Процентное соотношение поглощаемого солнечного тепла на поверхности Антарктиды. Такого тепла в Антарктике не было никогда.
Климатические условия Антарктиды
Сколько процентов солнечного тепла получает поверхность антарктиды 1)90% 2)50% 3)20% 4)10%. Ответить. В результате этих факторов, лишь небольшой процент солнечного тепла достигает поверхности Антарктиды. Те 10 % солнечной энергии, которые поглощает поверхность Антарктиды также в основном уходят в космос.
сколько процентов солнечного тепла получает поверхность антарктиды1)90%2)50%3)20%4)10%
Все эти механизмы рассеивания солнечного тепла важны для понимания климатических процессов и их влияния на Антарктиду и остальную часть мира. Исследования в этой области помогают лучше понять и прогнозировать изменения климата и состояние Антарктиды в будущем. Факторы, влияющие на процентное соотношение Процентное соотношение солнечного тепла на поверхности Антарктиды зависит от нескольких факторов: Географическое положение. Антарктида находится к югу от экватора, что означает, что она получает меньше солнечной радиации, чем более северные регионы Земли.
Угол падения солнечных лучей. Из-за близости Антарктиды к полюсу, солнечные лучи падают на поверхность под большим углом, что приводит к их большей рассеиваемости и меньшему проникновению в атмосферу. Годовой цикл.
В течение года Антарктида проходит через цикл изменения дневной длины и интенсивности солнечных лучей.
Из чего же складывается температурный режим атмосферы Антарктиды и чем он обусловлен? Источником тепла на Земле является Солнце. Тепловая энергия, несущаяся солнечными лучами, сосредоточена в основном в коротковолновой части спектра. Атмосфера почти прозрачна для коротковолновых лучей, большую часть из них она пропускает до земной поверхности, и сам воздух прямыми солнечными лучами нагревается очень незначительно. Земная поверхность частично отражает солнечные лучи обратно в Мировое пространство и частично поглощает, превращая коротковолновые лучи в длинноволновые невидимые тепловые лучи. Это тепло, излучаемое от поверхности, и улавливается атмосферой, но не молекулами воздуха, а находящимися в воздухе водяным паром и углекислым газом. Следовательно, чем выше от поверхности Земли воздух, тем меньше он нагревается.
Вследствие большой прозрачности и сухости воздуха, большой высоты над уровнем моря на поверхность Антарктиды летом падает очень большое количество солнечной радиации. Кроме того, при годичном обращении вокруг солнца Земля находится в перигелии, то есть на самом близком расстоянии от Солнца, 22 декабря, когда в Антарктиде середина лета. Вследствие этих двух причин в летние месяцы солнечная радиация здесь выше, чем в любом другом месте земного шара. Количество солнечного света, отражаемого той или иной поверхностью, выраженное в процентах, называется альбедо от латинского слова "альбус", что значит "белый". Чем белее поверхность, тем больше ее отражательная способность и, значит, тем больше альбедо. Приход и расход тепла у земной поверхности образуют земной баланс. Этот тепловой баланс поверхности Антарктиды отрицательный. Антарктический ледниковый щит, покрытый снегом, постоянно теряет из-за длинноволнового излучения больше энергии, чем получает.
Но если дело было бы только из-за этих составляющих теплового баланса, то поверхность Антарктиды из года в год охлаждалась бы, температура ее поверхности и атмосферы над ней становилась бы все ниже и ниже. Однако многолетние наблюдения на антарктических станциях показывают, что такого явления не наблюдается - температура воздуха над Антарктидой имеет сравнительно небольшие межгодовые колебания то в одну, то в другую сторону. Значит, потери тепла излучением компенсируются. Исследованиями установлено, что это тепло приносится с воздушными массами с океана. На это указывает то обстоятельство, что атмосфера на некоторой высоте над Антарктидой теплее, чем у поверхности, и, таким образом, от верхних слоев происходит перенос тепла к поверхности. В более влажном принесенном воздухе происходит конденсация влаги, она превращается в кристаллики снега, и при этом процессе так же происходит выделение тепла. Таким образом, Антарктиду согревает теплый воздух, приносимый с океана.
Микробиологи из Университета штата Монтана считают, что это вполне реалистичный сценарий. Учёные называют Антарктику хранилищем генов. Некоторым «законсервированным» там микроорганизмам больше 8 миллионов лет от роду, и они до сих пор жизнеспособны. Таяние льдов освободит вирусы, бактерии, грибки и другие микробы, томившиеся до сих пор в ловушке. Затормозить распространение болезней будет крайне сложно, потому что у современных живых существ нет иммунитета к древним угрозам. Известны случаи, когда разморозившиеся патогены заражали людей. Например, в 2016 году древние споры сибирской язвы , хранившиеся во льдах Сибири, привели к смерти ребёнка и госпитализации ещё 20 человек, попутно убив несколько тысяч оленей. Учёные из Хельсинкского университета смоделировали распространение микроорганизмов из вечной мерзлоты и пришли к выводу, что даже один древний патоген может стать причиной массовых эпидемий и смертей по всему миру. В общем, если всё, что дремлет во льдах Антарктиды, внезапно проснётся и обнаружит себя в океанической воде, пандемия коронавируса покажется человечеству лёгким сезонным насморком. Профессор Гарвардского университета Джерри Митровица объясняет, что потеря Антарктического ледяного щита означает также изменение гравитации Земли. Наша планета крутится вокруг своей оси, как фигурист на льду. Если фигурист сдвинет руку или ногу, его центр масс слегка сместится — и вращение изменится. Точно так же и со всей планетой. Весь лёд на Антарктиде весит примерно 24 квадриллиона 380 триллионов тонн. Если распределить эту массу по всей планете, сутки на Земле удлинятся на 20 секунд. Казалось бы, ну станут дни и ночи на Земле длиннее — будет больше времени вздремнуть перед работой. Но это не единственное последствие.
