Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. Event Horizon Telescope (EHT).
Получен первый в истории снимок сверхмассивной черной дыры
Находится в созвездии Стрельца. О ее существовании подозревали с 1970-х годов, но до сих пор не было подтверждения, что это именно черная дыра, а не какое-то другое скопление материи. Размером объект — примерно как орбита Меркурия. На нашем небе примерно такого размера, как если бы мы пытались разглядеть бублик на Луне невооруженным глазом. Фото очень похоже на фото первой черной дыры. Но новая черная дыра меньше в несколько тысяч раз, так что заметить ее было гораздо сложнее. Она также находится в совершенно других условиях.
The collection is divided into three gradations, depending on the rarity. Each NTF contains a geometric figure, procedurally generated by the fractal algorithm that we have created. Allotropy is the existence of two or more simple substances of the same element.
В рамках проекта Event Horizons Telescope EHT объединены мощности нескольких самых чувствительных микроволновых радиообсерваторий мира. Так ученые называют особый регион в окрестностях этого объекта, где можно увидеть своеобразное "отражение" ее горизонта событий — той зоны, откуда ни свет, ни любой другой материальный объект вырваться уже не может. Это стало одним из первых прямых подтверждений существования сверхмассивных черных дыр раньше ученые могли судить о них в основном по косвенным признакам. Тем не менее, даже получив этот снимок, ученые не нашли однозначного ответа на вопрос о том, какие физические процессы задействованы в формировании характерного огненного кольца и полумесяца, которые окружают черную сферу горизонта событий. Ученые пока не знают, как именно черные дыры поглощают материю и какую роль в этом процессе играют магнитные поля, которые, предположительно, возникают в так называемом диске аккреции.
Плазма вокруг сверхмассивной черной дыры движется вдоль силовых линий магнитного поля, поскольку плазма состоит из заряженных частиц. Вращение этих частиц создает поляризацию света, перпендикулярную магнитному полю. Измерение поляризации говорит о том, как именно магнитное поле обволакивает сверхмассивную черную дыру. Эти поля играют ключевую роль в процессах аккреции и выбросах вещества, непосредственно это повлияет на наблюдение черных дыр и на наше понимание физики, управляющей этими экстремальными объектами».
Первое в истории изображение черной дыры уже стало мемом
Фото: Phys. Об этом пишет Phys. Квазары — это типы активных галактических ядер, которые, как полагают астрономы, питаются от черных дыр сверхмассивного типа. Отсюда и возникает присущая квазарам яркость. Рассмотреть NRAO 530 оказалось непросто, поскольку он удален от нас на большое расстояние — 7,5 млрд световых лет.
Результаты исследования опубликованы в The Astrophysical Journal.
Источник: Без источника Ученые использовали дополнительные программные методы и алгоритмы визуализации для восстановления и детализации изображения. Они также использовали данные 2017 года, полученные с помощью глобальной сети телескопов EHT Телескоп горизонта событий.
Несмотря на такое развертывание технологии, снимок "настоящей" черной дыры еще не сделан, хотя команды EHT представили качественное изображение в 2019 году. Действительно, главное свойство этого типа астрономических объектов заключается в том, что они настолько массивны, что ничто не может от них ускользнуть, даже свет. То, что ученые пытались наблюдать в течение многих лет, это то, что находится вокруг черной дыры, "аккреционный диск". Она состоит из материи и газа, вращающихся вокруг ядра объекта на очень высокой скорости и нагретых до экстремальных температур. В конце концов, конечно, их поглощает черная дыра.
Объект находится на расстоянии 26 000 световых лет от Земли, в самом сердце нашей галактики. Его масса эквивалентна массе Солнца в 4,3 миллиона раз, что относительно мало для сверхмассивной черной дыры. Вторая цель - черная дыра в галактике M87, которая намного больше и находится дальше.
Как ни парадоксально, несмотря на их способность поглощать свет, черные дыры - самые светящиеся объекты во Вселенной. Материал - газ, пыль, измельченные звезды - который падает в черную дыру, нагревается до миллионов градусов. Большая часть этого вещества попадает в черную дыру, но некоторая часть выталкивается, как зубная паста, огромным давлением и магнитными полями. Как вся эта энергия возникает и направляется, астрономам неизвестно. Такие фейерверки, которые могут в тысячу раз затмить галактики, можно увидеть по всей Вселенной; когда они впервые были обнаружены в начале 1960-х годов, они были названы квазарами. Это открытие заставило физиков и астрономов серьезно отнестись к идее о существовании черных дыр.
