Катод это электрод, имеющий отрицательный или положительный заряд в зависимости от типа прибора или процесса. Органические материалы, составляющие катод, в котором функциональные группы в ходе реакций заряда и разряда попеременно окисляются и восстанавливаются.
Новости технологий и науки
- Редкий кадр: катод аккумулятора телефона под микроскопом в 3D
- Аккумуляторы будущего: masterok — LiveJournal
- Андрей Травников оценил приборы ночного видения завода «Катод» для СВО
- Содержание
Ученые разработали новый тип катода для аккумуляторов
Катод будет иметь чистый отрицательный заряд в электролитических элементах, таких как одноразовая батарея, и положительный заряд. Заряд перестает передаваться по внешней цепи, оставаясь внутри аккумулятора. Ученые из Университета Мэриленда и Военно-исследовательской лаборатории армии США разработали катод нового химического типа без переходного металла для литий-ионных. Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам. Обратимые заряд и разряд стали возможны благодаря наличию множества пор в катоде, которые могут аккумулировать образующийся хлор. Новосибирское оборонное предприятие Катод поставило приборы ночного видения воинским подразделения из региона, участвующим в спецоперации, сообщили в.
Российские ученые создали эффективную замену литию в аккумуляторах
Аккумуляторы на базе таких катодов могут обладать плотностью хранения заряда, превосходящей LFP-батареи как минимум в два раза. Ещё в прошлом десятилетии начались эксперименты по увеличению размеров частиц марганца, но до сих пор они преимущественно имели поликристаллическую структуру. Улучшить характеристики катодов на основе марганца авторы разработки смогли за счёт создания специального токопроводящего покрытия, которое повышает устойчивость материала к воздействию высоких температур, неизбежно возникающих при эксплуатации тяговых батарей.
В Шанхае Китай продолжится международная выставка водных ресурсов, сбора и обработки сточных вод и природных энергоресурсов. Подробности Опубликовано: 19. Об этом сообщили в пресс-службе компании. Абсолютные приоритеты компании: безопасность, здоровье и забота о персонале, обеспечение непрерывного и надежного производства — и выполнение всех существующих обязательств.
Знаки зарядов при электролизе В гальваническом элементе окисление происходит без внешнего воздействия электричества. Если взять в качестве примера медно-цинковую батарею, то большое количество электронов минус скапливается на аноде. Они при продвижении по внешней цепи участвуют в восстановлении меди. Значит, в этом случае положительным электродом будет катод. У гальванических элементов плюсом является катод, минусом — анод. У электролизёров наоборот — плюсом считают анод, минусом — катод. Знаки зарядов у гальванической батареи У полупроводниковых приборов, как знак, так и термин, чётко закреплены за выводами детали. Анод — это «плюс», катод — это «минус» диода. Почему существует путаница Всё происходит от того, что нет чёткой привязки минуса и плюса к компонентам, которые называются «К» и «А». Ещё Майкл Фарадей придумал простое правило маркировки полярности для этой пары электродов. Что такое анод, по его объяснениям? Учёный при запоминании определения предлагал проводить аналогию с Солнцем. Куда ток входит восход — это анод, куда ток выходит закат — это катод. У аккумуляторов полярность на аноде и катоде изменяется от того, работает он как гальванический элемент при разряде или как электролизёр при заряде. Сварка постоянным током также неоднозначно определяет «А» и «К» при зажигании дуги прямой или обратной полярностью.
Помимо портативных аккумуляторов, этот химический состав можно использовать в устройствах, которые требуют больших энергий на уровне киловатт или мегаватт. Применение также оправдано, когда безопасность и токсичность являются основными проблемами, включая невоспламеняющиеся накопители для самолетов, морских или космических кораблей, а также крупногабаритных систем хранения. Ученые говорят о приближении технологии аккумуляторов на водной основе к коммерческому применению. Однако пока что неизвестно, можно ли разработать долговечный прототип.
Особенности анода
- Читайте также:
- Ионные жидкости произвели фурор в твердотельных литий-металлических батареях следующего поколения
- Другие новости
- EMD: Ученые изготовили эффективные органические катоды для цинк-ионных батарей
- Новый LMR-катод минимизирует падение напряжения в литий-ионных батареях
- Особенности анода
Что такое анод и катод, в чем их практическое применение
Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению. Знание того, какой заряд имеет катод, является ключевым для понимания его функции и влияния на электролитические. История «Катода» — это история развития наукоемкого бизнеса в России, который, несмотря на внутренние и внешние проблемы, все же достиг успеха и мирового признания. С целью избегания ошибок электроды таких деталей получили специальное название – анод и катод. Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам. Такие катоды могут выдерживать до 25000 циклов работы, а также заряжаться за несколько секунд, что превосходит возможности современных литий-ионных аккумуляторов.