Величина проникновения солнечного тепла в Антарктиду изменяется в зависимости от времени года и месторасположения на континенте. В течение зимы, когда солнце находится низко над горизонтом, количество падающего солнечного излучения невелико. Однако, в летнее время, когда солнце находится высоко над горизонтом, процент проникновения солнечного тепла достигает своего пика. Солнечное тепло в Антарктиде: Современные исследования показывают, что только небольшая часть падающего солнечного излучения достигает поверхности Антарктиды. Это связано с особенностями климата и географического положения региона. Во-первых, в Антарктиде наблюдается постоянная облачность, которая снижает проникновение солнечного света и тепла до поверхности.
Сколько процентов солнечного тепла получают поверхность антарктиды
Навеянные ледники могут достигать нескольких сотен метров и нескольких километров. Питание ледников осуществляется за счет выпадения снега на их поверхность. Органический мир Антарктики и закономерности его размещения. Оазисы Антарктиды. Охрана природы Антарктики. На участках, свободных от ледникового покрова, даже вблизи Южного полюса произрастают растения. В Антарктиде их насчитывается 80 видов. В горах мхи редки. Они проникают высоко в горы и встречаются на нунатаках в 300 км от Южного полюса.
Их можно встретить и вдали от побережья, куда они занесены птицами. В оазисах Антарктического полуострова обнаружены три вида цветковых растений: два из семейства злаковых и одно — из гвоздичных. Животный мир Антарктиды тоже своеобразен. Летом на прибрежных скалах гнездятся десятки видов птиц, вся жизнь которых связана с океаном. Многочисленные стаи мелких птичек величиной с дрозда — это Вильсоновы качурки, или морские стрижи. Южнополярный поморник, или антарктическая чайка, обходится без моря. Это — хищник. Императорские пингвины крупнее пингвинов Адели, некоторые особи свыше метра высотой.
Таким образом, белый покров Антарктиды играет важную роль в сохранении солнечного тепла и климата региона. Его высокое альбедо отражает большую часть солнечной энергии обратно в космос, что поддерживает холодную температуру Антарктиды и влияет на изменение уровня морей. Однако, изменение климата и глобальное потепление вызывают растопление льда и снега, что может привести к серьезным последствиям для Антарктиды и всей планеты.
Альбедо Антарктиды: отражательная способность льда Отражательная способность льда, то есть его альбедо, является одним из факторов, определяющих, сколько солнечного тепла достигает поверхности Антарктиды. Лед имеет высокое альбедо, что означает, что большая часть солнечного излучения отражается обратно в космос. Это делает Антарктиду одним из наиболее отражающих регионов Земли.
Этот факт имеет значительное влияние на климат региона. Высокое альбедо льда также влияет на солнечную радиацию вокруг Антарктиды, тем самым создавая особый микроклимат. Белый цвет льда отражает солнечный свет и помогает поддерживать экосистемы морских вод.
Изучение альбедо Антарктиды и его изменений является важной задачей для ученых, так как это может помочь прогнозировать будущие изменения климата региона и его влияние на мировой климат в целом. Изменение уровня солнечного тепла на Антарктиде сезонно Одна из особенностей Антарктиды — ее географическое положение. Зимой Южная полярная область находится в полной темноте, а летом не видит заката солнца.
Это сказывается на распределении солнечного тепла по сезонам. В период лета, когда солнце находится высоко над горизонтом, Антарктида получает большее количество солнечного тепла. Энергия солнца активнее проходит через атмосферу и попадает на поверхность, повышая температуру и способствуя таянию льда.
Однако, зимой солнце практически не восходит над горизонтом, а его лучи проходят через более длинный путь сквозь атмосферу. Таким образом, сезонное падение солнечного тепла на Антарктиде приводит к остужению поверхности ледника и формированию ледяного покрова. Эти сезонные изменения солнечного тепла на Антарктиде являются ключевым фактором для понимания климатических и экологических процессов в этом регионе.
Ученые изучают эти колебания, чтобы определить их влияние на атмосферные и морские циркуляции, глобальные изменения климата и динамику ледника. Влияние облаков на проникновение солнечного тепла в Антарктику Атмосферные облака играют важную роль в проникновении солнечного тепла в Антарктику.
Первопричиной является географическое положение: чем дальше im экватора к полюсу, тем меньше солнечного тепла получает единица поверхности Земли из-за большего наклона солнечных лучей. Иными словами, над Антарктидой, в отличие от всех других континентов Земли, существует инверсия температуры. Из центральных районов материка холодный тяжелый воздух растекается во все стороны по склонам ледникового покрова, образуя стоковый ветер.
