Голубые сверхгиганты похожи на звезд рок-н-ролла: эти массивные звезды живут короткую жизнь и погибают молодыми. Ученые связывают знаменитую сверхновую 1987 года со странной голубой звездой-сверхгигантом. это недавно появившиеся на главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны.
Слияние двух звезд привело к появлению синего сверхгиганта
Голубой сверхгигант находится на расстоянии девяти миллиардов световых лет. Голубой сверхгигант Ригель и туманность IC 2118, которую он освещает. Изображение двойного скопления h и xi Персеи в созвездии Персея с голубыми сверхгигантами в исследовании показано крестиками и включает типичный спектр из выборки. Исследования показали, что тогда в Большом Магеллановом облаке взорвался голубой сверхгигант, сообщает Далее, как полагали раньше, для взрыва сверхновой голубому сверхгиганту необходимо прости стадию красного сверхгиганта, однако сверхновая SN 1978A. Новорожденные звезды живут как голубые сверхгиганты на протяжении второго по продолжительности этапа жизни звезды, когда в их ядре горит гелий," объясняет Менон.
Этот неразрушимый «черный ящик» расскажет будущему о том, что с нами произошло
- Голубая звезда-сверхгигант
- Моделирование объясняет формирование загадочных голубых сверхгигантов
- «Hubble» раскрыл тайну «пропавшей из виду» гигантской звезды
- Астрономы раскрыли секрет «голубых сверхгигантов»
Астрономы случайно открыли самую далекую звезду
Длинный гамма-всплеск GRB 221009A, обнаруженный 9 октября 2022 года и наблюдавшийся целым рядом телескопов в разных областях электромагнитного спектра, стал самым ярким гамма-всплеском, обнаруженным за более чем 50 лет наблюдений. Он возник в локальной Вселенной, излучение шло до Земли 1,9 миллиарда лет. Ученые хотели найти связанную со всплеском сверхновую и ее галактику-хозяина. Галактика-хозяин всплеска видна с ребра, вспышка близка к ее ядру. Галактика характеризуется эффективным радиусом 2,45 килопарсеков, звездной массой около 109 масс Солнца, дискообразной морфологией и умеренным темпом звездообразования.
Bibcode : 2009Натура. PMID 19305392. S2CID 4392537. Архивировано из оригинал PDF на 2016-03-03. Получено 2015-08-28. Bibcode : 2013AAS... S2CID 119087896. Бюллетень Американского астрономического общества. Bibcode : 2011AAS... S2CID 55001976. S2CID 16833191. S2CID 58896016.
Прокомментировать 16 Набор изображений показывает гравитационно-линзовое скопление галактик, через которое обнаружена новая звезда. Голубой сверхгигант под кодовым названием Icarus отмечен белой стрелочкой на правой нижней фотографии. Kelly Астрономы давно применяют гравитационное микролинзирование для «увеличения светосилы» телескопа в десятки-тысячи раз — и наблюдения сверхдальних участков космоса, отдалённых от нас в пространстве-времени на миллиарды световых лет. Неоднократно таким способом обнаруживали сверхдальние галактики, а иногда даже отдельные звёзды. Но найденная сейчас звезда под кодовым названием Icarus находится в 100 раз дальше, чем любая из ранее наблюдаемых звёзд, за исключением взрывов сверхновых. Международная группа исследователей опубликовала доказательства , что объект, обнаруженный через гравитационно-линзовое скопление галактик, — это голубой сверхгигант почти в 10 млрд световых лет от нас. То есть «Хаббл» зарегистрировал свет, излучённый звездой всего через 4,4 млрд лет после Большого взрыва.
Спектральное разрешение — это способность различать близкие по частоте сигналы. Если разные части оболочки сверхновой или любой другой звезды движутся с разной скоростью, то мы будем наблюдать изменение частоты излучения, пропорциональное скорости эффект Доплера. Чем лучше спектральное разрешение, тем более мелкие изменения скорости вещества мы можем изучать, тем более точно мы знаем, с какой скоростью движется вещество и на какой частоте оно излучает. Спектры сверхновой SN 2005 gj, полученные группой Трандл, показаны на рис. Он говорит нам о том, какой звездой была сверхновая до взрыва и какой газ ее окружал. Главная особенность профиля этой линии — наличие двух пиков поглощения в спектре две ямки слева от пика излучения на рис. Такая форма линии в спектре сверхновой обнаружена впервые за всю историю наблюдения этого типа звезд! Чтобы получить профиль линии в столь крупном масштабе и увидеть, что пиков поглощения на самом деле было два, как раз и необходимо высокое спектральное разрешение. Слева: Спектры сверхновой SN 2005 gj на 86-й и 374-й день после взрыва. Trundle, et al. Промежуточная часть зеленая стрелка образуется в веществе, которое окружает сверхновую и взаимодействует с ударной волной. Самая узкая часть линии красная стрелка представляет излучение невозмущенного ударной волной вещества, которое, правда, уже ионизовано излучением сверхновой. Все особенности узкой части линии связаны с природой газа, окружавшего сверхновую до взрыва. Группа Кэрри Трандл классифицирует сверхновую SN 2005 gj как тип IIn из-за наличия в спектре узких линий «n» — от англ. Такой внешний вид линии профиль называется «профиль типа P Cygni» по имени звезды P в созвездии Лебедя.
