспериментальное исследование сил поверхностного натяжения. В 1911 докторская диссертация по непривычной еще «электронной теории металлов», которую в легендарном Кембридже знаменитый «Джи Джи» Томсон, открывший электрон, рекомендовал по-видимому, правда, не читая к печати, только Бор отказался сократить ее вдвое. Но зато в Манчестере у великого Резерфорда пришло сначала признание его таланта, а затем и революционное открытие.
Пришла мировая слава, лавина последователей, иногда выхватывавших открытие у него из-под носа, но по-настоящему сердился он только тогда, когда дело касалось чужих приоритетов. В 1917 году в военном конфликте он был на стороне своей страны и радовался, что ей вернули последнюю отнятую территорию по подписке специально для него в Копенгагене было начато строительство института теоретической физики, будущей Мекки всех теоретиков. Как всякий громкий научный принцип, принцип дополнительности породил свой социальный фантом: все объекты вообще, а объекты микромира в особенности описываются сразу двумя взаимоисключающими теориями. Тем не менее, каждому наблюдателю открыта своя часть правды: «противоположности суть дополнения», отчеканено на золотой медали, учрежденной в Дании в честь ее национального гения. Из 29 участников пятого Сольвеевского конгресса 1927г. Бор и атомная бомба После расщепления атомного ядра Бор первым угадал и тот изотоп урана, и тот еще не открытый элемент плутоний , из которых впоследствии и были изготовлены обе бомбы, «Малыш» и «Толстяк», уничтожившие Хиросиму и Нагасаки. Нильс Бор под именем Николаса Бейкера «дядюшки Ника» , доставленный в Лос-Аламос после многочисленных приключений чего стоит один только перелет из Швеции в Англию в бомбовом отсеке, из коего в случае опасности классика надлежало сбросить в море , служил консультантом Манхэттенского проекта, многим участникам которого он самолично помог спастись от Гитлера. Однако успех проекта немедленно пробудил в нем пророка: в соответствии с принципом дополнительности он принялся неутомимо убеждать сначала Рузвельта, а потом Черчилля немедленно поделиться атомными секретами со Сталиным для дальнейшего взаимного контроля. В итоге Рузвельт отправился на тот свет, а Черчилль потребовал пригрозить Бору арестом или, по крайней мере, открыть ему глаза на то, что он «находится на грани государственного преступления».
Добился он и строительства исследовательского центра с тремя реакторами в самой Дании, неустанно при этом подчеркивая, что материальные выгоды от этого будут еще не скоро. Присутствие на парламентских дебатах привело его к заключению, что ученые стремятся к максимальному согласию, а политики к максимальному разногласию. В результате наибольшее количество запросов относилось не к огромным суммам на строительство, а к затратам на флагшток и конуру для сторожевого пса. Дерзость праведника Прожившему последние тридцать лет в Доме чести, предназначенном для самого почетного гражданина Дании дворец был построен для этой цели основателем пивоваренных заводов «Карлсберг» , осыпанному всеми мыслимыми наградами и почестями, судьба подарила Бору и кончину праведника: прилег и уже не встал.
Нобелевские лауреаты 2022: кто и за какие открытия получил премию
Новое поселение назвали Сидней в честь Томаса Тауншенда, первого виконта Сиднея, секретаря Британской империи в 1784-89 годах, который и отдал приказ отправить флот. На кораблях британского флота, прибывшего в Австралию, находились 192 женщины-заключенные, 564 мужчины, 450 матросов, гражданский и военный персонал, 28 жен и 30 детей. До 1808 года этот день отмечался как День первой высадки или День Основания. В 1818 году — на 30-летие колонии — губернатор Маккуаэри велел произвести салют из 30 орудий и дал государственным служащим выходной. Вскоре эту традицию переняли банки и многие общественные организации. В 1888 году все столицы колоний за исключением Аделаиды отпраздновали столетие высадки первого флота как День юбилея, а к 1935 году все штаты страны праздновали 26 января как День Австралии. Герой В канадском городе Брантфорд 26 января 1961 года родился будущий хоккеист Уэйн Гретцки, которому было суждено переписать большинство рекордов североамериканского хоккея. Талант будущей звезды хоккея проявился уже в детстве. В шестилетнем возрасте Гретцки играл с десятилетними спортсменами.
В возрасте десяти лет вундеркинд, выступая в детской лиге, забросил за сезон 378 шайб и сделал 139 передач в 68 играх, что стало абсолютным рекордом.