Инфографика ледники. Таяние ледников 2021. Ледники тают инфографика. Таяние льдов в Антарктиде. Нормальное давление атмосферное по широтам. Высокое атмосферное давление. Показатели низкого атмосферного давления. Давление воздуха география. Угол паденя Солнечный лучей. Освещение земли солнцем. Углы падения солнечных лучей на земную поверхность. Таяние ледников в Антарктиде по годам. Таяние льдов в Арктике. Таяние ледников сравнение. Динамика таяния ледников. Тепловые полюса земли. Тепловые пояса земли. Тепловые пояса карта. Жаркий тепловой пояс. Пояса освещенности земли. Названия поясов освещенности. Пояса освещенности 5 класс география. Угол падения солнечных лучей на землю. Угол наклона солнечных лучей. Распределение солнечного тепла и света. Распределение солнечного света и тепла на земле. Закономерности распределения температуры воздуха. Ледник Пайн-Айленд. Ледники и снежные покровы. Глубина снега в Антарктиде. Таблица характеристика климатических поясов Южной Америки. Характеристика климатических поясов Южной Америки 7 класс таблица. Климат Южной Америки 7 класс таблица характеристика поясов. Характеристика клематисеких почсоу. Южный полюс на карте Антарктиды. Арктика и Антарктида. Антарктика и Антарктида. Антарктика и антракмтмла. Полюс холода станция Восток Антарктида. Полюс холода в Антарктиде на карте. Станция Восток на карте. Станция Восток в Антарктиде на карте. Антарктида на карте. Глобальное потепление в Антарктиде. Изменение климата в Антарктиде. Территория Антарктиды. Атмосферное давление воздушные массы пояса. Распределение поясов атмосферного давления. Формирование поясов атмосферного давления схема. Пояса низкого атмосферного давления. Антарктида деления территорий. Территории Антарктиды по странам. Российские территории в Антарктиде. Крупные моря. Глубины Мировых океанов. Глубина морей и океанов таблица. Воды Тихого океана. Ледник эймери на карте Антарктиды. Шельфовый ледник. Шельфовый ледник Фильхнера. Ледник Ронне Антарктида. Литосфера гидросфера атмосфера Биосфера. Атмосфера литосфера гидросфера Биосфера Тропосфера стратосфера. Оболочки биосферы таблица. Границы биосферы атмосфера гидросфера литосфера. Озоновый слой. Озоновый слой атмосферы. Азоновый слой атмосфера. Слои атмосферы озоновый слой.
Антарктида: ее научное изучение и влияние на будущее Земли
Если Антарктида растает и перестанет отражать солнечный свет, планета начнёт нагреваться ещё сильнее. Процент солнечного тепла, достигающего суши Антарктиды, относительно невелик из-за ее экстремальных климатических условий и географического положения. В декабре-феврале (в Южном полушарии это лето) Антарктида получает на 7% солнечного тепла больше, чем Арктика в июне-августе. Те 10 % солнечной энергии, которые поглощает поверхность Антарктиды также в основном уходят в космос. Количество атмосферных осадков, получаемых внутренними районами Антарктиды, примерно равно 40–60 мм/год, что можно соотнести со значениями данного показателя в Сахаре. Количество атмосферных осадков, получаемых внутренними районами Антарктиды, примерно равно 40–60 мм/год, что можно соотнести со значениями данного показателя в Сахаре.
Сколько процентов солнечного тепла получают поверхность антарктиды
Это может способствовать увеличению количества солнечного тепла, достигающего поверхности Земли на антарктическом континенте. Таким образом, атмосфера играет важную роль в регуляции проникновения и распределения солнечного тепла на антарктическом континенте. Через различные факторы, такие как прозрачность, поглощение и прозрачное окно, атмосфера определяет, сколько процентов солнечного тепла достигает земли на антарктическом континенте. Фактор влияния Описание влияния на солнечное тепло Атмосферная прозрачность Определяет количество солнечного излучения, достигающего поверхности Земли. Атмосферное поглощение Поглощение и рассеивание солнечного излучения атмосферными частицами. Атмосферное прозрачное окно Область спектра, в которой атмосфера прозрачна и солнечное излучение достигает поверхности Земли без больших потерь. Рефлексия и рассеивание солнечного света Рефлексия — это процесс отражения света от поверхности обратно в атмосферу. Антарктический континент, с практически полностью покрытым ледяным покровом, является одним из наиболее отражающих свет поверхностей на Земле. Белоснежные льды антарктического континента рассеивают большую часть солнечного света, что приводит к снижению его проникновения на поверхность.
Рассеивание солнечного света происходит вследствие его взаимодействия с воздушными и аэрозольными частицами в атмосфере. Крупные атмосферные частицы рассеивают более коротковолновую часть спектра света голубую , а мелкие — более длинноволновую часть спектра красную. Таким образом, на значительном удалении от антарктического континента солнечный свет может восприниматься слишком ярким и гораздо более «холодным» по цвету, чем ближе к поверхности. В целом, из-за рефлексии и рассеивания солнечного света на антарктическом континенте лишь небольшой процент его тепла достигает земли, что существенно влияет на климат и характеристики этого региона. Альбедо: отражение солнечного излучения антарктическими поверхностями Льдовые покровы и снежные поля на Антарктиде имеют высокую отражательную способность. Кристаллы льда и снега отражают свет, так как у них большой коэффициент отражения. Один из факторов, определяющих отражательную способность антарктических поверхностей, — это их гладкость. Чем гладче поверхность, тем сильнее отражение света.
