В конце концов, был написан сценарий «Мир РНК», согласно которому сначала якобы образовалась РНК, содержащая информацию о белке, а затем и сам белок. Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно. Так возникла гипотеза «РНК-мира». Ученым из США удалось получить ее первое подтверждение. Ранее считалось, что на Земле способная к размножению жизнь возникла на основе РНК-молекул (так называемая, гипотеза РНК-мира). Последние новости по теме рнк. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле.
Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК
В рамках своего проекта ученые поставили под сомнение достоверность гипотезы РНК-мира. Согласно гипотезе мира РНК, эта макромолекула изначально могла быть единственной ответственной за клеточную или доклеточную жизнь. А раз так, то верна гипотеза о том, что РНК должны была возникнуть на Земле раньше, чем ДНК. Хотя гипотеза мира РНК восторжествовала, некоторые ученые были с ней не согласны.
Ученые обнаружили новые доказательства гипотезы РНК-мира
Одной из главных теорий является гипотеза "РНК-мира", согласно которой первые формы жизни возникли благодаря РНК-репликазе, способной копировать себя и другие молекулы РНК. Суть гипотезы РНК-мира заключается в том, что первые формы жизни на Земле могли состоять из РНК-молекул, способных к самовоспроизведению без помощи белковых ферментов. (Различные аспекты гипотезы мира РНК и подтверждающие ее данные основательно рассмотрены в одноименной книге, вышедшей в 2010 г. в 4-м издании: Atkins et al., 2010.). Согласно гипотезе мира РНК, на заре жизни за Земле молекулы РНК были как носителями наследственной информации, так и ферментами (рибозимами). Эта работа подрывает так называемую «гипотезу мира РНК», которая утверждает, что РНК сформировала основу биосферы Земли задолго до того, как появились ДНК и другие молекулы, важные для жизни, хотя доказательств этого было недостаточно.
Подписка на дайджест
- Обнаружены новые доказательства РНК-мира: Наука: Наука и техника:
- Жизнь начиналась с РНК
- Содержание
- Ученые обнаружили новые доказательства гипотезы РНК-мира
- Обнаружены новые доказательства РНК-мира
Копирование других молекул РНК
- Приобщаем к делу пептиды
- РНК умеет все?
- Многообещающая, даже фундаментальная работа
- Ученые нашли новое потенциальное объяснение возникновению жизни на Земле
Японские ученые впервые доказали способность РНК эволюционировать
Полимерные цепочки могли спариваться определенным образом, что приводило к образованию молекул РНК, способных к саморазрушению. Репликация полимера осуществлялась за счет циклического изменения температуры, что позволяет предположить, что древние полимеры могли размножаться при помощи циклов день-ночь. Неорганические поверхности, такие как камни, также могли способствовать этому процессу.
Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира Источник фото: Фото редакции В соответствии с данной гипотезой, на Земле первые репликаторы, способные к размножению, были представлены РНК-молекулами, способными самостоятельно катализировать свое воспроизведение без участия белковых ферментов. Недавние исследования позволили ученым выяснить, что рибозим, обладающий способностью расщеплять другие молекулы, может возникнуть спонтанно вследствие нескольких консервативных оснований, необходимых для обеспечения его функционирования. Долгое время оставался вопрос о том, каким образом это свойство сохранялось в процессе биохимической эволюции. Путем разработки моделей исследователи выяснили, что случайные разрывы в простых молекулах РНК приводили к образованию коротких цепочек, действующих как праймеры для синтеза более длинных полимеров РНК.
Специалисты обнаружили, что рибозим, который помогает расщеплять другие молекулы, может появиться спонтанно, потому что для обеспечения его работы необходимы только несколько классических оснований. Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК.
Гибридная РНК благодаря химической эволюции превратилась в чистую РНК, поскольку последняя точнее и быстрее воспроизводится, чем ее аналоги. Со временем этот тип нуклеиновых кислот стал однородным. Некоторые из них были рибозимами — соединениями, обладающими ферментативной активностью и обеспечившими последующий катализ ДНК.
22-M. «Мир РНК» . ПРОСТЫЕ ДОКАЗАТЕЛЬСТВА СУЩЕСТВОВАНИЯ ТВОРЦА
Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле | Капитал страны | Гипотеза о существовании мира РНК получила новую жизнь после исследований, продемонстрировавших то, что молекулы РНК проявляют более высокую каталитическую активность в условиях, сходных с теми, что существовали на Земле миллиарды лет назад. |
Ученые обнаружили новые доказательства теории РНК-мира | Одна из научных гипотез предполагает, что первоначально на Земле существовали несвязанные молекулы РНК, возможно, вместе с белками и другими органическими веществами. |
Обнаружены новые доказательства РНК-мира – Новости | Последние новости по теме рнк. Согласно гипотезе РНК-мира, молекула РНК играла ключевую роль в молекулярных процессах и биохимических реакциях, которые привели к появлению жизни на Земле. |
Навигация по записям
- гипотеза "Мир-РНК"
- Обнаружены новые доказательства РНК-мира – Земля - Хроники жизни
- Молекулы РНК появились на Земле раньше молекул ДНК и белков
- Гипотеза мира РНК
Исследователи смешивают РНК и ДНК, чтобы изучить, как началась жизнь на Земле
Исследование специалистов из США преподносит новые доказательства в поддержку гипотезы «РНК-мира» — существования жизни до появления белков и ДНК, в виде рибонуклеиновых кислот. Что умеют программные роботы Авторы описывают фермент РНК, способный создавать точные копии других функциональных нитей РНК, позволяя со временем возникать новым вариантам этой молекулы. Это значит, что самые ранние формы эволюции могли возникнуть на молекулярном уровне в РНК. Кроме того, это открытие приближает ученых к воспроизводству в лабораторных условиях процесса репликации молекул РНК и непосредственной проверки верности гипотезы «РНК-мира». Молекулы РНК, как и ДНК, состоят из нуклеотидных последовательностей, но могут также выступать в роли белков, как ферменты для проведения реакций. Команда Джеральда Джойса, президента Института им. Однако все попытки получить в лаборатории версии, способные реплицировать крупные молекулы, оборачивались неудачей — они не обладали достаточной точностью. За многие поколения они накопили так много ошибок, что не походили на изначальные последовательности и полностью потеряли свою функциональность.
