Новости обучение нейросетям и искусственному интеллекту

Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra.

Искусственный интеллект и будущее нейросетей: взгляд эксперта из «Яндекса»

Нейросетевая революция искусственного интеллекта и варианты её развития. Использование искусственного интеллекта (ИИ) в школах набирает обороты во всем мире, Россия не исключение. Несмотря на то, что GPT-4 самая мощная и совершенная версия искусственного интеллекта, ее презентация вызвала не только восторг специалистов по работе с данными, но и вопросы к Open AI. Искусственный интеллект и нейронные сети станут неотъемлемой частью жизни подрастающего поколения. Очень интересно сравнивать выводы искусственного интеллекта с классическими критиками и строить своего рода нейросеть. Конечно, это мотивирует учащихся построить план обучения нейросети. Лекции читают сооснователь «Курсеры», исследователь искусственного интеллекта Эндрю Ын и сотрудница OpenAI Иса Фулфорд — так что лайфхаки практически из первых рук.

Перспективы развития и применения нейронных сетей

Искусственный интеллект и нейронные сети станут неотъемлемой частью жизни подрастающего поколения. Основные понятия и определения искусственного интеллекта. Базовые методы машинного обучения: линейная регрессия, логистическая регрессия, деревья решений, метод ближайших соседей. Несмотря на то, что GPT-4 самая мощная и совершенная версия искусственного интеллекта, ее презентация вызвала не только восторг специалистов по работе с данными, но и вопросы к Open AI. Онлайн-курс по нейросетям и искусственному интеллекту для новичков, желающих использовать возможности ИИ для генерирования текстов, анимаций графики и обработки последней с уроками по UX-исследованиям. Программа обучения по искусственному интеллекту ПРОДВИНУТЫЙ УРОВЕНЬ. Известный исследователь машинного разума пришёл к выводу, что разработчики нейросетей очень слабо представляют себе, что они создают.

Топ-10 актуальных курсов по нейросетям и искусственному интеллекту в 2024 году

Искусственный интеллект | Университет 2035 Эволюция и стоимость обучения искусственного интеллекта: от Transformers до Gemini Ultra.
Нейросети школьникам Искусственный интеллект (ИИ) все активнее внедряется в различные отрасли, включая образование.

ChatGPT, Lexica и другие нейросети: мнение учителей о новых инструментах в руках школьников

Курсы запустили бесплатный курс по искусственному интеллекту для школьников « Глубокое обучение ». Старшеклассники узнают, как работают и обучаются нейросети, и познакомятся с востребованными IT-профессиями. Записаться на осенний поток можно до 15 ноября. В разработке участвовали сотрудники Яндекса, в том числе сотрудники Yandex Research и преподаватели Школы анализа данных , преподаватели факультета компьютерных наук Высшей школы экономики, эксперты онлайн-школы Сириус. Нейросети используются во многих современных сервисах, среди них — голосовой помощник Алиса, Яндекс Браузер, поиск Яндекса, беспилотные автомобили. Курс поможет разобраться, как устроены такие технологии, как их использовать и развивать. Евгений Соколов, руководитель департамента больших данных и информационного поиска факультета компьютерных наук НИУ ВШЭ, куратор академических программ Яндекса При разработке курса мы адаптировали материал для школьников старших классов, чтобы они смогли в полной мере погрузиться в тему deep learning и попробовать на практике ML-инструменты. Все слушатели смогут провести небольшие эксперименты с нейронными сетями и увидеть особенности их работы.

В процессе обучения старшеклассники освоят азы работы с нейросетями. Навыки в этой сфере требуются аналитикам данных, инженерам машинного обучения и исследователям в области ИИ.

Выпускник 3-го потока курса Аспирант Физического факультета МГУ Очень интересный и модный практически-ориентированный курс. Задач для машинного обучения в моей лаборатории оказалось уйма, и не будет преувеличением сказать, что этот курс изменил нашу научную группу. Особую благодарность хотел бы выразить Ивченко Александру, который был моим преподавателем, а также всему тёплому коллективу курса!

Из 700 тысяч только 75 вызвали некоторые подозрения. Работы были из разных регионов. Мы передали их на почерковедческую экспертизу, и по 11 работам подозрения подтвердились.