Его лаборант сказал мне как-то, что никто из физиков "так сильно не ругается из-за приборов", как Резерфорд. В камере Вильсона, как известно, фотографируются пути заряженных частиц. Было замечено, что некоторые пути заканчиваются изгибом-то явление, которое мы называем рассеянием частиц на большие углы. Резерфорд знал об этом явлении и раньше, ведь именно на знании этого факта и была построена его знаменитая модель атома. И тем не менее, с каким воодушевлением, с каким детским восторгом говорил он о возможности созерцать то, что было еще совсем недавно невидимым, неосязаемым!.. Вильсон как-то в разговоре со мной рассказал, как воспоминания юности - о путешествии по Шотландии, туманах, висящих в долинах между холмами,- навели его на мысль о создании камеры, где капельки будут конденсироваться вокруг заряженных частиц и отмечать их путь. Этой смелой, простой идее и отдавал дань Резерфорд, один из самых увлекающихся людей, которых я когда-либо знал, всегда готовый поддержать всякую новую и свежую мысль, человек, буквально очаровавший всех современных ему физиков, ученый, чья личность, чья индивидуальность производила неотразимое впечатление на каждого, кто хоть однажды встречался с ним...
Бор говорит о своих встречах с Эйнштейном. Хевеши, интересовавшийся не только изотопами, с которыми он тогда работал, но и многими другими вопросами и знавший буквально всех физиков, пересказал Эйнштейну содержание первой моей работы об излучении при переходах из одного состояния атома в другое. Эйнштейн задумался, а потом ответил ему "Что ж, все это не так далеко от того, к чему мог бы прийти и я. Но если все это правильно, то здесь - конец физики". Такая реакция Эйнштейна характерна - он никогда не любил отходить от наглядных, ясных и стройных картин. Наша первая личная встреча состоялась через несколько лет, в 1920 году, в Берлине. Можно понять, каким сильным переживанием для меня, совсем молодого физика, было знакомство с этим великим человеком. По молодости лет я был резок и нетерпим, и в беседе нашей отстаивал самые крайние позиции...
Эйнштейн выглядел очень усталым, в разговоре машинально переходил с немецкого то на французский, то на английский. Незадолго до этого он выдвинул свою знаменитую идею о фотонах и опубликовал работу, в которой показал, как можно вывести формулу Планка, исходя из представлений о квантовых переходах в атоме. И вот все это время его, человека, всегда стремившегося к стройности и завершенности, не покидало беспокойство - так что же такое свет частицы или волны? Со всей непримиримостью молодости я заявил: - Чего вы, собственно, хотите достичь? Вы, человек, который сам ввел в науку понятие о свете, как о частицах! Если вас так беспокоит ситуация, сложившаяся в физике, когда природу света можно толковать двояко, ну что ж, обратитесь к правительству Германии с просьбой запретить пользоваться фотоэлементами, если вы считаете, что свет - это волны, или запретить употреблять диффракционные решетки, если свет - частицы. Аргументация моя, как видите, была не слишком убедительна и строга. Впрочем, для того времени это достаточно характерно...
Эйнштейн с горечью заметил: - Видите, как получается приходит ко мне такой человек, как вы, встречаются, казалось бы, два единомышленника, а мы никак не можем найти общего языка. Может быть, стоило бы нам, физикам, договориться о каких-нибудь общих основаниях, о чем-то общем, что мы твердо будем считать положительным, и уже затем переходить к дискуссиям? И снова я запальчиво возражал: - Нет, никогда! Я счел бы величайшим предательством со своей стороны, если бы, начиная работу в совершенно новой области знаний, позволил себе прийти к какому-то предвзятому соглашению. Много раз мы встречались после этого разговора, часто спорили. Ответы на многие вопросы, в свое время вызывавшие ожесточенные дискуссии, в наши дни известны каждому начинающему. А мне хочется сегодня, когда Эйнштейна уже нет с нами, сказать, как много сделал для квантовой физики этот человек с его вечным, неукротимым стремлением к совершенству, к архитектурной стройности, к классической законченности теорий, к единой системе, на основе которой можно было бы развивать всю физическую картину. В каждом новом шаге физики, который, казалось бы, однозначно следовал из предыдущего, он отыскивал противоречия, и противоречия эти становились импульсом, толкавшим физику вперед.