Потом появились белки, на которых сейчас держится почти вся клеточная биохимия. Те же белки сейчас занимаются копированием нуклеиновых кислот и синтезом других белков. Есть гипотезы, по которым белки могли возникнуть сами по себе , причём без каких-то экстремальных условий. Но как бы они ни появились, они должны были начать взаимодействовать с нуклеиновыми кислотами. Причём взаимодействовать очень тесно: всё-таки сейчас у нас информация о белках закодирована в именно ДНК и РНК, последовательности аминокислот соответствует последовательность генетических букв. Сотрудники Мюнхенского университета имени Людвига и Максимилиана описывают в Nature , как это могло произойти. Дело в том, что азотистые основания — аденин А , тимин Т , гуанин Г , цитозин Ц и урацил У вместо тимина в РНК — нередко получают химические модификации, и в таком модифицированном виде сидят в цепях нуклеиновых кислот.
Если говорить о РНК, то модифицированные «буквы» есть, например, в рибосомах. Так называют большие молекулярные машины, которые заняты синтезом белка во всех живых клетках. Каждая рибосома — это сложный комплекс, в котором на каркасе специальных рибосомных РНК сидит множество рибосомных же белков. Информацию для синтеза белка рибосома считывает с другой РНК, матричной мРНК — она едет по мРНК и считывает последовательность букв, которая кодирует тот или иной белок.
Каковы же те обстоятельства, которые приводят к тому, что эти системы совершают «нужные» ошибки?
Один из факторов был вскоре найден. Им оказалась высокая концентрация магния в бесклеточных системах. Каким образом магний инициирует синтез? На этот вопрос нет однозначного ответа [25]. О различии молекулярных механизмов формирования морозоутойчивости озимой мягкой пшеницы и озимого ячменя Итак, концентрация магния.
Установлено, чем больше содержится магния в рРНК, тем активнее синтезируют белок полифенилаланин рибосомы зародышей пшеницы в бесклеточной системе синтеза белка in vitro на искусственной матрице поли-У [42]. Вполне возможно, что концентрация катионов магния в клетке определяет интенсивность синтеза «ошибочных» полипептидов, предположительно расширяющих адаптационные свойства организмов [19, 20, 21, 25]. Вероятно, этим можно объяснить факт сортоспецифического усиления in vitro трансляционной активности полисом из проростков пшеницы и ячменя под влиянием закаливающей температуры [16, 25], тогда как в этих условиях длина поли-А-хвоста мРНК энхансера трансляции у пшеницы увеличивалась, а у ячменя сокращалась [2, 16]. Но ячмень содержит гораздо больше катионов магния по сравнению с пшеницей [12], что, возможно, и определяло увеличение трансляционной активности рибосом ячменя. Следовательно, увеличение трансляционной активности полирибосом может происходить как за счёт увеличения длины поли-А-хвоста мРНК как энхансера трансляции пшеница , так и за счёт увеличения содержания катионов магния в рРНК ячмень.
Можно полагать, что озимый ячмень формирует морозоустойчивость на основе более древнего молекулярного механизма - адаптационного усиление трансляционной активности за счет вариации в содержании магния в рРНК [11, 13, 22]. Но озимая мягкая пшеница реагирует на закаливающие температуры сортоспецифическим усилением полиаденилирования мРНК [2, 16, 23]. Этот молекулярный механизм, вероятно, более поздний и является более прогрессивным по сравнению с вариациями содержания магния в рРНК. Отсюда, возможно, и более высокая морозоустойчивость озимой мягкой пшеницы по сравнению с озимым ячменём. Таким образом, есть основания полагать, что повышение морозостойкости сорта озимой мягкой пшеницы сопровождается стабилизацией мРНК и дестабилизацией рРНК.
Предполагается, что стабилизация рРНК определяется укреплением молекулы за счёт катионов магния, в тоже время весьма вероятно, что катионы магния стимулируют укорочение терминальной поли-А-последовательности, определяющей стабильность и трансляционную активность мРНК, через усиление прочности определённых структур мРНК, определяющих скорость её деаденилирования. Эта принципиально важная гипотеза требует детальной экспериментальной проверки. Об особенностях молекулярной биологии озимой мягкой пшеницы сорта Безостая 1 «Генотип должен превалировать над средой». Вавилов Одним из часто встречающихся, довольно досадным моментом при работе с РНК является их деградация в процессе хранения или манипулирования, даже в случае хорошо очищенных препаратов. Обычно это связывают с наличием РНКаз, занесенных с посудой и реактивами или попавших в препараты РНК в процессе выделения.
