Строительство первого в мире международного термоядерного реактора вышло на новый этап.
Меню сайта
Плазма в реакторе ИТЭР должна быть в десять раз горячее солнечного ядра, а температура в его криостате в 30 раз ниже, чем в морозильнике. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. В последний день 2021 года китайские учёные сообщили, что их опытный термоядерный реактор EAST нагрел плазму до 70 миллионов градусов и удерживал её 1056 секунд. Пуск экспериментального термоядерного реактора и получение на нем первой плазмы запланирован на 2025 год. #Плазменный_реактор_Мехрана_ №3 Отслоился #нано_слой_плазма_стала_четкой. Главные проблемы в разработке промышленного реактора — нагрев и удержание плазмы с термоядерными параметрами."Идея эксперимента такая.
Реквизиты компании
- Преимущества и недостатки термоядерных реакторов
- Глава российского агентства ИТЭР рассказал о планах по созданию демореактора
- Комментарии
- Вступай в наши группы и добавляй нас в друзья :)
- Что еще известно:
Физики разработали гибридный реактор на основе плазменной открытой ловушки
Улан-Удэ, ул. Бабушкина, 23б Тел. Ербанова, 7а Тел. Выдано Роскомнадзор.
Предлагаем машины потального типа с ЧПУ с умеренной ценой. Наши станки воздушно-плазменной резки металлов, разработаны на основе современных технологий: изготовление и раскрой деталей на данном оборудовании осуществляются с помощью электронного управления, что позволяет добиться значительной экономии электроэнергии и расходных материалов. Все операции на нашем станке плазменной резки очень упрощены — добиться этого удалось благодаря использованию встроенной электронной библиотеки готовых форм. Библиотека установлена в управляющий компьютер. Это оборудование оснащено удобным интерфейсом, который помогает оператору его быстрой освоить. Как правило время затраченное на освоение станка не превысит 2-х, 3-х дней. На машине плазменной резки металла с ЧПУ можно разрезать металл толщиной от 0,5 до 40 мм, при этом добиваясь почти идеального качества обработки.
Обеспечивает разнообразные виды раскроя металлического листа. Добавим, что технология плазменного раскроя характеризуется минимальной шириной реза. Приведем еще некоторые технические характеристики: макс.
В случае успеха, ITER положит начало использования человечеством нового экологически чистого и эффективного источника энергии. Он считается одной из самых сложных физических установок, которые когда-либо создавались человеком. Общая масса реактора — 23 тысячи тонн, он занимает площадь в 42 гектара, а обслуживают ITER 2,3 тысячи сотрудников.
Изготовление оборудования первого контура ядерного острова запланировано в 2028 и 2029 годах, и к тому времени уже будут выполнены основные строительные работы», — отметил вице-президент АО «Атомстройэкспорт» — директор проекта по сооружению АЭС «Пакш» Виталий Полянин.
Созданная на наших предприятиях линейка прорывных технологических решений позволяет в срок выпускать продукцию, отвечающую самым высоким требованиям безопасности и качества», — добавил глава машиностроительного дивизиона Росатома Игорь Котов. В 2024—2026 годах на металлургическом предприятии машиностроительного дивизиона в Санкт-Петербурге будут произведены заготовки для реакторов, парогенераторов, компенсаторов давления, емкостей систем безопасности и других изделий первого контура ядерного острова АЭС. Проект реализуется на основе российско-венгерского межправительственного соглашения от 14 января 2014 года и трех базовых контрактов о сооружении новой станции. Основная лицензия на строительство АЭС «Пакш-2» была выдана венгерским регулятором в августе 2022 года. Получение строительной лицензии подтвердило соответствие проекта венгерским и европейским нормам безопасности.
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
Владелец реактора — Институт физики плазмы при Академии наук КНР. Президент НИЦ «Курчатовский институт» Михаил Ковальчук сообщил об успешном получении первой термоядерной плазмы на токамаке Т-15МД (это модифицированная версия комплекса. Магнитное поле удерживает плазменный жгут от соприкосновения со стенками реактора и не даёт плазме остыть, а также повредить стенки реактора, вследствие чего происходит. В плазменном реакторе производится плавление практически любых материалов, после чего из них получаются полезные композиты. Специалисты Национального исследовательского университета «МЭИ» запустили плазменную установку, которая позволит испытать облицовку камеры будущего термоядерного реактора. Плазменный пиролиз, по мнению разработчиков, поможет сделать переработку тяжелой нефти более экономичной и экологически чистой.