В 2009 году, стремясь изучить лежащие в основе механизмы и проверить предсказания Эйнштейна о черных дырах, доктор Доулман и его коллеги создали телескоп Event Horizon Telescope, и международный союз, в который сейчас входят около 300 астрономов из 13 организаций. Телескоп назван в честь точки невозврата вокруг черной дыры; за горизонтом событий весь свет и материя исчезают. В апреле 2017 года, когда телескоп в течение 10 дней наблюдал за M87, он состоял из восьми радиообсерваторий по всему миру - «телескоп размером с весь мир», как любит говорить д-р Доулман, способный улавливать даже самые мелкие детали. Затем команде потребовалось два года, чтобы обработать данные.
3. Представлено первое фото черной дыры в центре нашей Галактики
Астрономы получили первое изображение черной дыры в сердце нашей галактики | The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. |
The Event Horizon Telescope · GitHub | Траектория полёта и маршрут зонда "Новые горизонты" к Плутону. |
Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* • AB-NEWS | Event Horizon Telescope Collaboration (testing-general-relativity-with-the-event-horizon).jpg 2,358 × 1,762; 674 KB. |
Получен первый в истории снимок сверхмассивной черной дыры | и миллиметровых обсерваторий под названием Телескоп горизонта событий (Event Horizon Telescope, EHT) получила первое в истории изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь. |
Первый взгляд на чёрную дыру в центре Млечного пути | Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. |
Event Horizon Telescope
Черная дыра... Такого прежде никто не видел. В астрономии — сенсация. Обнародованы первые в мире снимки черной дыры. Их получила обсерватория «Телескоп горизонта событий» Event Horizon Telescope , объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. Работая совместно, телескопы образовали «тарелку» небывалого размера, которая позволила заглянуть вглубь Вселенной на десятки миллионов световых лет и натурально разглядеть там черную дыру — гигантский объект в центре галактики М87. Его, а точнее поверхность черной дыры или горизонт событий, выражаясь астрономически, ученые показали на пресс-конференции, которую команда телескопа провела в Вашингтоне в National Press Club 10 апреля 2019 года. В "Телескоп горизонта событий" объединились несколько радиотелескопов.
Черная дыра — это объект огромной массы, гравитация которого не выпускает даже свет. Горизонт событий — эта некая граница, за которую он — свет - не может вырваться. На фото горизонт событий выглядит темным пятном.
В рамках проекта Event Horizons Telescope EHT объединены мощности нескольких самых чувствительных микроволновых радиообсерваторий мира. Так ученые называют особый регион в окрестностях этого объекта, где можно увидеть своеобразное "отражение" ее горизонта событий — той зоны, откуда ни свет, ни любой другой материальный объект вырваться уже не может. Это стало одним из первых прямых подтверждений существования сверхмассивных черных дыр раньше ученые могли судить о них в основном по косвенным признакам. Тем не менее, даже получив этот снимок, ученые не нашли однозначного ответа на вопрос о том, какие физические процессы задействованы в формировании характерного огненного кольца и полумесяца, которые окружают черную сферу горизонта событий. Ученые пока не знают, как именно черные дыры поглощают материю и какую роль в этом процессе играют магнитные поля, которые, предположительно, возникают в так называемом диске аккреции.
NRAO 530 представляет собой квазар с плоским радиоспектром, который демонстрирует сильную переменность яркости в оптическом диапазоне и ярок в гама-диапазоне. Объект относится к категории блазаров и обладает релятивистским джетом, красное смещение NRAO 530 составляет 0,902, что означает, что мы видим его таким, каким он был 7,5 миллиардов лет назад. В результате наблюдений было получено изображение ядра и внутренней части джета квазара с угловым разрешением 20 угловых микросекунд. Структура ядра оказалась сложнее, чем предполагалось ранее, в нем наблюдаются два ярких компонента. Джет демонстрирует признаки изгиба, в нем тоже наблюдаются две отдельные структуры, с взаимно ортогональными направлениями поляризации излучения параллельными и перпендикулярными джету , что говорит о спиральной структуре магнитного поля в джете.