Однако было показано, что применение мощного ингибитора РНКаз - диэтилпирокарбоната во время выделения РНК с последующей усиленной депротеинизацией полученных препаратов и использование растворов, реактивов и посуды, обработанной диэтилпирокарбонатом и протеиназой К, не приводит к полному предотвращению деградации РНК. Известно, что если все работы проводить с очищенным препаратом РНК при температуре 0-4оС, то указанной деградации не наблюдается. В 90-е годы ХХ века было показано тождество закономерностей Mg-зависимого распада мРНК в живой клетке in vivo и в водных растворах in vitro [15, 16, 41]. На протяжении последних сорока лет многие исследователи отмечали способность выделенной из клетки РНК разрушаться в присутствии катионов металлов [15]. Но от внимания исследователей ускользал тот факт, что разрушение происходит по тем же законам, что и в живой клетке, отражая генетические особенности и физиологическое состояние организма.
В фундаментальных науках всегда имел значение объект исследования. Удачность выбора объекта или случай определяет скорость и эффективность исследований, обширность и глубину полученной информации. Как показали исследования, норма реакции на закаливающие температуры у сорта Безостая 1 на молекулярном уровне относительно узка по всем компонентам белоксинтезирующей системы - от амплитуды изменения трансляционной активности полирибосом, длины поли- А -хвоста мРНК, стабильности мРНК до амплитуды колебаний электрофоретического спектра рРНК [16, 23]. Это происходит на фоне относительно высокого содержания катионов магния в зерне Безостой 1 и соответствует реальному районированию сортов: высоко морозоустойчивый сорт Краснодарская 39 относительно низкое содержание магния в зерне способен давать урожай вплоть до Самарской области, в то время как средне морозоустойчивый сорт Безостая 1 давал и даёт великолепные урожаи, но в относительно узкой южной полосе. Особенности сорта Безостая 1 образно можно представить как глухонемого человека в группе пахарей.
Товарищи отвлекаются на различные развлекательные и опасные аспекты жизни, а глухонемой пашет и пашет. Поэтому в конечном итоге выясняется, что он вспахал больше всех. Но это только при условии относительно благоприятных обстоятельств. Этот вывод позволяет объективно понять природу феномена сорта Безостая 1 и, отталкиваясь от этих знаний, заложить основу понимания сакральных молекулярно-биологических процессов, лежащих в основе селекции и определяющих её будущие успехи. Таким образом, Безостая 1 фактом своего существования великолепно подтверждает вывод, сделанный Н.
Вавиловым в 30-ых годах ХХ века: «Генотип должен превалировать над средой». Фундаментальные исследования молекулярной биологии РНК сорта Безостая 1 привели к прикладным исследованиям, способствовали формированию элементов молекулярных основ теории морозоустойчивости и возможности разработки простых методов оценки морозоустойчивости сортов озимой мягкой пшеницы по содержанию нуклеиновых кислот и катионов магния в зрелом зерне [9, 10, 20, 21]. Это событие в методологии способствовало созданию фундамента для развития новой главы в молекулярной физиологии сельскохозяйственных растений, так как новые шаги в методологии, как правило, ведут за собой длинную цепь новых фактов, которые дополняют и изменяют научное мировоззрение, предоставляют принципиально новые возможности для практики. Молекулярные маркеры ДНК-овые, белковые являются чрезвычайно эффективным инструментом генетических исследований растений. Однако их статичность не позволяет количественно оценить важнейшие свойства культурных злаков например, стрессоустойчивость и фотопериодизм.
Как познание электричества и развитие электротехники стало возможным только с появлением электродинамики на основе электростатики, так и статичные молекулярные маркеры должны быть существенно дополнены молекулярно-кинетическими маркерами, способными количественно оценить экспрессию основных регуляторных генов или дать интегральную характеристику всех экспрессирующихся генов определенного генотипа в конкретных условиях роста. С практической точки зрения очень важным представляется использование этого показателя количество катионов магния для долгоживущей высокополимерной РНК зрелого зерна пшеницы в целях оценки степени морозостойкости сорта: чем выше содержание катионов магния, тем ниже морозостойкость сорта [11, 12, 21]. РНК-интерференция В настоящее время многие проблемы практики решаются путём активного вмешательства в метаболизм живых организмов при помощи методов генной инженерии на основе явления РНК-интерференции, регулирующего экспрессию генов через усиление распада мРНК определённых генов [8, 16, 17, 18, 25]. Сейчас очевидно, что перестало быть проблемой установление первичной структуры гена, но всё ещё остаётся проблема, как узнать его функцию и как ею управлять. Первое десятилетие ХХ1 века ознаменовано стремительным прорывом в важнейшую биологическую проблему -регуляцию экспрессии генов с помощью явления РНК-интерференции и основанных на этом явлении методов "нокаутов" - техники, позволяющей выводить из строя экспрессию заранее выбранного гена, а затем смотреть, как это скажется на организме.
В 1998 году была обнаружена способность молекул двухцепочечных РНК дцРНК , инъецированных в организм нематоды Caenorhabditis elegans, эффективно подавлять экспрессию гомологичных по нуклеотидной последовательности генов явление РНК-интерференции. Впоследствии те же эффекты дцРНК были отмечены у других животных, а также у растений, грибов и простейших. В 2006 году Нобелевская премия в области биологии по физиологии и медицине присуждена американским учёным Эндрю Файру и Крейгу Меллоу за открытие явления РНК - интерференции, представляющей собой молекулярный механизм, контролирующий в живой клетке поток генетической информации через закономерный распад специфических мРНК и предоставляющий принципиально новые возможности регуляции экспрессии генов в практических целях [39-40]. Суть явления, механизм которого пока изучен очень слабо, состоит в том, что короткие 20-30 нуклеотидов двуспиральные РНК определённой структуры вызывают распад мРНК мишени - гена, экспрессию которого необходимо подавить. Это широко распространённое в природе явление по-видимому, от бактерий до млекопитающих может эффективно использоваться для идентификации новых генов, выяснения их функциональной роли и управления их экспрессией in vitro и in vivo[8, 16, 25].