Рособнадзор на днях направил в правоохранительные органы эти материалы, чтобы они провели соответствующие мероприятия». До 2012 года никакой системы видеонаблюдения на ЕГЭ не было, она появилась на экзаменах после выборов президента РФ, которые состоялись 4 марта 2012 года. Именно эти выборы ознаменовались установкой видеокамер на большинстве избирательных участков страны. Всю инфраструктуру, задействованную на выборах, решено было использовать для обеспечения прозрачности государственной итоговой аттестации школьников. С этого момента началась массовая установка видеооборудования по всей стране. Качество видеоизображения с каждым годом становилось лучше, а в 2020 году запустили специальный алгоритм, анализирующий поведенческие реакции участников ЕГЭ. Он анализирует последовательность изображений, которые поступают с видеокамер в режиме реального времени или из архивных записей, и находит среди них возможные нарушения: использование шпаргалок, телефона и других девайсов. В своём официальном блоге «Ростелеком» рассказал, как обучался алгоритм: «Чтобы алгоритм точно распознавал поведение участников ЕГЭ и корректно фиксировала нарушения, его нужно было обучить на большом массиве данных.

Что мы и сделали, собрав видеозаписи с уже зарегистрированными нарушениями на экзаменах за 2018—2019 годы. Процесс обучения состоял из нескольких этапов: На первом видеозаписи прогонялись через алгоритм детектирования людей с использованием нейросети Yolo. В результате получалось видео с маркированными участками, где люди находились в течение долгого времени. Это было нужно, чтобы отсечь преподавателей, которые ходят по коридорам, например. Каждому региону с человеком присваивался идентификатор, и обработанное видео с отмеченными регионами и идентификаторами сохранялось.

Через систему можно как получать услуги, так и оказывать их. Как создается THIS. Разрабатываются стандарты, строятся системы поддержки, сервисы по поддержке с ИИ, управлению визуализации, операционный стандарт. Также создается собственная цифровая система, которая позволяет обеспечить интеллектуальный надзор.

Если приходит пациент из другой больницы, то его данные будут приходить из прикрепленного медучреждения. Из разных записей генерируются конкретные рекомендации. Создан инструментарий для обучения специалистов в области здравоохранения. Они могут помочь врачам в больницах управлять процессами в учреждении и пациентам в пределах и за пределами больницы. Существуют два основных метода решения этой задачи. Первый - поведенческий, когда воссоздается манера поведения человека. Второй метод - это интернализм, когда основной движущей силой исследования становится эволюция интеллектуальных традиций и исследовательских программ. В частности, на первом этапе развития ИИ представлял собой символизм на основе знаний, главным образом имеется в виду симуляция человеческого поведения. На этом этапе используются экспертные знания для формирования общей базы знаний.

Второе поколение ИИ работает на основе анализа данных. Классический пример второго поколения ИИ, когда в 1997 году программа Deep Blue играла в шахматы против Гарри Каспарова и выиграла у него. Залогом успеха программы стали знания, опыт, алгоритмы и вычислительная мощность. Сегодня самый расхожий пример - программа для отслеживания динамики цен на акции, в которой собраны сведения о 40 ведущих компаниях стоимостью больше 1 миллиарда долларов по отраслям. Если мы говорим о применении ИИ на базе данных, то нельзя не упомянуть робототехнику. Например, гибкая искусственная рука, которая может двигать пальцами, делать жесты, играть на пианино, помогает людям, лишенным кисти. О сферах применения ИИ В Стенфордском университете в свое время ученые сформулировали основные сферы применения ИИ с 2015 до 2030 года. Среди них - управление транспортным потоком, домашние роботы, здравоохранение, образование, охрана, организация рабочего пространства, а также туризм, финансы, промышленность. Помимо этого, все еще остается много нерешенных задач, поскольку при текущих ресурсах способности ограничены, так что необходимо их постоянно совершенствовать.

Следующее поколение ИИ - мультимодальные модели, которые способны обрабатывать одновременно в режиме реального времени текст, изображение, голос, видео, код и получать достойный результат. Например, наши студенты разработали программу, позволяющую идентифицировать каждого человека на видео, где танцует много людей. Повышение эффективности и качества обучения больших нейросетевых моделей Иван Оселедец, генеральный директор компании AIRI, профессор Сколтеха: О текущем состоянии работы нейросистемных моделей Работа с текстами и изображениями - это уже практически решенные задачи. Но следующий шаг - мультимодальные модели, работа с ними только началась. Нами разработана первая мультимодальная модель в России OmniFusion. Принцип ее работы заключается в объединении двух модальностей: текста и картинок. Она вполне способна на основе полученных данных обрабатывать их и поддерживать диалог.