Новый вид фиксирует свет, искривленный мощной гравитацией черной дыры. Показать больше.
Получена первая фотография сверхмассивной чёрной дыры в центре нашей Галактики
Каждый из телескопов собрал по 500 ТБ информации. На расшифровку и анализ полученных данных у ученых ушло два года. При изучении результатов наблюдений ученые прибегли к помощи суперкомпьютеров в обсерватории Хайстак Массачусетский технологический институт, США и Институте радиоастрономии имени Макса Планка в Бонне Германия. Между тем в состав EHT в 2018 году добавился еще один телескоп GLT, миллиметровый телескоп в Гренландии, который серьезно увеличит базу интерферометра. Самым известным в массовой культуре изображением черной дыры стал образ Гаргантюа в фильме «Интерстеллар». За создание визуального образа черной дыры и его научную достоверность отвечал американский астрофизик Кип Торн, получивший Нобелевскую премию за открытие гравитационных волн. В киноленте изображение изобилует деталями и оптическими эффектами.
Это примерно эквивалентно просмотру апельсина на поверхности Луны. Что такое черная дыра? Мы знаем, что сила тяжести Земли вернет шар, брошенный вверх, но не ракету, запущенную со скоростью более 25 000 миль в час, со скоростью «сбегания» с поверхности Земли. Еще до появления Эйнштейна некоторые дальновидные ученые предполагали, что источник гравитации может быть настолько интенсивным, что даже свет, движущийся со скоростью 670 миллионов миль в час, не сможет избежать его притяжения. В 1915 году Эйнштейн опубликовал теорию общей теории относительности, удивительно успешную теорию гравитации, которая вытеснила концепцию Ньютона «таинственное действие на расстоянии» с новым подходом к геометрии пространства-времени. Вместо того, чтобы рассматривать объекты, притягиваемые к другой массе силой гравитации, общая теория относительности описывает способ, которым масса и энергия деформируют пространство, а объекты, включая свет, просто следуют контурам искривленного пространства. Общая аналогия - представить батут или матрас с шаром для боулинга, вызывающим углубление на окружающей поверхности, в то время как движущийся рядом мрамор следует по пути наименьшего сопротивления и спирали внутрь. Перефразируя физика Джеймса Уилера: «искривленное пространство говорит материи, как двигаться, в то время как материя говорит пространству, как изгибаться». Концепция проста и изящна, но математика для решения конкретных задач устрашает. Через год после публикации Эйнштейн был удивлен, получив письмо от молодого математика Карла Шварцшильда, который тогда находился на российском фронте Первой мировой войны, в котором было дано точное решение общих уравнений относительности для сферической массы достаточного веса, которая бы заставила пространство-время изгибаться так сильно, что вся материя и свет будут захвачены внутри. Граница, из которой ничто не могло уйти, стала называться «горизонтом событий». Эйнштейн поздравил Шварцшильда с его математическим достижением, но утверждал, что таких объектов на самом деле не существует. Вселенная не должна содержать все явления, которые соответствуют уравнениям теории. Немногие физики взялись за этот вопрос, но в 1939 году Роберт Оппенгеймер и Хартленд Снайдер рассчитали, как массивная звезда, лишенная ядерного топлива, будет бесконечно взрываться до точки «сингулярности». Ничто, кроме ее гравитационного поля, не будет сохраняться для внешних наблюдателей. Уникальные свойства черной дыры продолжают оставаться предметом изучения великих умов теоретической физики. Общая теория относительности описывает материю и пространство в большом масштабе, в то время как квантовая механика описывает свойства очень малых с выдающейся предсказательной силой. Но эти две теории имеют фундаментальные различия в своих математических основах, включая саму природу пространства, что делает их несовместимыми везде, где они оба необходимы для описания реальности. Это существо, где интенсивная масса ограничена крошечными пространствами. Два места, где происходит это столкновение теорий, находятся в начале вселенной большого взрыва и в черных дырах. Общая теория относительности предсказывает, что ничто не остановит коллапс до сингулярности звезды, более чем в десять раз превышающей массу Солнца, когда оно исчерпало внешнее давление своего ядерного синтеза. И ничто не остановит падение неосторожного космического путешественника, когда он упадет в черную дыру. Но может ли вселенная действительно иметь массовый контракт с бесконечно малой точкой? Многие ученые надеются, что возможная теория квантовой гравитации покажет, что такая особенность предотвращена.