Исследования этого явления позволяют в настоящее время решать проблемы медицины новый класс лекарств и сельского хозяйства новые пути создания зерна злаков с высокими питательными свойствами. Работы по созданию высоколизиновых злаков на основе ряда мутаций, зерно которых отличалось повышенной питательной ценностью, потерпели неудачу. Это объясняется плейотропным действием мутаций типа мутации регуляторного гена opaque-2 в зерне кукурузы, когда дифференциальный распад мРНК под действием повышенной активности РНКаз приводит с одной стороны к положительным эффектам повышенное содержание в зерне незаменимой аминокислоты - лизина , но с другой стороны к отрицательным эффектам - нарушение синтеза крахмала, определяющего физические свойства зерна прочность и урожай [16, 25]. РНК-интерференция позволяет целенаправленно уничтожать мРНК, белки которых снижают содержание лизина в зерне запасные белки, ферменты катаболизма аминокислот , не «задевая» при этом мРНК ферментов, ответственных за синтез крахмала. Такой первый трансгенный сорт кукурузы ЬУБ38 с повышенным содержанием лизина был выведен на рынок в 2005 году [33].
Однако негативное общественное мнение, озабоченность возможным вредным влиянием генно-модифицированных продуктов на здоровье человека сдерживает развитие этого направления выхода в практику. К тому же оказалось, что РНК-препараты слишком токсичны. Даже длины в 20-30 нуклеотидов недостаточно для полной селективности по отношению к целевой РНК, и среди миллиардов пар нуклеотидов в геноме обязательно найдутся другие мишени, связывание с которыми вызывает неприятные побочные эффекты. Так в медицине те немногие препараты на основе РНК-интерференции, что дошли до рынка, были с него отозваны. Возможно, в будущем проблемы с неспецифичным связыванием РНК и недостаточной адресной доставкой будут решены и мы увидим больше модифицированных растений и животных, а также специфических препаратов на основе РНК-интерференции.
Принципиально новые, удивительные факты были получены китайскими исследователями из Нанкинского университета, которые обследовали 50 добровольцев и обнаружили в их крови и тканях микроРНК РНК-интерференции растительного происхождения. Это и само по себе стало изрядной неожиданностью, поскольку до сих пор считалось, что все растительные ДНК и РНК, попадающие в организм человека с пищей, полностью разлагаются, разрушаются в процессе переваривания. Но еще большее удивление вызвал тот факт, что эти растительные микроРНК участвуют в регуляции метаболизма человека наравне с его собственными микроРНК. Это открытие заставляет совершенно по-новому взглянуть на роль питания в жизни человека: существует шесть классов питательных веществ - белки, жиры, углеводы, витамины, минеральные вещества и вода. Однако теперь выясняется, что еще и растительные микроРНК, судя по всему, оказывают на активность наших генов, а значит, и на наш обмен веществ, самое непосредственное воздействие.
Это дает основание считать их седьмым классом питательных веществ. Весьма обильно эти молекулы присутствуют в рисе.
Ученые разработали модель, имитирующую случайные разрывы в простых молекулах РНК без ферментативной активности. В результате образовывались короткие цепочки РНК, которые действовали как праймеры для синтеза более длинных цепей.
Этот механизм приводил к образованию множества копий разрушенного полимера, похожего на регенерацию червей. В другой модели способные к спонтанному образованию рибозимы, катализирующие расщепление, добавлялись к пулу полимерных цепей, которые затем разрезались при столкновении. Полимеры могли спариваться и образовывать молекулы типа рибозима, способные к саморасщеплению. Этот процесс приводил к самовоспроизводству энзимов.
Как в мир РНК пришли белки
Исследования в рамках гипотезы «мира РНК» показали, что эти макромолекулы способны и к полноценной химической эволюции. Ранее считалось, что на Земле способная к размножению жизнь возникла на основе РНК-молекул (так называемая, гипотеза РНК-мира). Идея мира РНК была впервые высказана Карлом Вёзе в 1968 году, позже развита Лесли Орджелом и окончательно сформулирована Уолтером Гильбертом в 1986 году. Полагаю, что и гипотезу «Мир-РНК», которая по принципу «на безрыбье и рак рыба» пока атеистам кажется убедительной, ждет такое же будущее.
Рибозим со свойствами РНК-полимеразы синтезировал функциональные молекулы РНК
Но и тут оставалась проблема, как именно это свойство сохранилось во время биохимической эволюции. Чтобы в этом разобраться, ученые разработали модель, которая имитирует случайные разрывы в простых молекулах РНК без ферментативной активности. В ходе эксперимента появились короткие цепочки РНК, которые действовали как праймеры — затравки для синтеза более длинных цепей РНК. Из-за этого появлялось множество копий разрушенного полимера.
А — Рибопереключатели на транскриптах генов metE, metH и metK.
Голубым обозначены шпилечные структуры, образуемые в результате вырезания шести или более уридиновых нуклеотидов. Видно, что у metE имеется два акцепторных и два шпилечных участка. В — Путь биосинтеза S-аденозилметионина. На первом этапе гомоцистеин преобразуется в амикислоту метионин.