На каждом новом этапе Эйнштейн бросал вызов науке, и не будь этих вызовов, развитие квантовой физики надолго бы затянулось... Нильсу Бору задают вопрос в чем секрет его педагогических успехов? Как удалось ему воспитать целое поколение физиков - таких разных и таких талантливых? Бор улыбается и разводит руками. Я не думаю, чтобы у нас были какие-то особые секреты. Главное, по-моему, что в общении с молодежью мы никогда не боялись кому-нибудь показаться глупыми, никогда и никому не давали готовых рецептов. Я всегда был против высказывания каких-то окончательных, безапелляционных суждений по вопросам, которые еще обсуждаются, мне хотелось поддерживать их в состоянии некоторой неопределенности, чтобы был открыт путь новым, свежим мыслям... Очень большую помощь нам в работе оказал - я хочу это подчеркнуть еще раз - юмор, тот самый традиционный юмористический стиль нашего поколения Нильс Бор задумался.
Лифшиц - его бессменный переводчик и течение всего вечера. Я помню, как однажды ко мне пришел один из наших молодых сотрудников, Вейцкопф, и с возмущением рассказал, что один из его друзей, работавших у нас же, ко всему на свете относится с неуважением.
Цель проекта: Изучение жизни и научной деятельности Нильса Бора, выявление его вклада в развитие современной физики. Проблема: Отсутствие подробного исследования влияния Нильса Бора на развитие физики и научных открытий. Целевая аудитория: Студенты, преподаватели, научные работники, любознательные читатели Задачи проекта: 1. Провести анализ биографии и достижений Нильса Бора. Выявить его роль в создании квантовой механики. Изучить участие в Манхэттенском проекте.
Проанализировать полученные награды и заслуги.
Немного истории. В 1913 году была опубликована революционная статья датского физика Нильса Бора «О строении атомов и молекул» оригинальный текст статьи по ссылке. Бору к тому моменту не исполнилось 27 лет, а он уже получил доктора наук в Копенгагенском университете, а также успел поработать с именитым ученым-физиком Томпсоном в Кембридже, правда, сотрудничество вышло неудачным. Томпсон был велик, но слегка зашорен: молодой ученый сходу сделал английскому гуру физики несколько замечаний и указал на ошибку в вычислениях.
Закончилось тем, что Бор вскоре уехал от Томпсона в Манчестер к новому знакомому Резерфорду. Резерфорда все читатели, надеюсь, помнят по планетарной модели атома из курса школьной физики. Именно общение с учителем и, впоследствии, другом Резерфордом и привело к появлению теории атомов. Прошло всего 3 месяца со дня переезда в Манчестер, и когда кто-то из студентов просил Резерфорда объяснить, как устроен атом, тот отвечал: «Спросите у Бора». В 1922 году датскому ученому была присуждена Нобелевская премия по физике.
Альберт Эйнштейн писал о модели Бора: Было так, точно из-под ног ушла земля, и нигде не было видно твердой почвы, на которой можно было бы строить. Мне всегда казалось чудом, что этой колеблющейся и полной противоречий основы оказалось достаточно, чтобы человеку с гениальной интуицией и тонким чутьем — Бору — найти главнейшие законы спектральных линий и электронных оболочек атомов… Это кажется мне чудом и теперь. Это — наивысшая музыкальность в области мысли. Граждане Дании соотечественника-лауреата чествовали как ненормальные, тот же продолжал трудиться над теоретическими выкладками еще много последующих лет. Главным же своим научным достижением Бор считал принцип соответствия, который стал одной из основ методологии современной науки.
Хотя, конечно, наследие гения гораздо шире. Фигура Бора вызывала мой интерес давно. Во многом, потому что он был не только великим физиком, но и гуманистом, а также философом. Во времена подъема Рейха ряд ученых во имя науки начали работать над развитием ядерной физики и созданием оружия массового поражения нового поколения — атомной бомбы. Бор, спасаясь от нацистов в разгар Второй мировой, хоть и был вынужден некоторое время сотрудничать по аналогичным проектам в США, все-таки выражал категоричную позицию и говорил об атомной угрозе с политиками на самом высоком уровне, вплоть до Рузвельта.
Особенно после того, как прогремели Хиросима и Нагасаки, а ядерные испытания проводились по всему миру чуть ли не «на заднем дворе» и в США в том числе. В 1950 году Бор написал открытое послание в ООН и выразил обеспокоенность продолжающейся огромными темпами милитаризацией атома, а также разобщением ученых. Как мы знаем, это не сильно помогло.