Под присмотром искусственного интеллекта: как школы столицы используют нейросети

Академия нейросетей и искусственного интеллекта. Международный конкурс по искусственному интеллекту для молодежи. Ключевые спикеры в сфере технологий искусственного интеллекта и машинного обучения. Помимо этого, помочь в решении проблемы может сам искусственный интеллект, а точнее — ИИ-детекторы сгенерированного контента. Хоть нейросети и можно назвать своего рода искусственным интеллектом, пусть и в зачаточном состоянии, до полноценного ИИ нейросетям еще очень далеко. Использование искусственного интеллекта (ИИ) в школах набирает обороты во всем мире, Россия не исключение.

Бесплатные нейросети и курсы по ИИ

Аппаратная реализация искусственных нейронных сетей. Искусственные нейронные сети (ИНС), навеянные вычислительными и коммуникативными способностями мозга человека, являются значительной парадигмой в машинном обучении. Подборка телеграмм каналов о последних технологических достижениях в области искусственного интеллекта и нейросетей. » предлагает обучение по теме искусственного интеллекта в искусстве.

В России стартовал прием заявок на курсы по искусственному интеллекту

Авторы обещают дать примеры готовых сценариев для запроса к нейросети, а еще научат, как писать их под свои нужды. Все советы отрабатывают на упражнениях с примерами запросов. Источник: datacamp. Тренинг ведет Пол Чапмен, менеджер учебных программ платформы Datacamp, которая специализируется на искусственном интеллекте и больших данных. Программа разделена на две части: первая рассказывает о возможностях и ограничениях ChatGPT и учит писать эффективные промпты. Ее можно пройти бесплатно. Вторая часть курса посвящена использованию ChatGPT в рабочих процессах.

Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов. Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ. Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов. Чего ждать в 2024 году Главное — появления ещё большего числа дешёвых и эффективных моделей с открытым исходным кодом от небольших стартапов и крупных компаний. Отрасль ИИ станет меньше зависеть от IT-гигантов. В новом году ждём от них самых навороченных нейронок. Опенсорсные модели займут нишу простых и доступных по стоимости решений. На их основе будут созданы персональные ИИ-ассистенты нового поколения, способные работать в смартфонах и других гаджетах. Мы ждём, что рост конкуренции в опенсорс-сообществе приведёт к появлению прорывных технологий, а не только к количественному усложнению моделей. Например, могут появиться новые способы обучения или архитектуры нейросетей, лишённые недостатков предшественников. Не стоит забывать про опасности Open Source. В отсутствие контроля хакеры и интернет-мошенники начнут использовать генеративный интеллект для противозаконных действий. Например, для создания вирусов, взлома паролей или кражи денег с помощью социальной инженерии, создавая «двойников» людей для телефонных или даже видеозвонков. В 2023 году основной прорыв в массовом использовании нейронок с открытым кодом внесла LLaMA, на базе которой появились десятки моделей: Mistral, Zephyr , Alpaca, Phi-2 , Qwen, Yi и другие. В развити опенсорсных моделей просматриваются три тренда, которые усилятся в 2024 году: Желание пользователей устанавливать нейросети на свои устройства и использовать их без подключения к интернету и, соответственно, без оплаты услуг компаний. Раньше качества нейросетей, а также мощностей ноутбуков и смартфонов для этого не хватало, но теперь их достаточно. Поэтому происходит массовый отток пользователей от платных сервисов. Замена людей в процессе получения обратной связи при обучении ИИ-моделей. Это обучение с подкреплением от ИИ, а не от человека. Создание специализированных небольших моделей для медицины, науки, графовых моделей, а также нейросеток с архитектурой MoE. Появление изначально закрытых моделей GPT-3, ChatGPT создало новый рынок, а открытые модели позволили бизнесу использовать их практически без ограничений. Так, например, открытые решения позволяют компаниям контролировать весь процесс работы с данными своих пользователей, адаптировать их под свои нужды и в целом снизить риски, используя собственную инфраструктуру. Кроме того, появление открытых моделей стало причиной роста компетенций академического сообщества в работе с LLM. Сейчас уже никого не удивишь чат-ботом, сравнимым с ChatGPT, который запущен на ноутбуке каким-то энтузиастом, хотя ещё два года назад это казалось фантастикой. Такой уровень доступности технологий позволил учёным опубликовать уже сотни, если не тысячи интересных и полезных научных статей. Роман Душкин генеральный директор ООО «А-Я эксперт» , компании — разработчика систем искусственного интеллекта — Опенсорсные LLM должны быть открытыми не только с точки зрения исходного кода самих моделей, но и с точки зрения данных, на которых они обучаются. И я думаю, что в будущем году упор будет сделан именно на это — на чистоту и прозрачность. У инженеров, учёных и государства при использовании решений на базе открытых моделей ИИ всегда будут возникать вопросы доверия к ним. Поэтому только открытость и высокое качество датасетов, на которых тренируются нейросети, позволят опенсорсным моделям занять свой рыночный сегмент. Рост мультимодальных возможностей нейросетей Что случилось за год У ИИ появилась мультимодальность — теперь нейросети работают не только с текстом, но и с изображениями, видео и аудио. Они научились рисовать правильное количество пальцев на руках и повысили детализацию изображений до уровня фотографий. Прошли первые релизы нейросетей для создания видео — Pika 1.