Главными факторами, определяющими способность региона к отражению, являются альбедо и наличие снежного покрова. Альбедо — это способность поверхности отражать излучение, и в случае Антарктиды, это значение очень высоко из-за большого количества снега и льда. Снежный покров также влияет на способность Антарктиды отражать солнечное тепло. Снег имеет неправильную структуру и высокую преломляющую способность, что приводит к многократному рассеянию света и уменьшению его проникновения в глубину вещества. Таким образом, снег служит эффективным барьером для солнечного тепла, удерживая его на поверхности Антарктиды. Однако, несмотря на высокую способность отражать солнечное тепло, Антарктида также поглощает некоторую его часть.
За счет атмосферы и облаков, часть солнечного излучения проходит через атмосферу и попадает на поверхность. Однако, из-за низкой плотности облаков и атмосферы, поглощение солнечного тепла очень низкое. Таким образом, доля поглощаемого солнечного тепла Антарктидой очень мала по сравнению с отражением. Большая часть солнечного излучения отражается обратно в космос, что объясняет суровые климатические условия в регионе. Опасность потери льдов Антарктиды из-за изменения солнечного тепла Изменение солнечного тепла играет значительную роль в глобальном потеплении и таянии льда на Антарктиде. Повышение температуры способствует таянию ледников и ледяных шапок, а также усилению проливов и трещин в ледяных покровах.
Это может привести к важным изменениям в окружающей среде и климате, влияющим на животный и растительный мир, а также на местную и мировую экономику. Одной из самых серьезных проблем, связанных с изменением солнечного тепла, является потенциальное повышение уровня морей. В случае значительной потери льдовых покровов, Антарктида внесет огромный вклад в глобальное повышение уровня морей. Это может привести к наводнениям в прибрежных областях, уничтожению экосистем морских глубин и уходу под воду целых регионов. Потеря льда в Антарктиде также имеет потенциально опасные последствия для морской фауны и флоры. Многие виды, включая пингвинов и тюленей, полагаются на ледяные покровы для размножения, питания и защиты.
Их потеря может привести к сокращению популяций и даже исчезновению некоторых видов. Все эти проблемы подчеркивают необходимость усиленных действий для защиты Антарктиды и ее ледяных покровов.
Так как над центральными района ми Антарктиды облака отсутствуют, это длинноволновое из лучение свободно уходит в космос. По характеру климата в Антарктиде выделяются: внутриматериковая высокогорная область, ледниковый склон и прибрежная зона. Здесь расположен центр континента - Полюс относительной не доступности. Циркумполярная зона ледниковых склонов, по которым веерообразно расходятся от высокогорных массивов пути ледникового стока, имеет ширину 700- 800 км.
Низкие температуры сочетаются с постоянными ветрами, дующими с высокогорных массивов, и метелями. Узкая прибрежная зона получает до 700 мм осадков главным образом в виде снега.
Наша доска вопросов и ответов в первую очередь ориентирована на школьников и студентов из России и стран СНГ, а также носителей русского языка в других странах. Для посетителей из стран СНГ есть возможно задать вопросы по таким предметам как Украинский язык, Белорусский язык, Казакхский язык, Узбекский язык, Кыргызский язык.
Какой процент солнечного тепла достигает поверхности Антарктиды?
Сколько процентов солнечного тепла получает поверхность Антарктиды. Льды Антарктиды имеют определенные особенности: функционируют они, как огромное зеркало, которое попросту отражает 90% солнечных лучей в мировое пространство. Однако до 90 % приходящего тепла отражается снежной поверхностью обратно в мировое пространство и только 10 % идёт на её нагревание.
Что произойдёт с нашей планетой, если Антарктида растает
В основном, солнечное тепло на Антарктиде распределено по береговым областям континента, где курорты находятся вблизи Моря Лазарева и Домашнее озеро, и на восточном побережье. В этих районах солнечное излучение имеет больше шансов достичь поверхности, хотя и с существенной потерей интенсивности в результате поглощения и рассеивания атмосферой. Однако, по мере приближения к полюсу, солнечная энергия становится все менее доступной. Ключевым фактором, влияющим на это, является жесткие погодные условия и толщина ледяного покрова, который практически полностью покрывает Антарктику. Ледяные горы и ледниковые поля сильно отражают солнечное излучение, не позволяя достаточно тепла достичь поверхности. Таким образом, распределение солнечного тепла на Антарктиде неравномерно и зависит от географического положения и климатических условий. Этот фактор играет важную роль в формировании характерных климатических особенностей континента и его экосистемы. Поверхностное тепло в Антарктиде Расположенные на побережье Антарктиды, где ледяной щит наиболее тонок, такие места как ледниковые илы, представляют собой зоны повышенного тепла. Здесь лед таяния располагает свои «родники», появляются речные системы, обитают различные виды растений и животных.
Но даже за пределами побережья, внутри ледяного континента, находятся геотермальные и тепловые источники. Они обеспечивают своим теплом некоторые озера и ручьи, создавая благоприятные условия для некоторых видов микроорганизмов. Тепловые источники на Антарктиде сложно обнаружить, но они существуют. Солнечное тепло, вместе с геотермальными источниками, могут достичь поверхности и создать условия для живых организмов на этом холодном континенте. Солнечное излучение внутри Антарктиды Из-за своего географического положения, половина года Антарктида находится в полной темноте, а другая половина — в полной светотени. Во время антарктической зимы, когда южный полюс наклонен от Солнца, солнечные лучи практически не достигают поверхности Антарктиды.
Таким образом, в этих местах интенсивность солнечного излучения значительно выше, что способствует растоплению льда и формированию водных потоков.
