Новости наибольшей наглядностью обладают формы записи алгоритмов

Добавить в избранное 0. Вопрос пользователя. Наибольшей наглядностью обладает следующая форма записи алгоритмов: Ответ эксперта. 3. Наибольшей наглядностью обладают формы записи алгоритмов.

Тест с ответами на тему: «Основы алгоритмизации»

Однако, эта наглядность быстро теряется при изображении очень большого алгоритма, т. Псевдокод — это язык записи структурированных алгоритмов, состоит из смеси языка высокого уровня и фраз родного языка исполнителя. Стандартов на псевдокод нет, существует он как средство разработки программ.

Алгоритм в словесной форме может оказаться очень объёмным и трудным для восприятия. Пример 1. Если данные числа не равны, замените большее из них на результат вычитания из большего числа меньшего. Построчная запись. Пример 2. Построчная запись алгоритма Евклида.

Обозначить первое из заданных чисел X, второе — У.

Результативность — завершение алгоритма определёнными результатами. Формальное определение[ править править код ] Разнообразные теоретические проблемы математики и ускорение развития физики и техники поставили на повестку дня точное определение понятия алгоритма. Марков , Алонзо Чёрч.

Было разработано несколько определений понятия алгоритма, но впоследствии было выяснено, что все они определяют одно и то же понятие см. Успенский считал, что понятие алгоритма впервые появилось у Эмиля Бореля в 1912 году, в статье об определённом интеграле. Там он написал о «вычислениях, которые можно реально осуществить», подчеркивая при этом: «Я намеренно оставляю в стороне большую или меньшую практическую деятельность; суть здесь та, что каждая из этих операций осуществима в конечное время при помощи достоверного и недвусмысленного метода» [7]. Основная статья: Машина Тьюринга Схематическая иллюстрация работы машины Тьюринга.

Основная идея, лежащая в основе машины Тьюринга, очень проста. Машина Тьюринга — это абстрактная машина автомат , работающая с лентой отдельных ячеек, в которых записаны символы. Машина также имеет головку для записи и чтения символов из ячеек, которая может двигаться вдоль ленты. На каждом шаге машина считывает символ из ячейки, на которую указывает головка, и, на основе считанного символа и внутреннего состояния, делает следующий шаг.

При этом машина может изменить своё состояние, записать другой символ в ячейку или передвинуть головку на одну ячейку вправо или влево. Этот тезис является аксиомой, постулатом, и не может быть доказан математическими методами, поскольку алгоритм не является точным математическим понятием. Основная статья: Рекурсивная функция теория вычислимости С каждым алгоритмом можно сопоставить функцию, которую он вычисляет. Однако возникает вопрос, можно ли произвольной функции сопоставить машину Тьюринга, а если нет, то для каких функций существует алгоритм?

Исследования этих вопросов привели к созданию в 1930-х годах теории рекурсивных функций [9]. Класс вычислимых функций был записан в образ, напоминающий построение некоторой аксиоматической теории на базе системы аксиом. Сначала были выбраны простейшие функции, вычисление которых очевидно. Затем были сформулированы правила операторы построения новых функций на основе уже существующих.

Необходимый класс функций состоит из всех функций, которые можно получить из простейших применением операторов. Подобно тезису Тьюринга в теории вычислимых функций была выдвинута гипотеза, которая называется тезис Чёрча : Числовая функция тогда и только тогда алгоритмически исчисляется, когда она частично рекурсивна. Доказательство того, что класс вычислимых функций совпадает с исчисляемыми по Тьюрингу, происходит в два шага: сначала доказывают вычисление простейших функций на машине Тьюринга, а затем — вычисление функций, полученных в результате применения операторов. Таким образом, неформально алгоритм можно определить как четкую систему инструкций, определяющих дискретный детерминированный процесс, который ведёт от начальных данных на входе к искомому результату на выходе , если он существует, за конечное число шагов; если искомого результата не существует, алгоритм или никогда не завершает работу, либо заходит в тупик.

Основная статья: Нормальный алгоритм Нормальный алгоритм алгорифм в авторском написании Маркова — это система последовательных применений подстановок, которые реализуют определённые процедуры получения новых слов из базовых, построенных из символов некоторого алфавита. Как и машина Тьюринга, нормальные алгоритмы не выполняют самих вычислений: они лишь выполняют преобразование слов путём замены букв по заданным правилам [10]. Нормально вычислимой называют функцию, которую можно реализовать нормальным алгоритмом. То есть алгоритмом, который каждое слово из множества допустимых данных функции превращает в её начальные значения [11]..