Российские химики разработали полимерные катоды для сверхбыстрых аккумуляторов
Это не только увеличивает долговечность керамических электролитов, но помогает усиливать их ионную проводимость. Помните, что электролиты проводят ионы, а не электричество? Эксперименты в этой области, проводимые группами, к примеру, из университета Брауна, показали, что этот раствор может удвоить или утроить прочность керамического электролита, сохраняя его полезность в качестве потенциального электролита и сепаратора твердотельной Ssbt-батареи. Другие варианты включают использование органических катодов в сочетании с твердотельными ионно-натриевыми батареями. Это интересно, поскольку существующие натриево-ионные батареи, хоть и являются твердотельными, не обладают плотностью энергии литий-ионных батарей. Другая проблема, связанная с твердотельными батареями solid-state battery такого типа, заключается в том, что слой неактивных кристаллов натрия имеет тенденцию нарастать на катоде, блокируя движение ионов натрия и эффективно разрушая батарею. Так, используя катод из пирен-4, 5, 9, 10-тетраона PTO , исследовательская группа из Хьюстонского университета обнаружила, что этот вид катода имеет много преимуществ, по сравнению с неорганическими, более традиционными катодами. Например, использование PTO позволяет фактически поменять местами резистивную поверхность раздела между катодом и электролитом. Это имеет большое значение для стабильности и увеличения срока службы таких батарей, а также для повышения плотности энергии. Обеспечивая тесный контакт между жестким катодом и твердым электролитом, независимо от изменения диаметра катода во время цикла батареи, это может изменить правила игры для solid-state battery.
Но сбрасывать со счетов натриево-ионные твердотельные батареи пока не стоит. Поскольку другие исследовательские группы работают над поиском решения проблем, присущих именно этой технологии. Группа из университета штата Вашингтон WSU и Тихоокеанской северо-западной национальной лаборатории PNNL нашла способ предотвращения накопления неактивного натрия на катодах. Они обнаружили, что создание катода из оксида металла, пропитанного дополнительными ионами натрия, позволило беспрепятственно производить электричество. Это также может оказаться революционным шагом, потому что позволит производить натрий-ионные батареи наравне с литий-ионными альтернативами. Это значит, что даже если solid-state battery technology, как упоминалось ранее, считается лучшей альтернативой литий-ионным батареям, могут появиться компромиссные технологии — твердотельные литиевые батареи. Исследовательская группа из Мичиганского университета работает именно над этим проектом. Им удалось интегрировать твердые керамические электролиты в литий-ионные батареи и продемонстрировать заметное улучшение долговечности и срока службы, по сравнению с более традиционными литий-ионными батареями. Такой подход также позволил увеличить скорость зарядки аккумуляторов.
Есть исследователи, совершившие прорыв в производстве твердотельных литиевых батарей для 3D-печати. В случае масштабирования проекта до производства, это нововведение позволит удешевить производство литий-ионных аккумуляторов, которые имеют ряд преимуществ перед другими аккумуляторами SSD например, безопасность, повышенная плотность энергии и т. Все бы хорошо, но в новых батареях по-прежнему используются литий-ионы, которые встречаются в природе редко и не являются самыми «чистыми» материалами при добыче и обработке. Это еще одно важное различие между литий-ионными батареями и их твердотельными альтернативами — неотъемлемое влияние на окружающую среду. Литий-ионным батареям требуются такие токсичные компоненты, как кобальт и, разумеется, сам литий. Эти материалы относительно редки, дороги в добыче и переработке, их добывают на рудниках в бедных странах или регионах, где мало или вообще не уделяется внимание благополучию рабочих и окружающей среде. Если вы помните , мы рассказывали в предыдущих статьях о возможных победителях и проигравших в индустрии электромобилей, потому что добыча лития требует огромного количества воды как в процессе экстракции, так и в бассейнах испарения, которые используются для производства кристаллов, богатых литием. Добыча и переработка лития — очень опасная работа и чрезвычайно разрушительна для окружающей экосистемы. Похожая история у кобальта, который часто добывают на так называемых «кустарных рудниках».