Однако, в целом, большая часть солнечного тепла в Антарктиде рассеивается или отражается атмосферой и поверхностью льда. Это объясняет низкую среднюю температуру и вечную мерзлоту, характерные для этого региона. Изучение процессов взаимодействия солнечного излучения с атмосферой и поверхностью Антарктиды является важной задачей для понимания климатических изменений и их влияния на мировой климат. Солнечное излучение.
Это означает, что большая часть солнечной энергии, попадающей на поверхность Антарктиды, отражается обратно в космос. Такое высокое значение альбедо способствует охлаждению Антарктиды и поддержанию ее низкой температуры. Белый покров Антарктиды также влияет на климат и изменения мирового уровня морей.
Из-за высокого альбедо снега и льда, солнечная энергия почти не поглощается поверхностью Антарктиды. Это значит, что меньшее количество тепла передается в моря и океаны и, следовательно, меньше льда тает и превращается в воду. Это имеет значение для изменения уровня морей и сохранения ледяных покровов в других частях планеты. Однако, со временем белый покров Антарктиды подвергается разрушению вследствие изменения климата и глобального потепления. Увеличение температуры воздуха и океанов приводит к таянию льда и снега, что снижает альбедо Антарктиды и приводит к большему поглощению солнечной энергии. Это может иметь негативные последствия для мирового климата и уровня морей. Таким образом, белый покров Антарктиды играет важную роль в сохранении солнечного тепла и климата региона. Его высокое альбедо отражает большую часть солнечной энергии обратно в космос, что поддерживает холодную температуру Антарктиды и влияет на изменение уровня морей.
Однако, изменение климата и глобальное потепление вызывают растопление льда и снега, что может привести к серьезным последствиям для Антарктиды и всей планеты. Альбедо Антарктиды: отражательная способность льда Отражательная способность льда, то есть его альбедо, является одним из факторов, определяющих, сколько солнечного тепла достигает поверхности Антарктиды. Лед имеет высокое альбедо, что означает, что большая часть солнечного излучения отражается обратно в космос. Это делает Антарктиду одним из наиболее отражающих регионов Земли. Этот факт имеет значительное влияние на климат региона. Высокое альбедо льда также влияет на солнечную радиацию вокруг Антарктиды, тем самым создавая особый микроклимат. Белый цвет льда отражает солнечный свет и помогает поддерживать экосистемы морских вод. Изучение альбедо Антарктиды и его изменений является важной задачей для ученых, так как это может помочь прогнозировать будущие изменения климата региона и его влияние на мировой климат в целом.
Изменение уровня солнечного тепла на Антарктиде сезонно Одна из особенностей Антарктиды — ее географическое положение.
Одно из них шло вдоль Атлантико-Индийского побережья и отбрасывалось Австралией в экваториальную часть Тихого океана. Второе течение шло вдоль тихоокеанского побережья Антарктидо-Австралии и затем вдоль побережья Южной Америки, которая оставалась соединенной с Антарктидой перешейком, уходило к тропикам. Возможно, в Антарктиде на высоко поднятых горных вершинах в это время возникли горные ледники. Не исключено, что они появились несколько позже, когда примерно 50 миллионов лет назад Австралия откололась от Антарктиды и двинулась в сторону тропиков. С расширением и углублением пролива между ними начала формироваться круговая система течений вокруг Антарктиды. Трудно определить момент возникновения горных ледников в Антарктиде, но то, что они были, не подлежит сомнению. Радиолокационная съемка обнаружила в трансантарктических горах под толщей льда крупные долины, выпаханные ледником, которые стекали с гор по направлению к Южному полюсу. Расширение пролива между Антарктидой и Австралией привело к понижению температуры вод вокруг шестого континента. Это подтверждается появлением холодолюбивой фауны в колонках донного грунта возрастом 40—35 миллионов лет.
Возможно, в это время в Антарктиде горные ледники сливаются, образуя ледяные купола и покровы, которые затем достигают края континента, и лед начинает поступать в море. Около 20—22 миллионов лет назад устраняется последнее препятствие, мешавшее установлению замкнутого кругового течения вокруг Антарктиды: перешеек между Антарктидой и Южной Америкой исчезает, образуется пролив Дрейка. Круговое течение вокруг шестого континента невидимой стеной отделило антарктические воды от остального океана. В движение вовлечена вся толща морской воды до дна, а расход воды в этой «реке» в 10 тысяч раз больше расхода рек всего мира. В результате создаются благоприятные условия для завершения формирования антарктического ледникового покрова. Образование колоссального источника холода в южном полушарии вызвало общее похолодание, а потому и в северном полушарии возникают горные ледники и появляется Гренландское оледенение, которое начало формироваться около 10 миллионов лет назад. Почему оледенение колеблется Самое новое время, или плейстоценовый период так называют последние 0,7—1 миллион лет , по колебаниям температуры совершенно отличается от предшествующей эпохи длительного равномерного снижения температуры. В это время в средних широтах Земли через промежутки времени примерно в сто тысяч лет температура понижалась по сравнению с современной на 10—12 градусов. При этом широко распространялись покровные оледенения на материках северного полушария и наступали края Антарктического ледяного щита. В чем же причина таких колебаний?