Блазар: цель телескопов, снявших силуэт черной дыры Автор Неля На чтение 2 мин. Просмотров 82 Опубликовано 28. Это стало возможным благодаря реализации крупного проекта The Event Horizon Telescope. Ряд мощных радиотелескопов специалисты объединили в единую сеть. Посредством этого им удалось получить невероятно мощный массив.
И при помощи нового алгоритма визуализации международной команде астрономов удалось отделить от изображения картинку фотонного кольца. Это исследование — пример современного подхода к астрономическим наблюдениям. Сейчас обсерватории собирают такое количество данных, что в них зачастую гораздо больше информации, чем кажется. По мере изучения методов их обработки ученые вскрывают все новые пласты информации, скрытые под поверхностью. Международная команда физиков предприняла первую попытку понять, что такое черные дыры, что внутри них, откуда они берутся и что происходит на горизонте событий с помощью двух новейших технологий — квантовых вычислений и машинного обучения. Ученые считают, что ответы на эти вопросы могут быть получены при проверке голографического принципа, выдвинутого физиками в конце прошлого века. Также по теме.
Телескоп горизонта событий заметил колебание тени черной дыры
The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. МОСКВА, 12 мая — РИА Новости, Владислав Стрекопытов. Ученые коллаборации "Телескопа горизонта событий" сообщили, что им удалось получить изображение сверхмассивной черной дыры в центре Млечного Пути. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) представили первую в истории фотографию сверхмассивной черной дыры в центре галактики Млечный Путь, в которой располагается Земля. В среду представители сети Event Horizon Telescope показали первый в истории снимок окрестностей горизонта событий черной дыры в центре галактики М 87. В качестве наземного плеча интерферометра рассматривались все телескопы, входящие в коллаборацию «Телескопа горизонта событий» на данный момент. Телескоп Event Horizon (EHT) добавил большее количество обсерваторий в глобальную сеть радиотелескопов, и первое изображение черной дыры нашей галактики может быть получено меньше, чем через год.
Получена первая фотография сверхмассивной чёрной дыры в центре нашей Галактики
#Event Horizon Telescope | Результаты 11 новостей. |
Телескоп горизонта событий заглянул в «сердце» далекого квазара | The paradigm-shifting observations made with the Event Horizon Telescope — composed of ALMA, APEX and six other radio telescopes — have produced an image of the gargantuan black hole at the heart of distant galaxy Messier 87. |
Телескоп горизонта событий | Ученые хотят использовать Телескоп Горизонта Событий, чтобы заснять на видео, как черная дыра Sagittarius A* в центре нашей галактики затягивает в себя то, что находится вокруг. |
#Event Horizon Telescope
Ученые коллаборации Телескопа горизонта событий EHT показали первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути. Изображение было получено международной исследовательской группой – Коллаборацией «Телескоп Горизонта Событий» («Event Horizon Telescope» EHT), которая выполнила наблюдения объекта при помощи глобальной сети радиотелескопов. Астрономы, работающие на Телескопе горизонта событий собрали все данные наблюдений за черной дырой M87 и смогли увидеть движение ее тени на протяжении лет. 12 мая астрофизики проекта Event Horizon Telescope опубликовали первую в истории фотографию сверхмассивной чёрной дыры Стрелец A из самого центра нашей Галактики. Команда проекта Event Horizon Telescope (Телескоп горизонта событий) поделилась уникальными кадрами магнитного поля вокруг сверхмассивной чёрной дыры Стрелец А* (Sagittarius A*), которая находится в самом центре нашего Млечного Пути. Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды.