Нильс Бор - биография
Хотя убедительные намеки на волны впервые появились в 1970-х годах, никто не обнаруживал их напрямую до 2015 года, когда базирующаяся в США обсерватория LIGO почувствовала толчок отдаленного столкновения двух черных дыр. Открытие, о котором было объявлено в 2016 году, открыло новый способ «услышать» космос. В 2017 году LIGO и европейская обсерватория Virgo ощутили еще одну серию толчков, на этот раз вызванных столкновением двух сверхплотных объектов, называемых нейтронными звездами. Телескопы по всему миру видели связанный с этим взрыв, что сделало это событие первым в истории, наблюдаемым как в световых, так и в гравитационных волнах.
Эти важные данные дали ученым беспрецедентный взгляд на то, как работает гравитация и как образуются такие элементы, как золото и серебро. Observation of Gravitational Waves from a Binary Black Hole Merger The first gravitational-wave source from the isolated evolution of two stars in the 40—100 solar mass range 16. Встряхивание генеалогического дерева человечества В 2010 году Ли Бергер представил далекого предка по имени Australopithecus sediba.
Пять лет спустя он объявил, что в южноафриканской пещерной системе «Колыбель человечества» обнаружены окаменелости нового вида: Homo naledi, гоминида, чья «мозаичная» анатомия напоминает как современных людей, так и гораздо более древних родственников. Последующее исследование также показало, что H. Другие замечательные открытия были сделаны в Азии.
В 2010 году группа ученых объявила, что ДНК, извлеченная из древней сибирской кости, не похожа ни на одну из ДНК современного человека, что стало первым свидетельством происхождения потомков, называемых теперь денисовцами. В 2018 году в Китае были обнаружены каменные орудия возрастом 2,1 миллиона лет, что подтверждает, что производители инструментов распространились в Азии на сотни тысяч лет раньше, чем считалось ранее. В 2019 году исследователи на Филиппинах объявили об окаменелостях Homo luzonensis, нового типа гоминина, похожего на Homo floresiensis.
Открытие тысяч новых экзопланет Человеческие знания о планетах, вращающихся вокруг далеких звезд, сделали гигантский скачок вперед в 2010-х годах, в немалой степени благодаря космическому телескопу НАСА «Кеплер». С 2009 по 2018 год только Кеплер обнаружил более 2700 подтвержденных экзопланет, что составляет более половины текущего общего количества. Среди них; первая подтвержденная каменистая экзопланета.
Его преемник TESS, запущенный в 2018 году, уже находит гораздо больше экзопланет. Надеюсь, в ближайшие годы мы увидим гораздо больше. В 2017 году исследователи объявили об открытии TRAPPIST-1, звездной системы всего в 39 световых годах от нас, в которой находятся семь планет размером с Землю; больше всего встречается вокруг любой звезды, кроме Солнца.
За год до этого проект Pale Red Dot объявил об открытии Проксимы b, планеты размером с Землю, которая вращается вокруг Проксимы Центавра, ближайшей к Солнцу звезды, находящейся всего в 4,25 световых года от нас. Некоторые из крупнейших экзопланет в масштабе. Некоторые бактерии естественным образом используют Crispr-Cas9 в качестве иммунной системы, поскольку он позволяет им хранить фрагменты вирусной ДНК, распознавать любой будущий соответствующий вирус, а затем нарезать ДНК вируса на ленточки.
В 2012 году исследователи предложили использовать Crispr-Cas9 в качестве мощного инструмента генетического редактирования, поскольку он точно разрезает ДНК способами, которые ученые могут легко настроить. В течение нескольких месяцев другие команды подтвердили, что этот метод работает с ДНК человека. С тех пор лаборатории всего мира стремились идентифицировать подобные системы, модифицировать Crispr-Cas9, чтобы сделать его еще более точным, и экспериментировать с его применением в сельском хозяйстве и медицине.
Бозон Хиггса Как материя приобретает массу? В 1960-х и 1970-х годах физики, в том числе Питер Хиггс и Франсуа Энглер, предложили решение в виде нового энергетического поля, которое пронизывает Вселенную и теперь называется полем Хиггса. Это теоретическое поле также пришло с связанной с ним фундаментальной частицей, которую сейчас называют бозоном Хиггса.
Студенты шли к нему толпами, а ему всегда нужны были собеседники. Философ, администратор, основатель фонда, помощник политэмигрантов, основатель международных институтов физики, преданный семьянин. Собирал средства на финансирование научных исследований. Его называли «директором атомной теории». Общественная фигура первого ранга. В своем доме принимал королеву Елизавету II, королеву Сиама, императора Японии и многих других коронованных особ.