Огромные ледяные покровы сами влияли на понижение температуры. Попробуем оценить их вклад. Подсчеты максимальных размеров последнего оледенения, выполненные гляциологами, показали, что вызванное ими за счет изменения отражательной способности Земли понижение температуры было не менее 4—7 градусов. Падение уровня моря в результате изъятия из него воды на сооружение ледяных тел достигало 150 метров, а ледяные покровы заметно повысили поверхности материков. Все это также должно было понизить температуру не менее, чем на 2—3 градуса. Следовательно, недостает лишь двух градусов, для того чтобы температура упала на те 10 градусов, которые вызывают оледенение. А именно такое изменение температуры вызывают причины, высказанные в гипотезе Миланковича. Еще одно подтверждение гипотезы Миланковича получено «со дна моря». Изотопные методы позволили по кернам донных отложений восстановить колебания температуры за последний миллион лет. Анализ этих кривых показал, что они имеют колебания с периодом 21 000, 43 000 и 100 000 лет.
А ведь это и есть периоды изменения тех величин, которые Миланкович положил в основу своей гипотезы. Но, как это ясно нам сейчас, эта гипотеза не объясняет причин возникновения оледенений. Эта гипотеза помогает объяснить колебания оледенений на нашей планете в последний миллион лет. При этом, несмотря на гигантский размах колебаний оледенений в северном полушарии, с периодом до 100 тысяч лет, Антарктическое оледенение непрерывно существует десятки миллионов лет. Такая устойчивость обусловлена околополюсным положением материка, естественной границей оледенения, которой служит море, и географической границей, созданной океаническим течением вокруг Антарктиды. Это ледяное образование при существующем распределении суши и моря не позволяет подняться температуре в средних широтах выше критического предела 10—12 градусов. В то же время, когда в результате развития покровных ледников в северном полушарии температура на Земле падает в средних широтах почти до 0 градусов, Антарктический ледник прекращает свое наступление просто потому, что есть физический предел распространению этого ледяного щита — зона континентального склона, то есть переход от мелководья к большим глубинам, над которыми ледник не может существовать. Трудно сказать, как далеко зашел бы процесс оледенения нашей планеты, будь шестой материк много больше по своим размерам. Таким образом, Антарктический ледник подобен терморегулятору, удерживающему среднюю температуру в средних широтах в диапазоне от 0 до 10 градусов Цельсия при нынешнем распределении суши и моря. Грозят ли нам наступления ледников в будущем?
Ответ зависит от того, какой отрезок времени мы называем «будущим». Если говорить о миллионах лет, то вряд ли лик Земли существенно изменится, а значит, будет существовать оледенелый южнополярный материк. Если же говорить о сотнях тысяч лет, то при существовании Антарктического ледяного щита должен неотвратимо работать механизм роста и распада ледниковых покровов в северном полушарии, объясняемый гипотезой Миланковича. Нам известно, что мы живем в конце межледниковья северного полушария, а так как такие межледниковья были короткими, около 10—15 тысяч лет, то в ближайшие 5 тысяч лет можно ожидать возврата ледников на материки северного полушария. Известно также, что мы живем в период максимума потепления, но вот пройден ли его пик? Многие исследователи считают, что пик пройден, и, следовательно, в ближайшие столетия температура будет медленно падать. Однако этому противоречит факт непрерывного подъема уровня моря, который объясняется сокращением ледников. Кроме того, предыдущее межледниковье северного полушария было теплее, объем льда был меньше, а уровень моря, по крайней мере, на 6 метров выше современного.
Остров в Антарктике прогрелся до +20. Что это значит для мира и особенно России
Вследствие этих двух причин в летние месяцы солнечная радиация здесь выше, чем в любом другом месте земного шара. Количество солнечного света, отражаемого той или иной поверхностью, выраженное в процентах, называется альбедо от латинского слова "альбус", что значит "белый". Чем белее поверхность, тем больше ее отражательная способность и, значит, тем больше альбедо. Приход и расход тепла у земной поверхности образуют земной баланс. Этот тепловой баланс поверхности Антарктиды отрицательный. Антарктический ледниковый щит, покрытый снегом, постоянно теряет из-за длинноволнового излучения больше энергии, чем получает.
Но если дело было бы только из-за этих составляющих теплового баланса, то поверхность Антарктиды из года в год охлаждалась бы, температура ее поверхности и атмосферы над ней становилась бы все ниже и ниже. Однако многолетние наблюдения на антарктических станциях показывают, что такого явления не наблюдается - температура воздуха над Антарктидой имеет сравнительно небольшие межгодовые колебания то в одну, то в другую сторону. Значит, потери тепла излучением компенсируются. Исследованиями установлено, что это тепло приносится с воздушными массами с океана. На это указывает то обстоятельство, что атмосфера на некоторой высоте над Антарктидой теплее, чем у поверхности, и, таким образом, от верхних слоев происходит перенос тепла к поверхности.
В более влажном принесенном воздухе происходит конденсация влаги, она превращается в кристаллики снега, и при этом процессе так же происходит выделение тепла. Таким образом, Антарктиду согревает теплый воздух, приносимый с океана. Чем ближе к океану, тем больше тепла приносится циклонами, образующимися над Южным океаном. В центральной части Антарктиды, на ледяном плато, происходит процесс вымораживания влаги при опускании воздуха, и осадки здесь выпадают в виде ледяных игл и изморози при ясном небе. Поэтому воздух, стекающий с континента, очень сухой.