Создатель теории нормальных алгоритмов А. Марков выдвинул гипотезу, которая получила название принцип нормализации Маркова: Для нахождения значений функции, заданной в некотором алфавите, тогда и только тогда существует некоторый алгоритм, когда функция нормально исчисляемая. Подобно тезисам Тьюринга и Черча, принцип нормализации Маркова не может быть доказан математическими средствами. Стохастические алгоритмы[ править править код ] Однако приведённое выше формальное определение алгоритма в некоторых случаях может быть слишком строгим.

Иногда возникает потребность в использовании случайных величин [12]. Алгоритм, работа которого определяется не только исходными данными, но и значениями, полученными из генератора случайных чисел , называют стохастическим или рандомизированным, от англ. Стохастические алгоритмы часто бывают эффективнее детерминированных, а в отдельных случаях — единственным способом решить задачу [12]. На практике вместо генератора случайных чисел используют генератор псевдослучайных чисел.

Однако следует отличать стохастические алгоритмы и методы, которые дают с высокой вероятностью правильный результат. В отличие от метода , алгоритм даёт корректные результаты даже после продолжительной работы. Некоторые исследователи допускают возможность того, что стохастический алгоритм даст с некоторой заранее известной вероятностью неправильный результат. Тогда стохастические алгоритмы можно разделить на два типа [14] : алгоритмы типа Лас-Вегас всегда дают корректный результат, но время их работы не определено.

Для некоторых задач названные выше формализации могут затруднять поиск решений и осуществление исследований. Для преодоления препятствий были разработаны как модификации «классических» схем, так и созданы новые модели алгоритма. В частности, можно назвать: многоленточная и недетерминированная машины Тьюринга; регистровая и РАМ-машина — прототип современных компьютеров и виртуальных машин; Виды алгоритмов[ править править код ] Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей её решения. Следует подчеркнуть принципиальную разницу между алгоритмами вычислительного характера, преобразующими некоторые входные данные в выходные именно их формализацией являются упомянутые выше машины Тьюринга, Поста, РАМ, нормальные алгорифмы Маркова и рекурсивные функции , и интерактивными алгоритмами уже у Тьюринга встречается C-машина, от англ.

Поэтому выполнение цикла должно завершиться в момент достижения требуемой точности. При составлении алгоритма нужно учесть, что знаки слагаемых чередуются и степень числа х в числителях слагаемых возрастает. Сравните эти два подхода по числу операций. Итерационные алгоритмы используются при реализации итерационных численных методов. В итерационных алгоритмах необходимо обеспечить обязательное достижение условия выхода из цикла сходимость итерационного процесса.

Что такое вложенные циклы? Возможны случаи, когда внутри тела цикла необходимо повторять некоторую последовательность операторов, т. Такая структура получила название цикла в цикле или вложенных циклов. Глубина вложения циклов то есть количество вложенных друг в друга циклов может быть различной. При использовании такой структуры для экономии машинного времени необходимо выносить из внутреннего цикла во внешний все операторы, которые не зависят от параметра внутреннего цикла.

Пример вложенных циклов для Вычислить сумму элементов заданной матрицы А 5,3. Чем отличается программный способ записи алгоритмов от других? При записи алгоритма в словесной форме, в виде блок-схемы или на псевдокоде допускается определенный произвол при изображении команд. Вместе с тем такая запись точна настолько, что позволяет человеку понять суть дела и исполнить алгоритм. Поэтому алгоритм, предназначенный для исполнения на компьютере, должен быть записан на "понятном" ему языке.

И здесь на первый план выдвигается необходимость точной записи команд, не оставляющей места для произвольного толкования их исполнителем. Следовательно, язык для записи алгоритмов должен быть формализован. Что такое уровень языка программирования? В настоящее время в мире существует несколько сотен реально используемых языков программирования. Для каждого есть своя область применения.

Средства записи алгоритмов

Наиболее наглядной формой записи алгоритмов является псевдокод. Псевдокод — это специальный язык, который используется для описания алгоритмов с использованием элементов из различных языков программирования. наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. итог будет равен результату возведения числа 2 в некоторую целую степень. Наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная.

Формы записи алгоритмов

Алгоритм — Википедия 29. Специальное средство, предназначенное для записи алгоритмов в аналитическом виде: а) алгоритмические языки + б) алгоритмические навыки в) алгоритмические эксперименты.
Наибольшей наглядностью обладает следующая форма записи... - Урок по теме Формы записи алгоритмов. Теоретические материалы и задания Информатика, 6 класс. ЯКласс — онлайн-школа нового поколения.

Тест с ответами: «Алгоритмизация и программирование»

И в уже упоминавшейся «Романе о розе», и в известной итальянской поэме «Цветок», написанной Дуранте , имеются фрагменты, в которых говорится, что даже «mestre Argus» не сумеет подсчитать, сколько раз ссорятся и мирятся влюблённые. Английский поэт Джефри Чосер в поэме « Книга герцогини » 1369 г. Однако со временем такие объяснения всё менее занимали математиков, и слово algorism или algorismus , неизменно присутствовавшее в названиях математических сочинений, обрело значение способа выполнения арифметических действий посредством арабских цифр, то есть на бумаге, без использования абака. Именно в таком значении оно вошло во многие европейские языки.