Эти небольшие шахты часто связаны с использованием детского труда в ужасных условиях, которые выбрасывают большое количество вредных веществ, переносимых воздухом уран — в воздух, а также большое количество серы — в воду. С другой стороны, твердотельные Ssbt-батареи содержат в себе такие распространенные и менее токсичные составляющие элементы, как натрий. Экстракция натрия, в изобилии встречающаяся в соленой воде, несет гораздо меньшее вредное воздействие на окружающую среду. Это позволит конкурировать с литий-ионными батареями и по цене, и по качеству. Преимущества твердотельных Ssbt-батарей Выше мы уже коснулись некоторых ключевых преимуществ solid-state battery, но каковы другие важные преимущества этой технологии? Более быстрая зарядка — твердотельные батареи обеспечивают гораздо более высокую скорость зарядки.
ПНВ «Катода» стали меньше и легче, весили меньше килограмма. В первые годы предприятие выпускало 3—4 прибора в сутки, сегодня — 36. Серийное производство приборов ночного видения — очень сложный процесс, так как все производственные этапы создания электронно-оптических преобразователей проходят в глубоком вакууме. В то время никто не производил подобного оборудования, специалистам «Катода» пришлось самим его разработать и запатентовать уникальную для рынка технологию производства. И этот процесс не останавливался. Сегодня АО «Катод» — единственное в России и третье в мире предприятие, обладающее технологией крупносерийного производства ЭОП третьего новейшего поколения — главного элемента в приборах ночного видения как гражданского, так и военного назначения. Благодаря ЭОП последнего поколения приборы ночного видения позволяют видеть практически в полной темноте. Здесь работает порядка семи научных подразделений и лабораторий. Только за последние пять лет «Катод» провел более 20 научно-исследовательских и опытно-конструкторских работ. Они касались как улучшения параметров существующих приборов, так и создания совершенно новых изделий, которые раньше вообще не выпускались. От юбилея к юбилею Выступая на торжественном мероприятии в честь 60-летия компании, Владимир Локтионов рассказал об успехах «Катода» за последние пять лет. Предприятию есть чем гордиться. Гособоронзаказ выполнялсяв полном объеме и установленный срок. Качество изделий завода отменное — ни одного возврата товара от потребителей. В бюджеты всех уровней катодовцы заплатили более 2 млрд рублей налогов. Отдельно Владимир Локтионов остановился на инвестиционной составляющей бизнеса. Три года назад, в 2016 году, компания запустила новый производственный корпус общей площадью 6000 кв. Этот инвестиционный проект дал возможность увеличить мощности производства и повысить качество выпускаемой продукции. Это позволило внедрить 17 новейших разработок и приступить к вводу нового изделия в серийное производство.
В будущем цена на этот элемент и аккумуляторы может сильно вырасти, если не найти ему замену в катодах. Менделеева и Института проблем химической физики РАН разрабатывают новые, так называемые двухионные аккумуляторы. В электрохимических процессах внутри них задействованы и катионы, и анионы электролита, что повышает эффективность работы устройств. В новой работе авторы также представили катоды для таких аккумуляторов на основе полимерного соединения дигидрофеназина, который призван заменить собой кобальт. В более ранних работах авторы также пробовали использовать полимерные материалы в качестве катодов, однако тогда они экспериментировали только с линейными молекулами. Теперь ученые решили использовать для синтеза соединения, образующие трехмерную структуру.
В частности, среди таких соединений - чистый литий, соединения натрия, серы, калия и других элементов. Химики под руководством профессора Сорбоннского университета Франция Жана-Мари Тараскона сделала большой шаг к созданию практически полезных аккумуляторов на основе натрия. Они создали перспективный для создания аккумуляторов материал, который состоит из оксидов лития, натрия и марганца и детально изучили его свойства. Благодаря сложной слоистой структуре подобные материалы можно использовать в натрий-ионных батареях, поскольку в них можно и хорошо запасать энергию, и извлекать из них. Проблема заключалась в том, что катоды на основе подобных соединений отличаются относительно низким содержанием ионов натрия и энергоемкостью. Вдобавок в присутствии паров воды они становятся крайне нестабильными.
Катод и анод
Отрицательный заряд катода позволяет ему притягивать положительно заряженные ионы из электролита, что создает условия для проведения электролиза. «В рамках нашего текущего исследования мы проверили долгосрочную работу металлической батареи Ca с катодом из наночастиц сульфида меди (CuS). К катоду стремятся катионы, потому что он заряжен отрицательно и, согласно законам физики, разноименные заряды притягиваются.