Что за звезда голубой сверхгигант?
Однако и голубой сверхгигант тоже вполне может сгодиться в качестве стандартной свечи. Ученые связывают знаменитую сверхновую 1987 года со странной голубой звездой-сверхгигантом. Данная звезда представляет собой голубой сверхгигант, светимость которого в 120 тысяч раз превышает светимость Солнца, пишут «Ежедневные Новости Владивостока». Это указывает на то, что слияния могут быть доминирующим путем образования голубых сверхгигантов», — отметил соавтор исследования Дэнни Леннон.
Вот-вот взорвётся: Учёные взбудоражены внезапной вспышкой Бетельгейзе
Голубой сверхгигант звезда | Голубые сверхгиганты — самые яркие звезды в родительских галактиках, однако их эволюционный статус является давней проблемой звездной астрофизики. |
Что за звезда голубой сверхгигант? | Внутренняя часть голубого сверхгиганта, который в три раза тяжелее нашего Солнца. |
Эарендель: самая далекая звезда во Вселенной | Голубой сверхгигант — Не следует путать с голубыми гигантами. Голубой сверхгигант — тип сверхгигантских звёзд (I класс светимости) спектральных классов O и B. Содержание 1 Общие характеристики 2 Взаимопревращение сверхгигантов 3 Примеры голубых. |
Загадки голубых звезд сверхгигантов | В следующей части исследования будет предпринята попытка исследовать, как эти голубые сверхгиганты взрываются и вносят свой вклад в ландшафт черных дыр и нейтронных звезд. |
Загадки голубых звезд сверхгигантов
Молодая космическая структура под названием NGC 3184, где находится голубой сверхгигант, открыта в марте текущего года японским астрофизиком. Международная группа ученых сделала прорыв в изучении голубых сверхгигантов, наиболее ярких и теплых звезд во Вселенной. В следующей части исследования будет предпринята попытка исследовать, как эти голубые сверхгиганты взрываются и вносят свой вклад в ландшафт черных дыр и нейтронных звезд.
Астрономы случайно открыли самую далекую звезду
Астрономы раскрыли секрет «голубых сверхгигантов» | По мнению исследователей, тогда произошел взрыв голубого сверхгиганта, образованного слиянием двух звезд, в результате чего возникла сверхновая в близлежащей галактике. |
Что за звезда голубой сверхгигант? | Живой Космос | Дзен | Голубые сверхгиганты недавно возникли из главной последовательности, имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. |
Раскрыта тайна происхождения голубых сверхгигантов — ярчайших звезд во Вселенной
Но как они рождаются? Откуда берутся эти титаны звездного мира? Классические теории звездной эволюции не могли объяснить, почему мы наблюдаем так много голубых сверхгигантов. Ведь согласно этим теориям, они должны существовать лишь краткий миг в масштабах космического времени. Но недавно международная группа исследователей, ведомая учеными из Института астрофизики Канарских островов , сделала прорыв в этом вопросе. С помощью компьютерного моделирования и анализа данных, полученных с Большого Магелланова Облака, они нашли убедительные доказательства того, что большинство голубых сверхгигантов рождаются не в одиночестве, а в результате слияния двух звезд, входящих в двойную систему. Представьте себе: две звезды, гравитационно связанные друг с другом, вращаются в космическом танце.
Создав модель структуры звезд, астрономы заключили, у поверхности супергиганта разбиваются гидродинамические гравитационные волны, которые визуально напоминают морские.