Впервые в мире термоядерную плазму протестировали в токамаке нового поколения
Плазменный пиролиз, по мнению разработчиков, поможет сделать переработку тяжелой нефти более экономичной и экологически чистой. Также планируем исследовать углеродные наноструктуры для использования их в качестве катализаторов и адсорбентов», — подчеркнул руководитель проекта, ведущий научный сотрудник НГТУ Евгений Титов.
Для контроля за состоянием теплоносителя на ITER установлены акустические датчики. По шуму, который создают пузырьки в трубопроводах, будет оцениваться режим, в котором находится теплоноситель.
Системы нагрева плазмы[ править править код ] Для того, чтобы ядра трития вступили в реакцию слияния с ядрами дейтерия, они должны преодолеть взаимное электростатическое отталкивание — кулоновский барьер. При такой высокой температуре кинетическая энергия ядер становится достаточной, чтобы кулоновский барьер был преодолён и термоядерная реакция «зажглась». После зажигания термоядерной реакции предполагается, что можно будет выключить внешние нагреватели плазмы или снизить их мощность.
Ожидается, что термоядерная реакция станет самоподдерживающейся. Кроме того, можно задействовать для нагрева плазмы еще и центральный соленоид. Поднимая напряжение в соленоиде от нуля до 30 кВ, можно индуцировать в короткозамкнутом плазменном витке электрический ток.
За счет омического нагрева выделяется дополнительное тепло. Такой способ нагрева называется индукционным. Electron Cyclotron Resonance Heating разогревает электроны плазменного шнура, а также используется для отвода тепла в определённых местах в плазме в качестве механизма минимизации нарастания определённых неустойчивостей, приводящих к охлаждению плазмы.
Она выполняет роль «стартера» плазмы в начале выстрела, разогревая нейтральный газ, заполняющий вакуумную камеру. В качестве источников энергии применены гиротроны , каждый мощностью 1 МВт, рабочей частотой 170 ГГц и длительностью импульса более 500 с. Всего гиротронов 24.
Они расположены в Здании радиочастотного нагрева и передают свою энергию по волноводам, длина которых составляет 160 м. Производством гиротронов заняты Япония, Россия, Европа и Индия. В конце февраля 2015 года Япония продемонстрировала первый произведённый гиротрон.
Все гиротроны предполагалось поставить в ITER в начале 2018 года [27]. Для ввода энергии в вакуумную камеру служат окна из поликристаллического искусственного алмаза. Диаметр каждого алмазного диска 80 мм, а толщина 1,1 мм.
Алмаз выбран потому, что прозрачен для СВЧ излучения, прочен, радиационно стоек и обладает теплопроводностью в пять раз выше, чем у меди. Производством этих кристаллов занята лаборатория во Фрайбурге. Всего для ITER будет поставлено 60 алмазных окон [28].
Ion Cyclotron Resonance Heating разогревает ионы плазмы. Принцип этого нагрева такой же, как и бытовой СВЧ-печи. Частицы плазмы под воздействием электромагнитного поля высокой мощности с частотой от 40 до 55 МГц начинают колебаться, получая дополнительную кинетическую энергию от поля.
При столкновениях ионы передают энергию другим частицам плазмы. Система состоит из мощного радиочастотного генератора на тетродах будет установлен в Здании радиочастотного нагрева плазмы , системы волноводов для передачи энергии и излучающих антенн [29] , расположенных внутри вакуумной камеры. Инжектор нейтральных атомов[ править править код ] Инжектор «выстреливает» в плазменный шнур мощный пучок из атомов дейтерия, разогнанных до энергии 1 МэВ.
Тритий, содержащийся в топливе, будет вырабатываться в замкнутом контуре, поэтому должны строго соблюдаться меры безопасности при обращении с тритиевым топливом внутри реактора. Тритий — слабый бета-излучатель, он не проникает в человеческую кожу, но очень токсичен для организма при попадании через дыхательные пути. ИТЭР был разработан для защиты от выброса трития и воздействия радиоактивности на работников. Также стоит учесть активацию внутренних компонентов и плазменной камеры при взаимодействии с нейтронами высокой энергии.