Event Horizon Telescope releases first ever black hole image
Увидеть можно лишь тень объекта — круглое чёрное пятно в облаке светящегося газа. Проект EVT был создан специально для исследования чёрных дыр. Для совместной работы объединились астрофизики из почти 40 стран. Также по теме Космическая столовая: учёные рассказали о внезапно «проснувшейся» чёрной дыре Учёные обнаружили чёрную дыру, которая внезапно «проснулась» и начала ускоренно «поедать» окружающий её газ. За короткий промежуток... В апреле 2017 года восемь радиотелескопов по всему земному шару в США, Испании, Мексике, Чили и на Южном полюсе были объединены в один виртуальный телескоп диаметром 12 тыс. В течение нескольких дней астрономы одновременно наблюдали за двумя чёрными дырами в центре Млечного Пути и в галактике Messier 87. Данные с каждой обсерватории в течение нескольких лет поступали в единый информационный центр и обрабатывались суперкомпьютером.
До настоящего времени оставалось загадкой, изображение какой из двух чёрных дыр будет представлено. Презентация изображения была запланирована на 2018 год.
Это сверхмассивная дыра, образовавшаяся по одной из версий вследствие коллапса центральной части Галактики под собственным весом. По этой логике у каждой из двух триллионов галактик находится в центре сверхмассивная или ультрамассивная чёрная дыра.
Это как 40 000 000 000 солнц. Полный мрак. Почему невозможно сфотографировать чёрную дыру? Долго считалось, что сфотографировать чёрную дыру невозможно.
Потому что слово "фотография" переводится как светопись. А какой может быть свет там, где кванты света поглощаются? Но, если отбросить формализм в сторону, это всё-таки снимок контуров дыры, и для того, чтобы его получить, команде Event Horizon Telescope в составе 300 учёных из 80 институтов пришлось объединить работу одиннадцати гигантских телескопов, расположенных на пяти континентах. В общей сложности было собрано 3,5 петабайта данных, или 3584 терабайта.
Только создав сложные алгоритмы обработки и собрав воедино максимальное число ракурсов, а затем смонтировав данные, на что ушли годы, учёные получили искомый снимок. Эта технология была впервые отработана на сверхмассивной звезде в центре галактики М87, снимок которой был обнародован в 2019 году. Учёные верят в то, что это только начало.
Его не было видно на изображении 2019 года, однако ученые знали, что они есть, так как это предполагала теория Эйнштейна. Согласно ей, черные дыры окружены концентрическими кругами из фотонов, отброшенных мощной гравитацией черной дыры. Несмотря на то, что их существование было предсказано достаточно давно, до сих пор никому не удавалось их наблюдать.
Действительно, главное свойство этого типа астрономических объектов заключается в том, что они настолько массивны, что ничто не может от них ускользнуть, даже свет.
То, что ученые пытались наблюдать в течение многих лет, это то, что находится вокруг черной дыры, "аккреционный диск". Она состоит из материи и газа, вращающихся вокруг ядра объекта на очень высокой скорости и нагретых до экстремальных температур. В конце концов, конечно, их поглощает черная дыра. Объект находится на расстоянии 26 000 световых лет от Земли, в самом сердце нашей галактики. Его масса эквивалентна массе Солнца в 4,3 миллиона раз, что относительно мало для сверхмассивной черной дыры. Вторая цель - черная дыра в галактике M87, которая намного больше и находится дальше. Несмотря на это, именно M87 предоставил первые пригодные для использования результаты.
Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
Наблюдения с использованием Телескопа горизонта событий в течение нескольких лет подтвердили наше предсказание», — рассказал Захаров. Всего в проекте Event Horizon Telescope задействовано восемь обсерваторий, в частности, радиотелескоп ALMA в чилийской пустыне Атакама и SPT (South Pole Telescope) на Южном полюсе. Международная группа учёных, работающая в рамках проекта «Телескоп горизонта событий» (Event Horizon Telescope — EHT), получила изображения квазара NRAO 530, который находится на расстоянии 7,5 млрд световых лет от Земли. Телескоп горизонта событий EHT улавливает излучение, испускаемое частицами внутри аккреционного диска черной дыры: пятнистое гало на полученных изображениях показывает свет, искривляемый мощной гравитацией черной дыры. Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет.
Последние новости:
- 3. Представлено первое фото черной дыры в центре нашей Галактики
- Подписка на дайджест
- Event Horizon Telescope: истории из жизни, советы, новости, юмор и картинки — Все посты | Пикабу
- Media in category "Event Horizon Telescope"
- Телескоп горизонта событий разглядел рекордно далекий для себя квазар | N + 1 | Дзен