Это превращение может быть катализировано одним из двух ферментов: metE или metH. На втором этапе фермент metK превращает метионин в S-аденозилметионин. Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин [8]. Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов [8] , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают.
Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков — иными словами, демонстрирует самодостаточность и универсальность РНК. Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот [8]. Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК. Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними.
Рисунок 2. Вторичная структура РНК-переключателя гена metE. Выделены акцепторы — сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры. Геномные тэги и тРНК Рисунок 3.
Вторичная структура тРНК. На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК. Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней.
Всем хорошо известна важная роль тРНК в биосинтезе белка. Однако у тРНК и подобных ей молекул есть другая, менее известная, но не менее важная функция: в различных репликативных процессах они исполняют роль праймеров и шаблонов. Это могут быть процессы репликации одноцепочечной вирусной РНК, репликация митохондриальной ДНК у грибов, репликации теломер [10]. Обратимся к вирусной РНК.
Тэг играет роль шаблона при инициации репликации вирусной РНК. Более того, эти участки бывают настолько похожи на «настоящие» тРНК [10] , что могут быть аминоацилированы то есть к ним может быть присоединена аминокислота при помощи фермента аминоацил-тРНК-синтетазы. Тем самым видно, что тРНК современных организмов способны также служить и праймерами. Возможно ли, что тРНК сегодняшних организмов произошли от древних геномных тэгов?
Алан Вейнер и Нэнси Мэйцелс [10] отвечают на этот вопрос утвердительно. Согласно их теории, верхняя и нижняя половинки тРНК эволюционировали по-отдельности, причём верхняя часть тРНК появилась раньше нижней и является потомком геномных тэгов [10]. Происхождение рибосом При построении гипотезы мира РНК много внимания уделяется и происхождению рибосом, потому что их образование фактически можно приравнять к переходу от РНК-катализа к белковому процессу. Как известно, рибосома состоит из двух субъединиц: малой и большой.
Ключевую роль в синтезе белковой цепи играет большая субъединица рибосомы, в то время как маленькая считывает мРНК. Модель происхождения одной из молекул большой субъединицы была предложена канадскими биохимиками Константином Боковым и Сергеем Штейнбергом [11]. Они сосредоточили внимание на 23s-рРНК состоящей из шести доменов, I—VI , так как именно в этой молекуле находится функциональный центр, ответственный за реакцию транспептидации присоединение новой аминокислоты к растущей полипептидной цепи. Данная молекула содержит около трёх тысяч нуклеотидов и способна образовывать сложные трёхмерные структуры.
Важную роль в поддержании трёхмерной структуры молекулы играют так называемые А-минорные связи [11]. Они представляют собой связи между «стопками» нуклеотидов как правило, аденозинов [11] с участками, образующими двойные спирали. Связи формируются между спиралями и стопками, расположенными в разных областях молекулы. Соответственно, в молекуле должна присутствовать некая более простая структура, с которой и началась её эволюция.
Особое внимание исследователей привлёк домен V [11].
При всей спорости безумных танцев, Лиланду за ночь такое не успеть. Более гибкий сценарий появления седины тоже не оставляет шансов: мы бы наблюдали постепенное отрастание седых волос, примерно по сантиметру в месяц, а не внезапные ночные метаморфозы. Мгновенное появление седины у мистера Палмера на экране и у сверженной королевы Франции в исторической легенде — абсурдное преувеличение.
Но у любого абсурда есть причины, и поседеть быстрее обычного они действительно могли. Возможных причин — несколько. Вы лысеете Первый задокументированный случай внезапного побеления волос зафиксирован в Талмуде и датируется 83 годом нашей эры. Это история про раввина Элазара бен Азария, которого избрали председателем Синедриона, высшего суда в земле Израиля, в юном-преюном возрасте 18 лет.
Жена юноши была обеспокоена, что тот выглядит слишком молодо для своей должности. К счастью, в тот же день у раввина появилось 18 рядов седых волос. Средневековый раввин Маймонид утверждал, что седина появилась из-за напряженной учебы: день и ночь бен Азария корпел над Торой, из-за чего ослаб и резко постарел. Это была первая из многих попыток объяснить, почему волосы могут быстро побелеть.
В 1806 году французский химик и фармацевт Луи-Николя Воклен предположил, что выделяется некоторое таинственное вещество, которое растворяет пигмент. Спустя 60 лет немецкий физиолог Леонард Ландуа придумал другой механизм внезапного поседения: по его гипотезе, при внезапном поседении внутрь волоса почему-то проникают пузырьки воздуха, что придает ему белый оттенок из-за преломления света. А уже в начале XX века Илья Мечников допустил, что по волосам ползают особые иммунные клетки — пигментофаги, которые поглощают пигмент, а затем относят его к волосяной луковице и откладывают в соединительной ткани. Сейчас внезапное поседение все чаще объясняют тем, что меняется цикл роста волос: анаген становится короче, волосы быстрее выпадают, а новые вырастают с нехваткой пигмента.
Избыточное выпадение волос называют телогеновой алопецией telogen effluvium , и начинается она через два-три месяца после воздействия какого-то триггера. Триггером могут быть лекарства оральные контрацептивы, антидепрессанты, бета-блокаторы , травма, эмоциональный стресс или проблемы с диетой, вроде нехватки калорий, белка и жирных кислот в пище. Еще одна возможная причина — облучение ультрафиолетом. Трихологи даже замечают «эффект лета», когда количество пациентов с телогеновой алопецией увеличивается с июля по октябрь.
