И был нам дарован этот инструмент только тогда, когда люди стали понимать, как надо пользоваться данным инструментом. Согласно правилу знаков: «”плюс” на “минус” – будет “минус”», а, значит, путем такого преобразования – сложение превращается в вычитание положительных чисел. Минус на минус дает плюс в математике, когда два отрицательных числа умножаются. Почему при умножение минуса получается новый элемент плюс? Конечно, проще без лишних вопросов запомнить данное утверждение и глубоко не вникать в суть вопроса.
Минус на минус дает плюс
Плюс на минус дает... плюс | Минус, умноженный на минус, дает плюс; минус, умноженный на плюс, дает минус; а знаком минуса является усеченный Ψ, перевернутый вверх ногами, таким образом, Λ [с третьей центральной ветвью]. |
«Почему минус на минус даёт плюс ?» — Яндекс Кью | На данный момент группа обнаружила и уничтожила 105 024 мины или другие взрывчатые вещества. |
Почему минус на минус плюс? | получается две женчины,или лезбийская связь,просто ЛГБТ какое-то.А это ведь всё на подсознании остаётся у нас,вот таким,казалось бы НЕнавязчивым способом. |
Почему минус на минус дает плюс? | Математика | | Минус на минус даёт плюс. |
Как понять, почему «плюс» на «минус» дает «минус» ?
Минус на минус даёт плюс. Из трека Каспийский Груз – Была Не Была на RapGeek. Таким образом, минус на минус дает плюс, потому что умножение двух отрицательных чисел приводит к получению положительного результата. Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение. Мы сформулируем аксиомы кольца (которые, естественно, похожи на правила действий с целыми числами), а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Что дает плюс на минус в математике Зачем нужен знак плюс перед минусом в математике и как он влияет на решение выражений.
Плюс на минус дает... плюс
Главное в этом — одинаковый настрой. Качества из «большой пятерки» способствовали договоренности, если присутствовали у обоих переговорщиков.
Представьте, что идет выставка современного искусства в далеком от нас 3141 году. Главной изюминкой этой выставки стали медиа-картины, изображающие собой наглядную модель электронно-позитронного газа. На их полупрозрачных поверхностях медленно дрейфуют красные и зеленые кружкии двумерные шары одного и того же размера. Кружки одинакового цвета друг от друга отскакивают, а разного, соприкоснувшись исчезают с негромким хлопком и яркой вспышкой света. Иногда под вспышкой фотокамеры на холсте появляется пара из разбегающихся в разные стороны красного и зеленого кружков рождение электрон-позитронной пары из гамма-кванта. Заряд в любой момент времени будет целым числом.
Он будет положительным, если в этот момент на преобладают красные кружки, отрицательным — если преобладают зеленые, и равным нулю — если и тех и других кружков в момент оказалось поровну. Наши картины не статичны, более того, количество присутствующих на них кружков меняется со временем. Несмотря на эти изменения, для любой картины ее заряд остается постоянным во времени, то есть он не зависит от и может быть записан как.
Если в бочку мёда добавить ложку дёгтя, получится бочка дёгтя.
Если в бочку дёгтя добавить ложку дёгтя, получится бочка мёда. Если в бочку мёда добавить ложку мёда, получится бочка мёда. Первых два примера с натяжкой можно принять. Последний пример вообще не вызывает вопросов.
А вот с предпоследним примером возникают очень большие проблемы — в жизни такого не бывает. Здесь возможны два варианта: 1. Математики не правильно записали свое правило. Мы не правильно применяем математическое правило.
Лично я за второй вариант. Объясню почему. Математику не только нужно знать, но нею ещё нужно уметь пользоваться. Приведу пример из собственного опыта.
Один учитель математики на уроках нам говорил: «математика — это точная наука, два раза соври — получится правда». Это утверждение однажды мне очень пригодилось. Как-то я решал сложную задачу с длинным решением. Я точно знал, какой результат должен быть.
Но результат был другим. Я долго искал ошибку в расчетах, но не смог ее найти. Тогда, за несколько действий до итогового результата, я изменил одно число так, чтобы результат получился правильным. Я в расчетах соврал два раза и получил правильный результат.