Материалы внутри реактора могут быть загрязнены небольшим количеством радиоактивной пыли. Но потенциальные отходы будут обрабатываться, упаковываться и храниться прямо на месте, а период полураспада большинства радиоизотопов, содержащихся в этих отходах, составит менее 10 лет. Таким образом, в течение 100 лет радиоактивность материалов уменьшится настолько, что их можно будет переработать и в дальнейшем использовать на других термоядерных установках. ИТЭР находится в области с умеренной сейсмической активностью, однако строится из специально армированного бетона и опирается на плиты, рассчитанные на землетрясения; сейсмические датчики вокруг площадки контролируют даже незначительную сейсмическую активность.
В дизайн проекта ИТЭР заложены несколько защитных барьеров: корректный выбор надежных современных материалов поможет минимизировать количество отходов будущих термоядерных реакторов; системы активного плазменного отключения, быстрого разряда и отвода тепла, а также сейсмический контроль не допустят аварии; специальная система вентиляции и пониженное давление в здании реактора предотвратят утечку трития и распространение радиоактивной пыли за пределы здания. Академик Арцимович говорил: как только приспичит человечеству, тут же термояд и сделают. Пока, значит, не приспичило. Мой ответ другой: в 2054 году.
В 1954 году запустили первую АЭС, а мы любим отмечать юбилеи с размахом. Термоядерная энергетическая установка будет более безопасной, чем современные ядерные, — нет критмассы. Но хватает своих проблем. Скорее всего, не будет сразу чистого термояда, вначале плазменные термоядерные установки используют как внешний источник нейтронов, который будет нарабатывать топливо из 238U или тория.
Эта технология должна быть разработана с учетом современных требований к безопасности ядерных объектов. DEMO: перспективы Если проект ИТЭР покажет перспективные рабочие показатели по достижению, а главное — удержанию «чистой» плазмы, следующим этапом на пути к термоядерному будущему станет строительство промышленного демонстрационного реактора DEMO с запланированной мощностью всей станции около 3 ГВт. DEMO позволит распахнуть двери в мир промышленной и коммерческой эксплуатации термоядерной энергии. Скептики продолжают задаваться вопросом: а стоит ли овчинка выделки?
Очевидно, что вложения и затраты на электроэнергию термоядерных электростанций будут значительно выше вложений в существующие АЭС — несмотря на то что стоимость топлива будет минимальной. Причина — высокая стоимость замены поврежденных ядерных компонентов. Тепловая и нейтронная нагрузки ядерных компонентов будут настолько сильными, что срок службы некоторых ядерных элементов можно будет оценить от 4,5 до 10,5 лет — значительно короче срока службы типичной АЭС 40 лет. В начальный период эксплуатации это приведет к тому, что цена электроэнергии от термоядерных электростанций будет сопоставима с ценой электроэнергии от солнечных и ветряных станций.
При этом производство электроэнергии высокой мощности не будет зависеть от времени года или погоды, и не нужно будет поддерживать резервные ископаемые ресурсы. Для выработки электроэнергии от коммерческого термоядерного синтеза электростанция должна быть проще и бюджетнее, чем ИТЭР. Дизайн компании основан на конфигурации с обратной поляризацией, сочетающей особенности основных термоядерных концепций. В отличие от других устройств термоядерного синтеза, таких как токамак, обратная поляризация обеспечивает топологию магнитного поля, при которой осевое поле внутри реактора изменяется вихревыми токами в плазме.
Оно наносится на медную подложку, которая позволяет отводить тепло от стенки реактора с участием лёгкого металла лития. Термоядерная установка «Глобус-М», сооружённая в Физико-техническом институте им. Изобретение уже получило патент. Разработка позволит решить одну из основных задач в области термоядерного синтеза — уберечь стенку термоядерного реактора от воздействия раскалённой до миллионов градусов плазмы, заключённой внутри него. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора. Это приводит не только к нагреву стенки, но и к распылению материала, из которого сделана стенка реактора, то есть к расщеплению его на атомы, которые затем попадают в качестве примеси в плазму.
НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР
Главные сахалинские новости за день от Демонстрационный термоядерный реактор (ДЕМО) станет следующим этапом в подготовке к использованию термоядерной энергии в промышленных масштабах. Первая плазма в Международном экспериментальном термоядерном реакторе будет получена в 2025-2026 годах. Хотя плазма удерживается и сжимается при помощи магнитного поля, её потоки всё равно могут соприкасаться со стенкой реактора.