Вряд ли Лиланд Палмер оголодал в Твин Пиксе, знаменитом своими вишневыми пирогами. Также маловероятно, что в феврале ему напекло голову. Но эмоциональный стресс налицо, как, впрочем, вероятно и использование антидепрессантов. Под клиническую картину не подходит лишь срок появления седины — с момента смерти Лоры к началу второго седого сезона проходит пара недель, а не два-три месяца, которые необходимы для манифестации заболевания.
Пусть время в Твин Пиксе течет очень своенравно, но версию с telogen effluvium для Лиланда все же придется отбросить. Но вот в случае с Марией Антуанеттой на развитие седины после избыточного выпадения волос времени было более чем достаточно: между заключением в Тампль и восхождением на эшафот прошло более года. Кроме того, королеву в заточении почти никто не видел, а значит ее появление на казни поседевшей могло быть воспринято как произошедшее за одну ночь. Но у Лиланда был один недостаток: он нервничал.
Вы нервничаете Помимо повышенной скорости выпадения волос стресс приводит к истощению популяции стволовых клеток, которые могли бы стать меланоцитами. Важную роль в поддержании работы волосяного фолликула играют окружающие его клетки: например жировой ткани и иммунные. Волосяные фолликулы также оплетены чувствительными нервами и нервами вегетативной нервной системы. При этом вегетативная нервная система — одна из главных при реагировании на стресс.
В современном мире нам редко приходится использовать эту реакцию в прямом смысле, тем не менее симпатическая нервная система все равно активируется. Но нервы, которые находятся в тесном контакте с волосяным фолликулом, в ситуации стресса могут случайно нарушить его работу. Часть нервных окончаний симпатической системы примыкают к области выпуклости, где обитают предшественники меланоцитов. У мышек стресс приводит к выбросу адреналина из нервных окончаний у фолликула.
Из-за адреналина стволовые клетки начинают слишком активно делиться и мигрировать. В конце концов в области выпуклости ничего не остается: популяция предшественников меланоцитов полностью истощается, растущий волос некому подкрасить и появляется седина. Особенности биологии волоса, его роста и пигментации отличаются у людей и других млекопитающих: например, циклы роста у грызунов, как правило, короче и чаще, чем у человека. Кроме того, разнится и возраст появления седины: в то время как шимпанзе и собаки отращивают седину старея, у самцов серебристоспиных горилл седина появляется после 12 лет как статусный аксессуар.
Поэтому переносить результаты исследований с животных на человека следует с осторожностью.
Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили о новых доказательствах в пользу гипотезы РНК-мира Источник фото: Фото редакции В соответствии с данной гипотезой, на Земле первые репликаторы, способные к размножению, были представлены РНК-молекулами, способными самостоятельно катализировать свое воспроизведение без участия белковых ферментов. Недавние исследования позволили ученым выяснить, что рибозим, обладающий способностью расщеплять другие молекулы, может возникнуть спонтанно вследствие нескольких консервативных оснований, необходимых для обеспечения его функционирования. Долгое время оставался вопрос о том, каким образом это свойство сохранялось в процессе биохимической эволюции. Путем разработки моделей исследователи выяснили, что случайные разрывы в простых молекулах РНК приводили к образованию коротких цепочек, действующих как праймеры для синтеза более длинных полимеров РНК.
Семь научных теорий о происхождении жизни. И пять ненаучных версий
Видно, что у metE имеется два акцепторных и два шпилечных участка. В — Путь биосинтеза S-аденозилметионина. На первом этапе гомоцистеин преобразуется в амикислоту метионин. Это превращение может быть катализировано одним из двух ферментов: metE или metH.
На втором этапе фермент metK превращает метионин в S-аденозилметионин. Между тем, РНК-переключатели способны связывать значительное число белковых кофакторов, таких как флавинмононуклеотид, тиаминпирофосфат, тетрагидрофолат, S-аденозилметионин, аденозилкобаламин [8]. Изначально считалось, что РНК-переключатели способны лишь подавлять экспрессию генов [8] , но позже были получены данные, свидетельствующие о том, что некоторые переключатели, напротив, ее усиливают.
Сами по себе РНК-переключатели представляют весьма интересное явление, так как они демонстрируют возможность регуляции работы генов без прямого участия белков — иными словами, демонстрирует самодостаточность и универсальность РНК. Судя по всему, РНК-переключатели являются очень древним механизмом: так, они обнаружены во всех доменах живой природы: у бактерий, архей и эукариот [8]. Похоже, что, по меньшей мере, некоторые из современных кофакторов белков были прямиком заимствованы из мира РНК.
Можно нарисовать примерно такую картину: рибозимы изначально использовали многие из современных кофаторов для своих целей, однако с появлением более эффективных белковых ферментов эти кофакторы были заимствованы последними. Рисунок 2. Вторичная структура РНК-переключателя гена metE.
Выделены акцепторы — сайты связывания с молекулами SAM и AdoCbl, а также шпилечные терминирующие структуры. Геномные тэги и тРНК Рисунок 3. Вторичная структура тРНК.
На рисунке отчётливо видна характерная для тРНК вторичная структура в виде «клеверного листа». В нижней части молекулы находится антикодоновая петля, ответственная за комплементарное связывание с кодоном мРНК. Согласно гипотезе геномного тэга, верхняя и нижняя половины тРНК эволюционировали по отдельности, причём верхняя половина древнее нижней.
Всем хорошо известна важная роль тРНК в биосинтезе белка. Однако у тРНК и подобных ей молекул есть другая, менее известная, но не менее важная функция: в различных репликативных процессах они исполняют роль праймеров и шаблонов. Это могут быть процессы репликации одноцепочечной вирусной РНК, репликация митохондриальной ДНК у грибов, репликации теломер [10].