Математические вычисления в тот раз никто не проверял и я получил хорошую оценку. Это очень похоже на правило «минус на минус дает плюс», не так ли? Но вернемся к нашим бочкам. Кстати, говорят, именно с бочек с вином математики срисовали знак «минус».
Это самые талантливые дети, серьезно! Они за свою жизнь много повидали и умеют показывать на сцене настоящие эмоции. А когда им помогаешь развиваться — они меняются на глазах, становятся другими людьми и выходят из зоны дискомфорта. На данный момент здесь есть ребята, которые вызывали раздражение в обществе и всем мешали. Сейчас они становятся другими: искренними, добрыми и честными людьми. Многие ребята переосмыслили свою жизнь кардинально, поучаствовав в спектакле, некоторые благодаря репетициям нашли друзей и не только изменились сами, но и помогли родителям взглянуть на жизнь по-другому. Он должен кайфовать от работы с детьми, и тогда они не будут пропускать, опаздывать, кричать на уроках, срывать их, будут впитывать всё как губка.
Но терпение тоже нужно, ведь педагога ожидают такие испытания, как подростковый возраст, детские выходки и замашки — все это нужно перетерпеть, спокойно объяснить, в чем ребенок не прав, и спокойно разрулить ситуацию. Я обожаю свою работу и всем желаю найти такую, для которой вы с удовольствием будете просыпаться по утрам, а на выходных помышлять о том, чтобы быстрее наступили будние дни. Дети присматривались ко мне: попробуй начни сразу открываться парню, который весь в татуировках! Но со временем и мнение, и отношение поменялись настолько, что ребята могли прийти и просто рассказать, что их тревожит, поделиться радостями и проблемами. Это очень круто, когда у тебя получается завоевать доверие детей. Нужно их слышать, доверять им, понимать, что в их возрасте тоже происходит и работа ума, и работа сердца. И я еще стараюсь находить индивидуальный подход, хотя это ох как непросто бывает!
Действия с минусом. Почему минус на минус дает плюс
Дед взял ложку да как даст бабке по лбу — “БЕЗ-ОТ-КАЗ-НЫЙ”, мля, “БЕЗОТКАЗНЫЙ”. Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы. С просьбой объяснить все «плюсы» и «минусы» майских платежек редактор портала обратился к бухгалтеру центра расчетов с потребителями Алевтине Мальцевой. Согласно правилу знаков: «”плюс” на “минус” – будет “минус”», а, значит, путем такого преобразования – сложение превращается в вычитание положительных чисел. Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент! Готовься к ОГЭ и ЕГЭ по математике вместе со мной: мне, чтобы задать вопрос или записаться на курсы подготовки.
Почему минус на минус плюс?
Минус на минус поговорка | Отрицательные числа — это числа со знаком «минус». |
Сложение и вычитание отрицательных чисел – правила (6 класс, математика) | Почему минус на минус даёт плюс? Сохраните себе это видео, чтобы вернуться к нему в любой момент! |
Почему минус на минус даёт плюс? Сохраните себе это видео | Резерв Математик Андрей | «--» — при умножении минус на минус ответ будет положительным или минус на минус дает плюс. |
Минус на минус – даст плюс? | Знак «минус» можно трактовать как отрицание, тогда «минус» «минус» есть подтверждение. |
Как умножать отрицательные числа
Смотрите: Прямая, на которой отмечена начальная точка, положительное направление и единичный отрезок, называется координатной или числовой осью. Умножение — арифметическое действие в котором участвуют два аргумента. Один множимый, второй множитель. Результат их умножения называется произведением. Свойства умножения От перестановки множителей местами произведение не меняется. Продвинутые школьники могут использовать онлайн-калькулятор.