Комментарии
- НИУ МЭИ запустил одну из мощнейших в мире плазменных установок для будущего реактора ИТЭР
- Повторение эксперимента на более крупном реакторе
- Поделись позитивом в своих соцсетях
- В термоядерном реакторе США обнаружили аномалию: Наука: Наука и техника:
- Термоядерный реактор KSTAR смог удержать раскалённую плазму в течение 30 секунд
- Что такое токамак?
Как плазменные технологии помогут ускорить развитие ядерных реакторов
Сегодня ИТЭР - реальный драйвер технологического развития. И я искренне рад, что мировое термоядерное сообщество оказалось способным отделить решение глобальной задачи человечества от сиюминутной политической риторики. Когда говорят о термоядерных исследованиях и пытаются объяснить назначение сложнейших систем того же ИТЭР, приводят для сравнения процессы внутри Солнца и других звезд. Заголовок в газете "Солнце в морозильнике" - это не сильное преувеличение к тому, что всем миром строят и обещают показать во французском Кадараше? Виктор Ильгисонис: Имеется в виду, полагаю, сравнение температур горячей плазмы внутри токамака и сверхпроводника в его магнитной системе? Если так, то это образное сравнение серьезно не дотягивает до итэровских реалий: плазма ИТЭРа должна быть в десять раз горячее солнечного ядра, а температура в его криостате - в тридцать раз ниже, чем в морозильнике!
А в космосе, если сумеем "приручить" термояд, он какие открывает для человека возможности? Виктор Ильгисонис: Здесь вы, что называется, бьете в самую точку. Я уверен, что истинное место термояда - как раз в космосе. Просто его там будет легче осуществить! Нам не понадобятся ни громоздкие вакуумные камеры со сложной системой откачки, ни дорогостоящий криостат со всеми сопутствующими системами.
Да, придется несколько отойти от привычных для Земли схем, понадобятся идеи и эксперименты, но это будет совершенно новый уровень энергооснащения наших космических аппаратов. Судите сами, сегодня на МКС потребителям доступны лишь несколько десятков киловатт мощности, которых, конечно же, недостаточно для серьезной работы на орбите и тем более для межпланетных полетов. Эту тему надо начинать разрабатывать как можно скорее, не дожидаясь осуществления "земного" термояда. В одном из наших первых интервью вы сказали, что термоядерный синтез - вопрос самолюбия для человечества. А сегодня к этому что могли бы добавить?
Виктор Ильгисонис: Самолюбие пока не удовлетворено. А задора по мере преодоления трудностей с каждым годом прибавляется. Причем не только у ученых, посвятивших себя плазменной науке. На удивление, резко возросло количество частных инициатив и стартапов, пробующих свои силы в этой исключительно заманчивой области. Так что термояд - это еще и поле, причем обширное, для самореализации талантов.
Мы изобрели первый в мире управляемый термоядерный реактор. ST-40 — машина, которая покажет, что температуры термоядерных реакций возможны и не требуют больших затрат. Термоядерная энергия будет доступна через годы, а не через десятки лет», — сказал Дэвид Кингхэм, генеральный директор Tokamak Energy.
Основной целью ST-40 является достижение температуры 15 млн градусов Цельсия к осени 2017 года, а уже к 2018 году реактор должен создавать плазму при температуре 100 млн градусов Цельсия.
Сейчас в компании работает более 60 сотрудников в Сиэтле, Эверетте и Мукилтео, штат Вашингтон. Команда Zap Energy добилась быстрого прогресса с тех пор, как эта технология вышла за пределы лаборатории, особенно с недавним ростом команды и инвестиций». В термоядерном реакторе Zap Energy используется метод Z-pinch, когда плазменный шнур, несущий электрический ток, генерирует магнитное поле, которое удерживает и сжимает — «зажимает» — плазму. Условия для термоядерной реакции Чем больший ток разряда Z-Pinch, тем горячее и плотнее будет плазма, поэтому переход к все более и более высоким токам является ключевой частью продвижения синтеза Z-Pinch. Прошлой осенью Zap Energy достигла тока в 500 кА и пределов своих текущих аппаратных возможностей, и теперь начнет работу на своей платформе следующего поколения, известной как FuZE-Q, где в конце этого года установит ультрасовременный блок питания. Для коммерческого реактора Q должно быть порядка 15-20 и ток разряда в районе 1,5-2 миллионов ампер. Электрический ток является ключевым фактором выработки энергии при Z-Pinch синтезе, и эксперименты Zap Energy неуклонно продвигаются к получению энергии, необходимой для коммерческого синтеза.