Активный участник борьбы против атомной угрозы. Характер научной школы Бора и его взаимоотношений с учениками могут быть прояснены следующим эпизодом. Когда Ландау во время визита Бора в Москву в мае 1961 спросил у своего наставника: «Каким секретом вы обладали, который позволил вам в такой степени концентрировать вокруг себя творческую теоретическую молодёжь? Лауреаты Нобелевской премии Нильс Бор, Джеймс Франк и Альберт Энштейн Человек высокого роста, с большим чувством юмора, Бор был известен своим дружелюбием и гостеприимством. Как и у Резерфорда, у Бора были «золотые» руки. В Дании он даже получил золотую медаль за некоторые поставленные им эксперименты.
Бор был не только талантливым ученым, организатором, но и прекрасным семьянином и отцом. С детьми он был ласков и добр и постоянно, как и его отец, Христиан Бор, приучал их к труду. Дети сами вспоминали потом, что для них отец в первую очередь являлся лучшим другом, который открывал перед ними большой и интересный мир. Бор мог думать о работе и в праздники, и во время лыжных прогулок и даже ночью. Обладая огромной работоспособностью, он тем самым вынуждал своих ассистентов выдерживать большие нагрузки, для обеспечения нормальной работы шефа. Тяжело было также потому , что у Бора не получалось одновременно думать и писать, отсюда его помощники писали под диктовку его статьи, которые по много раз переписывались и корректировали.
Интересно также понимание Бором проблем психологии. Тут же он провел аналогию с мозгом человека, который подобно руке настраивается с помощью фактов и органов чувств на анализ воспринимаемой информации". Бор с внуками 7 октября 1955 года Нильсу Бору исполнилось 70 лет. По этому случаю 14 октября состоялось торжественное заседание Датского королевского общества, на котором присутствовал король. Президент Бор поблагодарил короля за его участие в заседании и за поддержку, оказываемую им Обществу. Король сообщил, что он наградил президента орденом Даннеброга первой степени.
Достигнув возраста обязательной отставки, Бор ушёл с поста профессора Копенгагенского университета, но оставался главой Института теоретической физики. В последние годы своей жизни он продолжал вносить свой вклад в развитие квантовой физики и проявлял большой интерес к новой области молекулярной биологии. Когда Бору было пожаловано дворянство в знак признания его научных заслуг, он должен был выбрать себе герб и девиз. Бор выбрал символ Тайцзы, выражающий взаимосвязь между противоположными первоначалами инь и ян, и латинскую фразу contraria sunt complementa противоположности дополняют друг друга. В октябре 1957 г. В день своего 70-летия Бор был награждён высшим королевским орденом и в честь него датская академия наук учредила золотую медаль с изображением профиля учёного.
Бор был не только великим учёным, но и одним из самых влиятельных людей своего времени. Его влияние на современников можно сравнить разве только с авторитетом Аристотеля. Его и фру Маргарет называли «второй королевской семьей Дании». Бор заснул и больше не проснулся. Он умер в результате сердечного приступа. Урна с его прахом находится в семейной могиле в Копенгагене.
С женой Маргарет Нильс Бор и созданная им школа физиков положили начало новому стилю исследовательской работы в теоретической физике. После Альберта Эйнштейна Бор был самым влиятельным физиком двадцатого века. Во всем мире его считают отцом современной квантовой теории. Бор был членом более двух десятков ведущих научных обществ и являлся президентом Датской королевской академии наук с 1939 г. Кроме Нобелевской премии, он получил высшие награды многих ведущих мировых научных обществ, включая медаль Макса Планка Германского физического общества 1930 и медаль Копли Лондонского королевского общества 1938. Он обладал почётными учёными степенями ведущих университетов, включая Кембридж, Манчестер, Оксфорд, Эдинбург, Сорбонну, Принстон, Макгил, Гарвард и Рокфеллеровский центр.
С 1965 года Копенгагенский институт теоретической физики носит имя Бора. В 1963 и 1985 годах в Дании были выпущены марки с его изображением. В 1997 г. Имя Бора носят астероид, кратер на Луне. Датский национальный банк выпустил в обращение банкноту достоинством 500 крон с изображением Нильса Бора. Однажды он сказал: Можно быть неправым, но нельзя быть невежливым.
Мы не боялись показать молодому человеку, что мы сами глупы. Правду дополняет ясность. Ничто не существует, пока оно не измерено. Отрицательный результат — тоже результат. Опыт есть совокупность наших разочарований. Никогда не выражайся чётче, чем способен мыслить.
Хочешь нажить себе врагов, попробуй что-нибудь изменить. Противоположности — не противоречия, они — дополнения. Очень трудно сделать точный прогноз, особенно о будущем. Науки делятся на две группы — на физику и собирание марок. Если идея не кажется безумной, от нее не будет никакого толку. Если квантовая теория не потрясла тебя — ты её ещё не понял.