Обратимся к вирусной РНК. Тэг играет роль шаблона при инициации репликации вирусной РНК. Более того, эти участки бывают настолько похожи на «настоящие» тРНК [10] , что могут быть аминоацилированы то есть к ним может быть присоединена аминокислота при помощи фермента аминоацил-тРНК-синтетазы.
Тем самым видно, что тРНК современных организмов способны также служить и праймерами. Возможно ли, что тРНК сегодняшних организмов произошли от древних геномных тэгов? Алан Вейнер и Нэнси Мэйцелс [10] отвечают на этот вопрос утвердительно.
Согласно их теории, верхняя и нижняя половинки тРНК эволюционировали по-отдельности, причём верхняя часть тРНК появилась раньше нижней и является потомком геномных тэгов [10]. Происхождение рибосом При построении гипотезы мира РНК много внимания уделяется и происхождению рибосом, потому что их образование фактически можно приравнять к переходу от РНК-катализа к белковому процессу. Как известно, рибосома состоит из двух субъединиц: малой и большой.
Ключевую роль в синтезе белковой цепи играет большая субъединица рибосомы, в то время как маленькая считывает мРНК. Модель происхождения одной из молекул большой субъединицы была предложена канадскими биохимиками Константином Боковым и Сергеем Штейнбергом [11]. Они сосредоточили внимание на 23s-рРНК состоящей из шести доменов, I—VI , так как именно в этой молекуле находится функциональный центр, ответственный за реакцию транспептидации присоединение новой аминокислоты к растущей полипептидной цепи.
Данная молекула содержит около трёх тысяч нуклеотидов и способна образовывать сложные трёхмерные структуры. Важную роль в поддержании трёхмерной структуры молекулы играют так называемые А-минорные связи [11]. Они представляют собой связи между «стопками» нуклеотидов как правило, аденозинов [11] с участками, образующими двойные спирали.
Связи формируются между спиралями и стопками, расположенными в разных областях молекулы. Соответственно, в молекуле должна присутствовать некая более простая структура, с которой и началась её эволюция. Особое внимание исследователей привлёк домен V [11].
Интересным в нём было то, что он содержит большое количество двойных спиралей при фактически полном отсутствии аденозиновых стопок. Вот что пишут по этому поводу авторы исследования: «Чтобы объяснить аномалию, имеющую место в домене V, мы предположили, что это отражает порядок, в котором различные части присоединялись к 23s-рРНК по мере её эволюции.
Ученые описали, как появилась РНК 16. Процесс не обошелся без инопланетного вмешательства — нужные молекулы были занесены на Землю кометами. Статья опубликована в журнале Science, о деталях исследования также сообщается на сайте издания.
Главный вопрос, на который предстояло ответить — как пурины, аденозин и гуанозин, которые превращают РНК в сложный комплекс, могли возникнуть из так называемых дожизненных молекул.
В РНК обнаружены четыре нуклеиновых основания: аденин , гуанин , цитозин и урацил. РНК имеет много общего с ДНК с некоторыми важными отличиями: структурно РНК менее химически стабильна; функционально РНК чаще всего встречается в клетках в одноцепочечной, то есть одноцепочечной форме; наконец, молекулы РНК, присутствующие в клетках, короче, их размер колеблется от нескольких десятков до нескольких тысяч нуклеотидов. Большинство встречающихся в природе РНК присутствуют в клетке в одноцепочечной одноцепочечной форме. Подобно белкам , цепи РНК чаще всего сворачиваются сами по себе, образуя внутримолекулярную структуру, которая может быть очень стабильной и очень компактной.
Описание внутренних пар между основаниями РНК называется вторичной структурой. В основе этой структуры лежит формирование внутренних пар между дополнительными основаниями: A с U , G с C и, иногда, G с U. В 1980-х Том Чех и Сидни Альтман независимо друг от друга обнаружили, что определенные РНК, позже названные рибозимами , могут действовать как катализаторы, подобно белкам. Это неожиданное открытие принесло Чеху и Альтману Нобелевскую премию по химии в 1989 году. В 1990 году Ларри Голд и Джек Шостак разработали метод управления эволюцией РНК, чтобы выбрать те, которые проявляют каталитическую активность.
С тех пор им удалось получить рибозимы, способные связывать нуклеотиды вместе, связывать аминокислоты с РНК, выполнять окислительно-восстановительные реакции , связываться с компонентами мембран и т. РНК также может вести себя как рибозим сокращение рибозы и фермента и катализировать определенные реакции, как и ферменты. Таким образом, с точки зрения воспроизводства, эта молекула выполняет две важные функции: хранение информации и катализ, необходимый для самовоспроизведения. Таким образом, рибосома является рибозимом в том смысле, что человек, ответственный за синтез белка, является не белком как это имеет место в подавляющем большинстве случаев катализа живой клетки , а его рибосомной РНК - даже. Эти рибозимы могут складываться в пространстве, открывая активный сайт для катализа, как и белки.