При таких колоссальных температурах ядра изотопов водорода сталкиваются и, преодолевая кулоновский барьер, сливаются, образуя ядра атомов гелия. В результате каждого акта такого синтеза должно выделиться 17,6 МэВ энергии. При нагревании топливная смесь приходит в состояние полностью ионизированной плазмы, словно в солнечном ядре, где каждую секунду сгорают тонны водорода, также превращаясь в гелий. Сверхпроводящие тороидальная и полоидальная катушки совместно с центральным соленоидом удерживают плазму внутри вакуумного сосуда реактора. Эти катушки генерируют магнитное поле, которое формирует плазму в тор. В 1950-х годах считалось, что MFE можно достичь относительно легко. Шла настоящая гонка: кто первым создаст подходящую установку. К концу 1950-х годов стало ясно, что турбулентность и нестабильность в плазме — серьезные проблемы. В 1968 году советская команда изобрела токамак, который показал производительность в 10 раз выше, чем альтернативные способы. Курчатова под руководством академика Льва Арцимовича. С тех пор считается наиболее перспективной идея токамаков с магнитным плазменным удержанием. Однако есть и другая концепция термоядерного синтеза — инициирование цепных реакций внутри реактора путем нагревания и сжатия топливной мишени с помощью мощного лазерного излучения так называемый инерционный синтез. Применяются мощные лазеры для того, чтобы зажечь небольшую мишень — ампулу, содержащую топливо, и быстро менее чем за одну миллиардную долю секунды достичь условий термоядерного синтеза. Лазер используется для генерации импульса инфракрасного света, который длится несколько миллиардных долей секунды с миллиардными долями джоуля энергии. У этой технологии есть свои подводные камни. Лазеры с высоким КПД должны интенсивно, а главное — однородно облучать мишени; при этом важны сверхточная фокусировка лазеров, скрупулезное соблюдение размеров мишеней, их строго сферическая форма. Несколько ампул за секунду должны быть загружены в реактор с фиксированным положением по центру — это особенно сложно осуществить, учитывая масштабы реактора. Самая крупная экспериментальная установка, работающая по принципу инерционного синтеза, — это Национальный центр зажигания National Ignition Facility , расположенный в США, в Ливерморской национальной лаборатории им. NIF — самая мощная лазерная система в мире, насчитывающая 192 лазерных пучка. Принцип работы тот же, но в LMJ 176 лазерных луча. ТОП-7 событий в области термояда в 2018 году: В марте специалисты отдела оптики низкотемпературной плазмы ФИАН представили систему контроля концентрации водяного пара в плазме, которая обеспечит безопасность водяной системы охлаждения термоядерного реактора. В апреле ученые Института ядерной физики им. Будкера представили технологию, позволяющую в реальном времени наблюдать поведение конструкционных материалов при термоядерном синтезе. В июле американская Lockheed Martin запатентовала дизайн компактного реактора CFR, прототипы которого были представлены еще в 2017 году. В августе в Оксфордском университете запущена импульсная установка FLF. В сентябре специалисты Токийского университета представили устройство для создания магнитного поля с полностью контролируемыми параметрами, причем магнитное поле экспериментально удается продержать 100 мкс — это абсолютный рекорд. В декабре исследователи из Управления по атомной энергии Великобритании сообщили о создании уникальной системы для охлаждения плазмы в токамаке охлаждение — одна из ключевых проблем в токамаках. Международный проект ИТЭР International Thermonuclear Experimental Reactor ITER — самый крупный в мире токамак, сложнейшая термоядерная экспериментальная машина, призванная продемонстрировать осуществимость технологий термоядерного синтеза и доказать, что термоядерная реакция может быть управляемой.
Компактный термоядерный реактор американского стартапа разогрел плазму до 37 млн °С
Это связано с высокой плазменно-тепловой нагрузкой, которая будет оказывать воздействие на стенки камеры будущего реактора-токамака при длительной эксплуатации. Такое время считается рекордным показателем по удержанию высоко разогретого плазменного поля. По сути, Plasma Liner Experiment – это реактор, включающий в себя 36 плазменных «пушек», окружающих сферическую камеру.