Работа - последнее прибежище тех, кто больше ничего не умеет. Ясность и истина не совпадают, но ясность - дополнение к истине. Ваша теория безумна, но недостаточно безумна, чтобы быть истинной. На свете есть столь серьезные вещи, что говорить о них можно только шутя. Проблемы важнее решения. Решения могут устареть, а проблемы остаются.
Человечество не погибнет в атомном кошмаре - оно задохнется в собственных отходах.
В 1912 году он женился на Маргрете Норлунд, в семье родилось шестеро сыновей. В 1913-м он опубликовал свою знаменитую работу, посвященную структуре атома. В теории Бора можно выделить два основных компонента: общие утверждения постулаты о поведении атомных систем, сохраняющие свое значение сегодня, и конкретную модель строения атома, представляющую в наше время лишь исторический интерес. Вклад Бора в теорию квантовой механики был по достоинству оценен научным сообществом и привел к присуждению ему в 1922 году Нобелевской премии. Примерно в то же время ученому удалось убедить руководство Копенгагенского университета в необходимости создания Института физики. Институт был учрежден в 1921 году, и Бор стал его первым директором. Исследования, проводившиеся в 20-30-х годах Бором и другими выдающимися физиками — Вернером Гейзенбергом, Вольфгангом Паули — позволили совершить революционный скачок в квантовой теории и приблизиться к пониманию природы атома. Бор первым оценил значение открытия ядерного деления, осуществленного Лизой Мейтнер и Отто Ганом. Именно великий датчанин объяснил отличие изотопа урана-235 от других видов урана и предсказал, что его можно будет использовать для создания ядерного оружия.
После прихода к власти в Германии нацистов Бор устроил нескольких эмигрировавших оттуда ученых на работу в Копенгагенский университет.
Лауреат Нобелевской премии по физике. Ранние годы и учеба в университете Нильс Бор родился 7 октября 1885 года в Копенгагене. Его отец — Христиан Бор — профессор физиологии Копенгагенского университета, дважды кандидат на Нобелевскую премию по физиологии и медицине. В школе Нильс интересовался физикой, математикой, философией. Он также увлекался футболом, в 1908 году в составе сборной Дании Бор выиграл «серебро» на Олимпиаде.
#Нильс Бор
Они помогают клетке двигаться к бактериям и в то же время действуют как сенсорные щупальца, которые определяют бактерию как добычу”, — говорит Мартин Бендикс, руководитель лаборатории экспериментальной биофизики Института Нильса Бора. В 1933 усилиями Нильса Бора, его брата Харальда, директора Института вакцин Торвальда Мадсена и адвоката Альберта Йоргенсена был учреждён специальный Комитет помощи учёным-беженцам[59]. Нильс Хендрик Давид Бор Родился 7 октября 1885 года, Копенгаген, Дания Умер 18 ноября 1962 года, Копенгаген, Дания. Нильс Бор устроил революцию в физике и уже в 37 получил нобелевку. Его главное физическое открытие — догадка о квантовании действия в атомах, модель атома Бора (1912). В 1939 году Нильс Бор сделал открытие, изменившее мир навсегда.
Как появились периодический закон и таблица химических элементов
- Помощь Нильса Бора
- Нильс Хенрик Давид Бор - Биография
- Нильс Бор | Наука | Fandom
- Ранние годы и учеба в университете
- НИЛЬС БОР: БИОГРАФИЯ И ВКЛАД - НАУКА - 2024
Датский физик Бор Нильс: биография, открытия
Bor_1 Нильс Бор относится к тем выдающимся людям, великим ученым, которые повлияли на судьбы мира. По характеру чрезвычайно мягкий и интеллигентный, Нильс Бор не высказывался критично по отношению к религии. Главная» Новости» Наследный принц Дании Фредерик отмечает столетие Института Нильса Бора, вручая награды. Нильс Хендрик Давид Бор Родился 7 октября 1885 года, Копенгаген, Дания Умер 18 ноября 1962 года, Копенгаген, Дания. Датский физик Нильс Бор внес весомый вклад в развитие теории атомного ядра и ядерных реакций. Телеграф новостей. Новости.