Вещи о которых я раньше мог только мечтать, сегодня становятся реальностью. И это именно то чем меня привлекает AI. Поверхностно занимался прошивкой телефонов и автомобилей. AI интересен в плане работы - сейчас занимаюсь финансовыми стратегиями и анализом деятельности строительных компаний, и очень интересует применение нейросетей в этой области. Но для того чтобы конкурировать на рынке IT - надо постоянно развиваться и получать новые знания. Недавно открыл для себя Python и фреймворк Django. Есть задумки по созданию нейронных сетей для бизнес-процессов в 1С. ИВАН Классе в 9, перед ОГЭ, я задумался, чем же я буду заниматься в жизни, и ответом было IT потому, что это будущее нашего общества, лучшие технологии, передовые подходы и принципы работы. Спустя годы, уже в IT сфере передо мной открылся целый спектр направлений, я изучил их и понял, что хочу заняться AI потому, что это будущее IT, а я как раз и хочу работать над будущем нашего будущего; ДМИТРИЙ AI и нейросети я воспринимаю сейчас, как глоток свежего воздуха в ежедневном рабочем процессе, как элемент творчества в своей повседневной работе. Спустя годы, уже в IT сфере передо мной открылся целый спектр направлений, я изучил их и понял, что хочу заняться AI потому, что это будущее IT, а я как раз и хочу работать над будущем нашего будущего; Интенсив - это 3 дня погружения в фантастический мир AI 3 дня 3 дня обучения по AI 9 нейронок.

Искусственный интеллект научился неожиданно неплохо писать тексты. Мы провели опыт, для которого пригласили коллег по НТВ — смогут ли профессионалы распознать работу, сделанную электронным автором? Это оказалось на удивление непросто! Значит ли это, что человек в журналистике больше не нужен, действия тут механические и им легко научить компьютер? Британская газета Guardian уже тестирует подобную систему, чтобы оценить её возможности и понять реальную угрозу. Нечто похожее сделали и мы в редакции: взяли три темы и попросили нейросеть написать на каждую из них небольшую заметку. Конкуренцию пробовала составить корреспондент «Чуда техники» — выпускница факультета «Высшая школа телевидения» МГУ им. Ломоносова Лиза Шполянская. С первой темой всё было понятно, со второй — более-менее тоже, хотя сомнения присутствовали: в некоторых интернет-изданиях люди пишут хуже, чем нейросеть. Третья тема уже далась не так легко: Лиза написала, как всегда, хорошо, но искусственный интеллект тоже не лил воды и гладко соединял слова. В итоге голоса разделились. Это сходство с человеком испугало не только нас — недавно Илон Маск, Стив Возняк и ещё более тысячи IT-экспертов призвали приостановить обучение систем , более мощных, чем нынешняя GPT-4. По той причине, что роботы стремительно заменяют людей, и это представляет угрозу для общества. Авторы письма считают, что сначала надо создать систему контроля, которая предотвратит возможные риски. Оправдана тревога или нет, мы пока не знаем, но видим, что лучшие образцы нашего жанра искусственный интеллект, пожалуй, прямо сейчас ещё не превзойдёт — пишет слишком заумно, мало думает о простоте и ясности изложения. Эксперты, которые анализируют работу виртуальных журналистов, говорят, что тем не хватает живой мимики и непредсказуемых эмоций, которые всё-таки нужны зрителям.

Похожие новости:

Оцените статью
Добавить комментарий