Томас Чех указал, что РНК может быть первой реплицирующейся молекулой благодаря своим каталитическим и автокаталитическим свойствам: Структура РНК является основой богатства своих обязанностей, и , в частности , их способность катализировать в реакции химические рибозимы ; и наоборот, относительно жесткие правила спаривания между основаниями РНК позволяют транскрибировать цепь в ее негативе, а с помощью новой транскрипции сделать возможным дублирование оригинала. Следовательно, теоретически возможно, что на этой модели одной РНК достаточно для установления примитивного метаболизма. В рибозимы будучи в состоянии обеспечить как роль поддержки генетической информации и катализатора, что позволило преодолеть парадокс, предлагая , что РНК -единственный предшественника, который был предложен в 1986 году Уолтером Гилбертом , со-изобретателя секвенирования ДНК. РНК присутствуют в трех ветвях живого мира археи , прокариоты , эукариоты. Кроме них, можно найти большое количество РНКА , участвующие в таких функциях, как катализ, регуляция экспрессии генов, контроля, анти - вирусные защиты , гена вымирания , торможения белковых синтезов, геномные восстановления и т.
Так обстоит дело с интерферирующими РНК , механизм которых некоторые исследователи квалифицируют как «универсальный». Интерпретация «самовоспроизводящегося» персонажа В результате этих исследований возник образ популяции взаимозависимых цепей РНК, воспроизводящихся в рамках своего рода химической экосистемы, и где каждая цепочка избирательно конкурирует в отношении своих собственных аллелей.
Вёзе приходит к идее РНК-мира — всё началось с РНК, которая самокопировалась в воде и в какой-то момент начала самостоятельно создавать пептиды небольшие белки. Но тогда это была всего лишь гипотеза.
Обрастать плотью доказательств гипотеза стала позже, с приходом на мировую научную арену новых молекулярных биологов, в частности Уолтера Гилберта. Он занимался разработкой методов секвенирования — расшифровки нуклеотидной последовательности и за это в 1980 году получил Нобелевскую премию вместе с Полом Бергом. Но, как любой крупный ученый, Гилберт интересовался многим и в 1986 году опубликовал статью, развивающую идеи Вёзе, — « Происхождение жизни. РНК-мир ».
Именно Гилберт придумал для гипотезы емкое название — РНК-мир. Все полученные данные об РНК неплохо укладывались в эту теорию. Нашлись и косвенные подтверждения гипотезы в самой молекулярной догме и процессах репликации то есть удвоения ДНК. Дело в том, что если рассматривать всех участников молекулярной догмы, то можно заметить одну важную деталь: рибосомы для синтеза белка есть у всех и в целом очень похожи по строению — не важно, у кого мы будем брать рибосому, у архей, бактерий или эукариот.
Та же ситуация с процессом снятия копии, то есть синтеза матричной РНК. А вот участники процесса репликации ДНК немного разнятся у разных царств, хотя процесс идейно похож. Из этого наблюдения у ряда ученых родилось любопытное предположение: репликация ДНК появилась позже рибосом и системы синтеза РНК, хотя четких доказательств пока нет. Теоретически именно ДНК могла возникнуть как вспомогательный элемент догмы: нечто крупное и неповоротливое, что удобно хранить, поднимая время от времени нужные гены.
Впрочем, оказалось, что РНК способна и к самокопированию, и даже к изменчивости, то есть накоплению мутаций и некоторого рода эволюции. Эксперименты, показавшие эти ее свойства, были проведены еще в прошлом веке и тоже стали кирпичиком новой гипотезы. Одним из первых их провел британский молекулярный биолог Лесли Орджел, который, помимо своих научных исследований, известен забавным «правилом Орджела»: «Эволюция умнее, чем ты». К началу нового века гипотеза РНК-мира сформировалась окончательно.
Многократно самокопирующаяся РНК действительно могла породить всё живое на Земле, постепенно отграничив себя от пространства и сформировав протоклетку. Но, как это обычно случается в науке, возникли новые вопросы. В первую очередь ко второй части молекулярной догмы: как именно появилась крепкая связь между РНК и аминокислотами и как, наконец, появилась система синтеза белка? Предполагаемая схема «первоклетки» — РНК, окруженная билипидным мембранным слоем.
Источник Но есть нюанс Гипотеза РНК имеет обширную доказательную базу и по праву считается одной из самых логичных и подходящих для объяснения формирования жизни. Но и у нее есть недостатки, или, вернее, вопросы, ответы на которые в рамках самой гипотезы найти сложно. Во-первых, РНК очень нестабильна, а время ее жизни крайне ограничено. Сложно представить себе «начало начал», способное распасться при малейших изменениях в окружающей среде.
РНК нуждается в ионах двухвалентных металлов, в основном в магнии, но при этом распадается при их слишком большой концентрации.
Японские ученые впервые доказали способность РНК эволюционировать
Летающие лисы. Подписаться. Гипотеза РНК-мира для ЕГЭ по биологии. Показать больше. Мир РНК — гипотетический этап возникновения жизни на Земле, когда как функцию хранения генетической информации, так и катализ химических реакций выполняли ансамбли молекул. Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert). Они предложили гипотезу "мира РНК", которая предполагает, что возникновение жизни на Земле произошло путем усложнения РНК-молекул и их преобразования в молекулы ДНК и белки. гипотеза, с которой срослась проблема внезапного (для учёных особенно) возникновения жизни на совсем молодой, не оформившейся, подвергающейся.
Гипотеза РНК-мира для ЕГЭ по биологии
ELife: обнаружено случайное возникновение самовоспроизводящихся молекул Ученые из Брукхейвенской национальной лаборатории опубликовали статью в журнале eLife, в которой сообщили об обнаружении новых доказательств гипотезы РНК-мира. Концепция РНК-мира, разработанная в России, получила новые подтверждения. Концепцию мира РНК впервые сформулировал в 1962 году Александр Рич (Alexander Rich), термин ввел в 1986 году Уолтер Гилберт (Walter Gilbert).