История Бора
Не собираясь останавливаться на достигнутом, Бор поехал в лазарет своей любимой команды, где, глядя на то, что оставалось от коллег после жёстких футбольных единоборств, написал статью «О строении атомов и молекул». Научная деятельность[ править ] В 1921 году Бор открыл институт имени себя, в котором, получив финансирование от датских властей, впервые подверг экспериментальной проверке теорию квантовой бухгалтерии. Результатом стало открытие т. Открытие Бора было с радостью встречено всеми научными институтами мира и было признано самым научным из всех научных открытий за всю историю науки. Правительствам пришлось мириться с новой научной парадигмой и учесть её при дальнейшем финансировании научных направлений. После успеха своего «принципа соответствия» Бор в 1927 году вывел т. Также данный принцип включал в себя научное обоснование невозможности полного описания судьбы этих перечислений, так как подобное описание требует применения двух взаимоисключающих параметров классической бухгалтерии, что входило в противоречие с таким принципом классической бухгалтерии, как «непротиворечивость».
Принцип соответствия утверждает, что квантово-механическое описание макроскопического мира должно соответствовать его описанию в рамках классической механики. Принцип дополнительности утверждает, что волновой и корпускулярный характер вещества и излучения представляют собой взаимоисключающие свойства, хотя оба эти представления являются необходимыми компонентами понимания природы. Волновое или корпускулярное поведение может проявиться в эксперименте определенного типа, однако смешанное поведение не наблюдается никогда. Приняв сосуществование двух очевидно противоречащих друг другу интерпретаций, мы вынуждены обходиться без визуальных моделей — такова мысль, выраженная Бором в его Нобелевской лекции. Имея дело с миром атома, сказал он, «мы должны быть скромными в наших запросах и довольствоваться концепциями, которые являются формальными в том смысле, что в них отсутствует столь привычная нам визуальная картина». В 30-х гг. Бор обратился к ядерной физике. Энрико Ферми с сотрудниками изучали результаты бомбардировки атомных ядер нейтронами. Бор вместе с рядом других ученых предложил капельную модель ядра, соответствующую многим наблюдаемым реакциям. Эта модель, где поведение нестабильного тяжелого атомного ядра сравнивается с делящейся каплей жидкости, дало в конце 1938 г. Фришу и Лизе Майтнер разработать теоретическую основу для понимания деления ядра. Открытие деления накануне второй мировой войны немедленно дало пищу для домыслов о том, как с его помощью можно высвобождать колоссальную энергию. Во время визита в Принстон в начале 1939 г. Бор определил, что один из обычных изотопов урана, уран-235, является расщепляемым материалом, что оказало существенное влияние на разработку атомной бомбы. В первые годы войны Бор продолжал работать в Копенгагене, в условиях германской оккупации Дании, над теоретическими деталями деления ядер. Однако в 1943 г. Оттуда он вместе с сыном Оге перелетел в Англию в пустом бомбовом отсеке британского военного самолета. Хотя Бор считал создание атомной бомбы технически неосуществимым, работа по созданию такой бомбы уже начиналась в Соединенных Штатах, и союзникам потребовалась его помощь. В конце 1943 г. Нильс и Оге отправились в Лос-Аламос для участия в работе над Манхэттенским проектом. Старший Бор сделал ряд технических разработок при создании бомбы и считался старейшиной среди многих работавших там ученых; однако его в конце войны крайне волновали последствия применения атомной бомбы в будущем. Рузвельтом и премьер-министром Великобритании Уинстоном Черчиллем, пытаясь убедить их быть открытыми и откровенными с Советским Союзом в отношении нового оружия, а также настаивал на установлении системы контроля над вооружениями в послевоенный период. Однако его усилия не увенчались успехом. После войны Бор вернулся в Институт теоретической физики, который расширился под его руководством. Он помогал основать ЦЕРН Европейский центр ядерных исследований и играл активную роль в его научной программе в 50-е гг.
В 1916 году Нильс Бор возвращается в Данию, и уже на следующий год его избирают членом Датского королевского общества. В 1939 году Бор становится президентом Датского королевского общества. До последних дней Нильс не прекращал исследования, внося вклад в развитие науки. В 1947 году, в свой 62-й день рождения он получил от короля Дании Фредерика IX высшую национальную награду — орден Слона. Умер Нильс Бор 18 ноября 1962 года в Копенгагене.