Например, с пометкой «устар. Алгоритм — это искусство счёта с помощью цифр, но поначалу слово «цифра» относилось только к нулю. Знаменитый французский трувер Готье де Куанси Gautier de Coincy, 1177—1236 в одном из стихотворений использовал слова algorismus-cipher которые означали цифру 0 как метафору для характеристики абсолютно никчёмного человека.

Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была им достаточно хорошо известна. Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский 938—1003 , ставший в 999 году папой римским под именем Сильвестра II.

Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов иногда называемых гербекистами , которые пропагандировали использование для вычислений абака вместо арабских цифр. Интересно, что известный французский математик Николя Шюке Nicolas Chuquet, 1445—1488 в реестр налогоплательщиков города Лиона был вписан как алгорисмик algoriste. Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений.

В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака», как, например, математика Никколо Тарталью 1500—1557. Итак, сочинения по искусству счёта назывались Алгоритмами. Из многих сотен можно выделить и такие необычные, как написанный в стихах трактат Carmen de Algorismo латинское carmen и означает стихи Александра де Вилла Деи Alexander de Villa Dei, ум.

Постепенно значение слова расширялось. Учёные начинали применять его не только к сугубо вычислительным, но и к другим математическим процедурам. Например, около 1360 г.

Когда же на смену абаку пришёл так называемый счёт на линиях, многочисленные руководства по нему стали называть Algorithmus linealis, то есть правила счёта на линиях. Можно обратить внимание на то, что первоначальная форма algorismi спустя какое-то время потеряла последнюю букву, и слово приобрело более удобное для европейского произношения вид algorism. Позднее и оно, в свою очередь, подверглось искажению, скорее всего, связанному со словом arithmetic.

В 1684 году Готфрид Лейбниц в сочинении Nova Methodvs pro maximis et minimis, itemque tangentibus… впервые использовал слово «алгоритм» Algorithmo в ещё более широком смысле: как систематический способ решения проблем дифференциального исчисления. В XVIII веке в одном из германских математических словарей, Vollstandiges mathematisches Lexicon изданном в Лейпциге в 1747 году , термин algorithmus всё ещё объясняется как понятие о четырёх арифметических операциях. Но такое значение не было единственным, ведь терминология математической науки в те времена ещё только формировалась.

В частности, выражение algorithmus infinitesimalis применялось к способам выполнения действий с бесконечно малыми величинами. Пользовался словом алгоритм и Леонард Эйлер , одна из работ которого так и называется — «Использование нового алгоритма для решения проблемы Пелля» De usu novi algorithmi in problemate Pelliano solvendo. Мы видим, что понимание Эйлером алгоритма как синонима способа решения задачи уже очень близко к современному.

Однако потребовалось ещё почти два столетия, чтобы все старинные значения слова вышли из употребления. Этот процесс можно проследить на примере проникновения слова «алгоритм» в русский язык. Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость».

Это сочинение известно во многих вариантах самые ранние из них почти на сто лет старше и восходит к ещё более древним рукописям XVI веке По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси. Полное название этого учебника — «Сия книга, глаголемая по-еллински и по-гречески арифметика, а по-немецки алгоризма, а по-русски цифирная счётная мудрость». Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе.

Однако его не было ни в знаменитом словаре В. Даля , ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Ушакова 1935 г.

Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат , и в первом издании Большой советской энциклопедии БСЭ , изданном в 1926 г. И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в.

Алгоритмы становились предметом всё более пристального внимания учёных, и постепенно это понятие заняло одно из центральных мест в современной математике. Что же касается людей, от математики далёких, то к началу сороковых годов это слово они могли услышать разве что во время учёбы в школе, в сочетании «алгоритм Евклида». Несмотря на это, алгоритм всё ещё воспринимался как термин сугубо специальный, что подтверждается отсутствием соответствующих статей в менее объёмных изданиях.

При переходе через дорогу мы руководствуемся сигналами светофора… В этой ситуации мы также видим 2 объекта: управляющий дающий команды и управляемый исполняющий команды. Но в данном случае исполнитель человек. Поймал дед рыбку, да не простую, а золотую. И исполняла рыбка все его желания…» В повседневной своей деятельности мы с вами интуитивно понимаем, что только в сказках существуют такие замечательные универсальные исполнители, как «золотая рыбка», которые понимают все-все-все и могут все-все-все, да еще обладают телепатическими способностями догадываться, чего бы нам хотелось. Наверное, те из вас, кто с детства привык свои просьбы к родителям и бабушкам формулировать в пределах разумного и исполнимого или доступного, достиг большего удовлетворения, чем те, кто просил достать с неба звезду, купить живого розового слона и т. И поэтому решение задачи алгоритмизации будем строить на языке, понятном конкретному исполнителю, используя на каждом шаге алгоритма только те операции или команды, которые данный исполнитель способен выполнить.