На побережье и на склоны ледникового щита осадки приносятся океанскими циклонами и выпадают в виде снега. Толщина слоя снега, выпадающего за год в центральной части Антарктиды, составляет всего 10-12 сантиметров, на ледниковом же склоне и вблизи побережья - 150-200 сантиметров. Над большей частью Антарктиды дождей не бывает, лишь редко, один раз в несколько лет, они наблюдаются на прибрежных станциях. Над Южным океаном воздух очень влажный, небо преимущественно закрыто облаками, и здесь осадки выпадают в основном в виде дождя и мокрого снега. Таяние снега летом происходит лишь в узкой береговой зоне.
При интенсивной солнечной радиации снег становится рыхлым, с берега в океан бегут ручьи, но уже в 10-12 километрах от берега таяние снега незаметно.
Антарктида находится на юге. Подледный рельеф Антарктиды 7 класс география. Подледный рельеф Антарктиды карта. Рельеф Антарктиды в разрезе. Высота средняя максимальная минимальная Антарктида. Условия Антарктиды.
Средняя высота Антарктиды над уровнем моря. Самая низкая точка Антарктиды. Самый высокий уровень моря. Климат Антарктиды карта. Климатическая карта Антарктиды. Климатические пояса Антарктиды на карте. Угол падения солнечных лучей.
Распределение солнечных лучей. Распределение солнечных лучей по поверхности земли. Распределение тепла на поверхности земли. Антарктида доклад. Географические данные Антарктиды. Презентация на тему материк Антарктида. Антарктида рельеф материка.
Современные исследования Антарктиды. Станции исследования Антарктиды. Сообщение исследование Антарктиды. Исследовательская работа в Антарктиде. Антарктический климат. Антарктида летом. Распределение тепла на земле.
Угол паденичмолнечных лучей. Распределение солнечных лучей на земле. Причины таяния ледников. Чем опасно таяние ледников. Таяние ледников презентация. Изменение климата таяние ледников. Арктический климат.
Арктический климат характеристика. Описание арктического климата. Арктический пояс климат. Тема Антарктида. Антарктида информация. Сообщение о Антарктиде. Инфографика ледники.
Таяние ледников 2021. Ледники тают инфографика. Таяние льдов в Антарктиде. Нормальное давление атмосферное по широтам. Высокое атмосферное давление. Показатели низкого атмосферного давления. Давление воздуха география.
Угол паденя Солнечный лучей. Освещение земли солнцем. Углы падения солнечных лучей на земную поверхность. Таяние ледников в Антарктиде по годам. Таяние льдов в Арктике. Таяние ледников сравнение. Динамика таяния ледников.
Тепловые полюса земли. Тепловые пояса земли. Тепловые пояса карта. Жаркий тепловой пояс. Пояса освещенности земли. Названия поясов освещенности. Пояса освещенности 5 класс география.
Угол падения солнечных лучей на землю. Угол наклона солнечных лучей. Распределение солнечного тепла и света. Распределение солнечного света и тепла на земле. Закономерности распределения температуры воздуха. Ледник Пайн-Айленд. Ледники и снежные покровы.
Распределение тепла на поверхности земли. Пояса атмосферного давления. Пояса высокого и низкого давления. Пояса атмосферного давления на земле. Пояса высокого атмосферного давления.
Материки и океаны у Антарктиды. Антарктический ледник на карте. Ледники Антарктиды на карте. Территории покровных ледников. Наименьшее количество солнечного тепла.
Южный Полярный круг. Южный Полярный. Антарктида видеоурок по географии 7 класс. Арктический климат. Арктический климат характеристика.
Описание арктического климата. Арктический пояс климат. Распределение солнечных лучей по поверхности земли. Климатические пояса солнце. Пояс освещенности тропический пояс границы.
Границы поясов солнечной освещенности на карте. Карта поясов освещенности земли. Тропический пояс освещенности. Атмосфера стратосфера Тропосфера схема. Строение атмосферы земли по слоям.
Структура атмосферы слои. Слои атмосферы по порядку снизу вверх. Климат Антарктиды карта. Климатическая карта Антарктиды. Климатические пояса Антарктиды на карте.
Почему Антарктида получает меньше всего тепла и осадков. Сколько солнечного тепла получает Антарктида летом. Когда Антарктида получила больше всего солнечного тепла. Нагревание атмосферы. Нагревание воздуха в атмосфере.
Как нагревается воздух. Нагревание воздуха от поверхности земли. Пояса высокого давления давления экваториальные. Типы воздушных масс география 7 класс. Схема виды воздушных масс.
Схема формирования воздушных масс. Солнечные лучи нагревают землю. Пояса освещенности земли 5 класс. Пояса освещенности схема. Падение лучей на землю.
Лучи солнца падают отвесно. Распределение солнечной энергии на земле. Поглощение солнечной энергии. Климат Антарктиды летом и зимой. Солнечное излучение.
Мощность солнца. Мощность излучения солнца. Гольфстрим и Лабрадорское течение. Схема течения Гольфстрим. Гольфстрим течение схема в Европе.
Гольфстрим и Лабрадорское течение на карте. Климат арктических пустынь в Евразии. Климат арктических пустынь. Арктическая пустыня климат. Климатические условия Арктики.
Солнечная энергия схема. Продолжительность полярного дня и полярной ночи. Полярные дни и ночи бывают на.
Советское плато высота до 4004 м к северу понижается, образуя широкую Долину МГГ , названную в честь Международного геофизического года 1957—1958. Горы Пенсакола в западной части Восточной Антарктиды. Рельеф Западной Антарктиды значительно ниже, но более сложен.