Николаю Николаевичу Семенову и Нильсу Бору есть о чем поговорить. Сквозь шквал аплодисментов Нильс Бор проходит на сцену. Нильс Бор задумался. Задумался и профессор Е. Лифшиц - его бессменный переводчик в течение всего вечера» Нильс Бор с супругой у входа в Институт физических проблем. Здесь сегодня очень много советских физиков - от совсем юных лаборантов, только что получивших аттестат зрелости, до академиков, имеющих свои научные школы. Много и зарубежных ученых, работающих в лабораториях института или приехавших встретиться с коллегами. Наконец снизу, от входа, где столпилась молодежь, по коридорам института прокатывается шквал аплодисментов. Нильс Бор в сопровождении гостеприимного хозяина этого вечера - директора института академика Петра Леонидовича Капицы - проходит в конференц-зал и поднимается на сцену. Горячо, очень горячо приветствуют одного из крупнейших ученых нашей эпохи, вот уже тридцать два года являющегося почетным членом Академии наук СССР. И тут же - такая уж обстановка сегодня в зале, торжественная и совсем простая, товарищеская - тут же, едва смолкают овации, грохочут стулья, сдвигаемые к сцене, поближе к гостю. Но когда Петр Леонидович Капица встает со своего места, сразу наступает тишина. Даже если бы в этом зале собрались не физики-теоретики, а физики-экспериментаторы... Зал взрывается хохотом, аплодисментами - Капица отдает дань вечному "соперничеству" экспериментаторов и теоретиков. Из задних рядов слышно: - Даже химики! Да, в наше время не только специалисты, но и каждый десятиклассник знаком с моделью атома водорода, построенной Нильсом Бором полвека назад, объединившей классическую механику планетарной модели Резерфорда с квантовой теорией. По залу из рук в руки переходит шутливая народия в стиле известного детского стихотворения о "доме, который построил Джек". А вот ядро в атоме, который построил Бор. А вот электрон... Это не первый его приезд, он был у нас в гостях в тридцать четвертом и в тридцать седьмом годах, когда страна наша еще не запускала спутников в космическое пространство и не строила крупнейших в мире ускорителей. Советская наука в те годы была вэ многом начинающей, и тем ценнее помощь, которую оказал Нильс Бор тогда своими советами, рассказами, а главное - моральной поддержкой, своей верой в наше будущее. Мы никогда не забудем, что в те нелегкие времена Бор был - и навсегда остался - нашим другом. Многие крупные советские ученые в той или иной степени могут считать себя его учениками они работали в знаменитом институте Бора в Копенгагене, в той школе теоретиков, которую прошли все выдающиеся физики нашего времени, создавшие квантовую теорию, теорию ядра и теорию атома. Нас особенно сближает с Нильсом Бором то, что сегодня он вместе с нами в Академик Петр Леонидович Капица открывает вечер. С того времени, как Бор вошел в науку, все достижения квантовой теории так или иначе связаны с его именем, вся квантовая физика прошла через его руки. Нильс Бор - действительно патриарх современной теоретической физики. И я с удовольствием предоставляю ему слово. Бор подходит к микрофону. Он немного сутулится, отчего голова кажется упрямо наклоненной вперед. Громадный лоб перерезан у бровей морщинами. Брови, густые, широкие, придают лицу, пожалуй, немного насупленное выражение, но ощущение это сразу же пропадает, когда он улыбается, настолько обаятельна, заразительна его широкая улыбка. Петр Капица был первым из ваших соотечественников, с кем судьба свела меня в столь давние времена. С тех пор я близко познакомился со многими выдающимися физиками вашей страны, и в первую очередь с Ландау, который работал у нас в Копенгагене. Эти слова, слова дружбы, которые идут от самого сердца, мне было легко произнести. Теперь передо мной более трудная задача говорить с физиками о физике. Я не собираюсь рассказывать сегодня о новейших достижениях современной науки. В этой аудитории есть немало людей, которые могли бы это сделать лучше, чем я. Мне просто хочется поделиться с вами некоторыми воспоминаниями. Вчера мы с сыном были в Дубне. Я встретился там со многими замечательными физиками и видел те великолепные, могучие аппараты, с которыми они работают. А ведь пятьдесят лет назад, когда я начинал работать у Резерфорда, самый большой прибор не превышал размеров коробки от туфель.
История Бора
В данном разделе вы найдете много статей и новостей по теме «Нильс Бор». Однако мы решили остановить свой выбор на Терлецком — он мог бы произвести своей широкой эрудицией и осведомленностью нужное впечатление на Нильса Бора. Нильс Бор рос в среде ученых, с детства проявляя интерес к различным открытиям и изобретениям.
Что еще почитать
- Нильс Бор: деятельность физика – лауреата нобелевской премии
- ФутБОРный клуб. Как великие ученые оставили след в спорте
- Telegram: Contact @obrsoyuz
- 7 интересных фактов из биографии Нильса Бора
- 7 интересных фактов из биографии Нильса Бора