Также предположили наличие другого типа волн — когнитивных, они больше напоминают сейсмические волны на Земле. Этот тип волн рождается в недрах звезды. Взяв за основу данные, собранные космическими телескопами, ученые под руководством Доминика Боумана, сделали тщательное исследование звезд данного типа и заключили, что свечение почти всех голубых супергигантов является следствием гидродинамических и когнитивных волн, сконцентрированных на и поверхности. Эти волны рождаются в самых недрах звезд, это поможет астрономам лучше узнать об их строении.
Секрет разноцветности звезд стал важным орудием астрономов — цвет светил помог им узнать температуру поверхности звезд.
В основу легло примечательное природное явление — соотношение между энергией вещества и цветом излучаемого им света. Наблюдения на эту тему вы уже наверняка сделали сами. Нить маломощных 30-ваттных лампочек горит оранжевым светом — а когда напряжение в сети падает, нить накала едва тлеет красным. Более сильные лампочки светятся желтым или даже белым цветом. А сварочный электрод во время работы и кварцевая лампа светятся голубым.
Однако смотреть на них ни в коем случае не стоит — их энергия настолько велика, что может с легкостью повредить сетчатку глаза. Соответственно, чем горячее предмет, тем ближе его цвет его свечения к голубому — а чем холоднее, тем ближе к темно-красному. Звезды не стали исключением: такой же принцип действует и на них. Влияние состава звезды на ее цвет очень незначительное — температура может скрывать отдельные элементы, ионизируя их. Но именно анализ цветового спектра излучения звезды помогает выяснить ее состав.
Атомы каждого вещества имеют свою уникальную пропускную способность. Световые волны одних цветов беспрепятственно проходят сквозь них, когда другие останавливаются — собственно, по блокированным диапазонам света ученые и определяют химические элементы. Механизм «окрашивания» звезд Какова физическая подоплека этого явления? Температура характеризуется скоростью движения молекул вещества тела — чем она выше, тем быстрее они движутся. Это влияет на длину световых волн, которые проходят сквозь вещество.
Горячая среда укорачивает волны, а холодная — наоборот, удлиняет. А видимый цвет светового луча как раз определяется длиной световой волны: короткие волны отвечают за синие оттенки, а длинные — за красные. Белый цвет получается в итоге наложения разноспектральных лучей. Цвет звезды играет роль сразу в нескольких системах упорядочивания звезд. Сам по себе он является главным критерием определения спектрального класса светила.
Так как цвет связан с температурой, его откладывают по одной из осей диаграммы Герцшпрунга-Рассела. С помощью диаграммы можно также определить светимость, массу и возраст звезды, что делает ее ценным и наглядным источником информации про звезды. Классы звёзд В Галактике существуют семь классов звёзд: Звёзды класса «O», голубого цвета, обладали самой высокой температурой. У них была самая короткая продолжительность жизни, меньше, чем 1 миллион лет. В Галактике было приблизительно 100 миллионов звёзд класса «O», планеты вокруг которых были пригодны для жизни.
Пример: Гарниб. Звёзды класса «B» бело-голубого цвета, также были очень горячими. Средняя продолжительность их жизни составляла примерно 10 миллионов лет. В Галактике также было приблизительно 100 миллионов звёзд класса «B», планеты вокруг которых были пригодны для жизни. Пример: Кесса.
Так средняя продолжительность жизни голубого гиганта составляет от 10 до 50 миллионов лет, в то время как звезды класса Солнца живут от 4 до 10 миллиардов лет. Почти все голубые сверхгиганты ранее были красными карликовыми звездами, в процессе своего умирания внутренние термоядерные реакции привели к тому, что звезда начала увеличиваться в размерах. Существует и обратная реакция, когда голубой сверхгигант в процессе термоядерных реакций сбрасывает свою массу превращается в красного карлика. Ученые университета Ньюкасла провели эксперимент, в результате которого они выяснили природу быстрого разрушения голубого сверхгиганта.
Астрономы случайно открыли самую далекую звезду
Ригель (голубой сверхгигант) и туманность IC 2118, которую он освещает. Она может развиться в красный сверхгигант, значительно более яркий, чем Бетельгейзе, в течение следующего миллиона лет. Далее, как полагали раньше, для взрыва сверхновой голубому сверхгиганту необходимо прости стадию красного сверхгиганта, однако сверхновая SN 1978A. это недавно появившиеся из главной последовательности, они имеют чрезвычайно высокую светимость, высокую скорость потери массы и, как правило, нестабильны. Она может развиться в красный сверхгигант, значительно более яркий, чем Бетельгейзе, в течение следующего миллиона лет. Вновь образованные звезды живут как голубые сверхгиганты на протяжении второй по продолжительности фазы жизни звезды, когда в их ядре происходит горение гелия».