Многие хребты и вершины т. Поблизости от хребта расположена самая глубокая впадина подлёдного рельефа —2555 м. Антарктида — область обширного материкового оледенения. Под воздействием ледниковой нагрузки земная кора Антарктиды прогнулась в среднем на 0,5 км, что стало причиной аномального по сравнению с другими материками положения шельфа, опускающегося здесь до глубины 500 м. Ледниковый покров Средняя толщина ледникового покрова около 1800 м, максимальная свыше 4000 м. В центральной части материка придонные слои льда близки к температуре таяния.
В депрессиях коренного рельефа скапливается вода и возникают подлёдные озёра; крупнейшее — Восток длина 260 км, ширина до 50 км, толща воды достигает 600 м находится в районе станции «Восток». Плоская центральная часть ледникового плато на высоте 2200—2700 м переходит в склон, отвесно обрывающийся в сторону моря. Здесь ледниковый покров дифференцируется. Шельфовый ледник острова Аделейд Антарктида. Концы выводных ледников часто выходят в море, где держатся на плаву. Они представляют собой плоские ледяные плиты толщиной до 700 м , опирающиеся в отдельных местах на поднятия морского дна.
Крупнейший — шельфовый ледник Росса около 473 тыс. Внешний край шельфового ледника Росса. Горные ледники встречаются в горных районах с расчленённым коренным рельефом, главным образом вокруг моря Росса , где достигают в длину 100—200 км, а в ширину 10—40 км. Ледниковый покров питается за счёт атмосферных осадков, которых на всей площади за год накапливается около 2300 км3. Расход льда происходит главным образом вследствие откола айсбергов. Таяние и сток невелики.
Баланс вещества льда в ледниковом покрове большей частью исследователей принимается близким к нулю. Со 2-й половины 20 в. Геологическое строение и полезные ископаемые В тектоническом строении Антарктиды выделяются Восточно-Антарктическая древняя платформа кратон , Трансантарктический Росский раннепалеозойский складчатый пояс и складчатый пояс Западной Антарктиды. Тектоническая карта. Восточно—Антарктическая платформа являлась фрагментом суперконтинента Гондвана , распавшегося в мезозое, и имеет площадь более 8 млн км2. Фундамент платформы, выступающий на поверхность вдоль побережий материка, сложен глубокометаморфизованными породами архея: ортогнейсами с подчинёнными первично осадочными и вулканическими образованиями.
Среднеархейские породы 3,2—2,8 млрд лет распространены в западной части Земли Королевы Мод, в районе ледника Денмена. Ранне- и среднеархейскиие образования были вторично деформированы в позднем архее 2,5 млрд лет назад. Процессы раннепротерозойской тектонотермальной переработки проявлены на Земле Адели , Земле Уилкса , оазисе Вестфолл и др. Породы, испытавшие метаморфизм гранулитовой фации 1,3—1,0 млрд лет назад в эпоху гренвильского тектогенеза , формируют Вегенер-Моусоновский подвижный пояс на восточном побережье моря Уэдделла. В вендско-кембрийское время 600—500 млн лет назад фундамент платформы вновь подвергся тектонотермальной переработке. С конца протерозоя локально в понижениях начал накапливаться осадочный чехол , который в девоне стал общим для платформы и Трансантарктического пояса.
Последний сложен в основном сланцево - граувакковым флишем пассивной окраины древнего Восточно-Антарктического континента. Главная фаза деформаций — бирдморский орогенез на границе рифея и венда 650 млн лет назад. Венд-кембрийские мелководные карбонатно - терригенные отложения испытали заключительную фазу деформаций росский орогенез в позднем кембрии. В девоне началось общее погружение Росского пояса и древней платформы с отложением мелководных песчаных осадков. В карбоне развивалось покровное оледенение. В перми накапливались угленосные толщи до 1300 м.
В ранней — средней юре произошла вспышка платобазальтового вулканизма , когда при распаде суперконтинента Гондвана Антарктида отделилась от Африки и Индостана. В мелу прервалась связь с Австралией, в континентальных условиях начал накапливаться постгондванский чехол. В позднем палеогене Антарктида отделилась от Южной Америки и была охвачена оледенением, которое в середине неогена стало покровным. Западная Антарктида состоит из нескольких блоков террейнов , сложенных образованиями различного возраста и тектонической природы, которые объединились сравнительно недавно, сформировав фанерозойский складчатый пояс Западной Антарктиды. Выделяют террейны: раннесреднепалеозойский северной части Земли Виктории , среднепалеозойско-раннемезозойский Земли Мэри Бэрд и мезозойско-кайнозойский Антарктического п-ова, или Антарктанды.
Сколько солнечного тепла получает поверхность антарктиды
Однако до 90 % приходящего тепла отражается снежной поверхностью обратно в мировое пространство и только 10 % идёт на её нагревание. Минимальное количество тепла получает. Причина малого количества солнечного тепла в Антарктиде в июле. В этот период Антарктида получает больше прямого солнечного света, чем пустыня Сахара в этот же период времени! Такие низкие температуры воздуха в глубине Антарктиды определяются высотой ледникового щита над уровнем моря, высокой отражательной способностью снежной поверхности, в результате чего солнечное тепло почти полностью уходит в мировое пространство. В декабре-феврале (в Южном полушарии это лето) Антарктида получает на 7% солнечного тепла больше, чем Арктика в июне-августе.