Группа "Катод" усиливает заряд
Петербургская группа "Катод" рассчитывает стать крупнейшим производителем аккумуляторов в России. Ученые из Университета Мэриленда и Военно-исследовательской лаборатории армии США разработали катод нового химического типа без переходного металла для литий-ионных. 3D-модель катода аккумулятора телефона под микроскопом показала, почему одни ячейки стареют быстрее, чем другие. Полученный материал был применен в качестве катода для литий-ионного аккумулятора и показал хорошую стабильность и высокую емкость. Электрохимические процессы в LiIon аккумуляторах При разряде элементов питания ионы лития переносят заряд от анода к катоду. 3D-модель катода аккумулятора телефона под микроскопом показала, почему одни ячейки стареют быстрее, чем другие.
Редкий кадр: катод аккумулятора телефона под микроскопом в 3D
Большинство современных катодных материалов представляют собой слоистые оксиды переходных металлов, включающие, например, кобальт, никель и марганец. Один из способов исследования включает накопление заряда на ионах оксидов, а также на ионах переходных металлов. Использование новых кислородно-окислительно-восстановительных материалов для увеличения плотности энергии катода может стать прорывом, но реализация полного потенциала этой новинки в промышленных масштабах была затруднена.
Любая шероховатость поверхности с обеих сторон приводит к высокому межфазному сопротивлению, что снижает производительность батареи. Была проведена некоторая работа по изучению конструкции твердого электролита , но конструкция катода остается открытым вопросом. Группа под руководством профессора Киёси Канамура из Токийского столичного университета занимается разработкой новых способов улучшения контакта между катодом и твердотельным электролитом в твердотельных литий-металлических батареях. Теперь им удалось создать квазитвердый катод из оксида лития-кобальта LiCoO 2 , который содержит ионную жидкость при комнатной температуре. Ионные жидкости состоят из положительных и отрицательных ионов; они также могут транспортировать ионы. При заполнении пустот межфазное сопротивление значительно уменьшилось. Метод команды имеет и другие преимущества.
Но если литий-ионных аккумуляторов будет становиться больше, то рано или поздно закончится сырье для их производства. Похожая ситуация и с литием - на его добычу уходит так много воды, что это может стать серьезной экологической проблемой. Поэтому исследователи ищут новые энергонакопители, которые с одной стороны работают по принципу литий-ионных аккумуляторов и сохраняют их преимущества, а с другой используют более доступное сырье. Менделеева и ИПХФ РАН была использована перспективная постлитиевая технология двухионных аккумуляторов,в электрохимических процессах которых задействованы как анионы, так и катионы электролита, что в разы повышает скорости заряда батарей по сравнению с литий-ионными. При этом в качестве катодов тестировались материалы на основе полимерных ароматических аминов, которые можно синтезировать из различных органических соединений. Они формируют объемные сетчатые структуры, которые обеспечивают более быструю кинетику электродных процессов. Стабильные, быстрые, ёмкие Стандартный литий-ионный аккумулятор - это ячейка объем которой заполнен литий-содержащим электролитом и разделен сепаратором на две части - в одной находится анод, а в другой катод.
Но они пошли дальше и сделали попытку соединить в новых аккумуляторах лучшие технологии литиевых аккумуляторов и суперконденсаторов, слив воедино ёмкость, удельную мощность и скорость зарядки. О новой работе учёные рассказали в журнале Energy Storage Materials. Название статьи говорит само за себя: «Проводящий анод с S-легированием из многовалентного сульфида железа с низкой кристалличностью и катод из 3D-пористого графитового углерода с высоким содержанием N [натрия] для высокопроизводительных натриево-ионных гибридных накопителей энергии». Понятно, что нельзя просто взять и объединить в новом устройстве аноды от обычных аккумуляторов и катоды от суперконденсаторов. Необходимо изменить свойства как анодов, так и катодов.
Катод и анод
Ученые из Университета префектуры Осака разработали катод из сульфида лития с твердым электролитом, который отличается устойчивостью к окислению. Зарядное устройство забирает электроны с катода, оставляя его с положительным зарядом, и направляет их на анод, сообщая ему отрицательный заряд. Короткое время заряда/разряда разработанных калиевых источников тока на органической основе позволяет рассматривать их как альтернативу суперконденсаторам.