Итак, алгоритм — последовательность команд управления каким-либо объектом. Очевидно, что исполнителем алгоритма может быть как живое существо, так и машина. АЛГОРИТМ — понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к искомому результату. Свойства алгоритмов требования к алгоритмам 1.

Кроме слов естественного языка предписания могут содержать математические выражения и формулы. Пример 2. Построчная запись алгоритма Евклида. Обозначить первое из заданных чисел X, второе обозначить Y. Заменить X на X - Y. Перейти к п.

Заменить Y на Y - X. Считать X искомым результатом. Построчная запись алгоритма позволяет избежать ряда неопределённостей; её восприятие не требует дополнительных знаний. Вместе с тем использование построчной записи требует от человека большого внимания. Блок-схемы Наилучшей наглядностью обладают графические способы записи алгоритмов; самый распространённый среди них — блок-схема.

Имя существительное. Насыщение текста существительными может стать средством языковой изобразительности. Текст стихотворения А. Фета «Шепот, робкое дыханье... Однако любой алгоритм в отличие от рецепта или способа обязательно обладает следующими свойствами. Выполнение алгоритма разбивается на последовательность законченных действий-шагов. Только выполнив одно действие команду , можно приступать к исполнению следующего. Это свойство алгоритма называется дискретностью. Произвести каждое отдельное действие исполнителю предписывает специальное указание в записи алгоритма команда. Понятность - алгоритм не должен содержать предписаний, смысл которых может восприниматься исполнителем неоднозначно, то есть запись алгоритма должна быть настолько четкой и полной, чтобы у исполнителя не возникало потребности в принятии каких-либо самостоятельных решений. Алгоритм составляется из команд, входящих в СКИ. Если машин нет, дойди до середины улицы. Если есть, подожди, пока они проедут, и т. Представьте себе ситуацию: машина слева есть, но она не едет - у нее меняют колесо. Если вы думаете, что исполнитель алгоритма должен ждать, то вы поняли этот алгоритм. Если же вы решили, что улицу переходить можно, считая алгоритм подправленным ввиду непредвиденных по вашему мнению! Детерминированность определенность и однозначность. Каждая команда алгоритма определяет однозначное действие исполнителя, и должно быть однозначно определено, какая команда выполняется следующей. То есть если алгоритм многократно применяется к одному и тому же набору исходных данных, то на выходе он получает каждый раз один и тот же результат. Результативность - исполнение алгоритма должно закончиться за конечное число шагов, и при этом должен быть получен результат решения задачи. В качестве одного из возможных результатов может быть и установление того факта, что задача решений не имеет. Свойство результативности содержит в себе свойство конечности - завершение работы алгоритма за конечное число шагов. Массовость - алгоритм пригоден для решения любой задачи из некоторого класса задач, то есть алгоритм правильно работает на некотором множестве исходных данных, которое называется областью применимости алгоритма. Свойство массовости определяет скорее качество алгоритма, а не относится к обязательным свойствам как дискретность, понятность и пр. Существуют алгоритмы, область применимости которых ограничивается единственным набором входных данных или даже отсутствием таковых например, получение фиксированного числа верных цифр числа p. Правильнее говорить о том, что алгоритм должен быть применим к любым данным из своей области определения, и слово массовость не всегда подходит для описания такого свойства.

Информатика

Наибольшей наглядностью обладают такие формы записи алгоритмов. Формы записи алгоритмов. Алгоритмы можно записывать разными способами. Тест с ответами: «Алгоритмизация и программирование»: бесплатные материалы для тестирования от преподавателя. Какими особенностями обладает воздушная среда обитания и как человек воздействует. Формы записи алгоритмов.

Алгоритм и его свойства. Виды и формы записи алгоритмов

Наилучшей наглядностью обладают графические способы за-писи алгоритмов; самый распространённый среди них — блок-схема. Наибольшей наглядностью обладает следующая форма записи алгоритмов: а)словесная б)рекурсивная в)графическая г)построчная. Пример — простейший алгоритм сложения 2-ч чисел, который записан средствами языка программирования Qbasic.

Тестовые задания для самопроверки к главе 2 — ГДЗ по Информатике 8 класс Учебник Босова

Алгоритм может быть задан следующими способами словесным словесно графическим 6) Наибольшей наглядностью обладают формы записи алгоритмов. построчные рекурсивные графические словесные Ответ: графические.
Задания итогового теста "Основы алгоритмизации" скачать Наибольшей наглядностью обладают формы записи алгоритмов.

Похожие новости:

Оцените статью
Добавить комментарий