Автopы пpoeктa нaмepeны дoбитьcя пepecмoтpa дeйcтвующeгo ГОСТa либo пoлнoй oтмeны штpaфoв зa тoниpoвку ужe этoй oceнью. Этo зaщитa oт coлнцa и уcлoвиe бeзoпacнoгo вoждeния. Нa cтopoнe тoниpoвки, кaк чacтичнoй, тaк и пoлнoй - миpoвoй oпыт», - нaпиcaл Нилoв Имeннo пoэтoму фpaкция будeт нacтaивaть нa paccмoтpeнии инициaтивы, зaвиcшeй в пpoфильнoм кoмитeтe. Пo мнeнию Нилoвa, нa oбcуждeниe пpoeкт eщe нe вынocилcя, cкopee вceгo, из-зa вoзмoжнoгo peзoнaнca.
Чтобы перейти к модели, при которой будут использоваться цифровые валюты, нужно перенести все текущие счета клиентов из банковской системы на баланс Центрального банка. Технически это несложно, но банкам стоит ожидать серьезных последствий. Но если вы продолжите его принимать два или три года, то в вашем организме наступят изменения, которые могут стать необратимыми. Так вот, процентные ставки — это то лекарство, которое нам прописали», — резюмировал Константин Корищенко. Нет ничего более постоянного… «Политика отрицательных процентных ставок всегда преподносилась как некая экстраординарная мера, которая вводится временно», — начал соучредитель GKEM Analytica Александр Кудрин.
Однако нет ничего более постоянного, чем временное. Поэтому то, что сейчас отрицательные ставки играют роль регуляторов, никого не удивляет. Эффективность такого регулятора спорна. Безусловно, ввод отрицательных процентных ставок оказывает прямое воздействие на финансовые рынки. Для них эффект отрицательной доходности выглядит бессмысленным. Консервативные инвесторы пытаются найти новую доходность за пределами привычных инструментов, принимая дополнительные риски, которые не всегда могут контролировать. Если рассмотреть мировые центробанки, которые ввели отрицательные ставки, то можно заметить, что рынкам нужно было время, чтобы перестроиться. Говоря о краткосрочных долговых обязательствах, двухлетние бумаги достаточно быстро вышли в отрицательную область, где и остались. Рынку потребовалось чуть больше времени, для того чтобы осознать эту новую реальность и перейти в отрицательную область», — уточнил эксперт.
На фоне ухода в отрицательную область процентных ставок по государственным бумагам резко снижается доходность по корпоративным бумагам. Премия за кредитный риск, которую получают инвесторы, вкладывая деньги в корпоративные бумаги, постоянно сокращается, что не соответствует действительному изменению кредитного риска. Происходит перемещение кредитного риска на баланс консервативных инвесторов, которые не всегда могут его правильно оценить. Касательно рынков акций, здесь наблюдается рост, однако он скорее технологический. Консервативные инвесторы в условиях отрицательных ставок пытаются найти новую доходность за пределами привычных инструментов «Известно, что в области отрицательных процентных ставок банки работают довольно плохо, зарабатывают мало.
Они по-разному взаимодействую с собой, поэтому при выполнении каких-либо действий с числами, например, деление, умножение, вычитание, сложение и т. Без этих правил вы никогда не сможете решить даже самую простую алгебраическую или геометрическую задачу. Без знания этих правил, вы не сможете изучить не только математику, но и физику, химию, биологию, и даже географию. Рассмотрим подробней основные правила знаков.
Если мы делим «плюс» на «минус», то получаем всегда «минус». Если мы делим «минус» на «плюс», то получаем всегда также «минус». Если мы делим «плюс» на «плюс», то получаем «плюс». Если же мы делим «минус» на «минус», то получим, как ни странно, также «плюс». Если мы умножаем «минус» на «плюс», то получаем всегда «минус». Если мы умножаем «плюс» на «минус», то получаем всегда также «минус». Если мы умножаем «плюс» на «плюс», то получаем положительно число, то есть «плюс». Тоже самое касается и двух отрицательных чисел. Если мы умножаем «минус» на «минус», то получим «плюс».
Вычитание и сложение. Они базируются уже на других принципах. Если отрицательное число будет больше по модулю, чем наше положительное, то результат, конечно же, будет отрицательный. Наверняка, вам интересно, что же такое модуль и зачем он тут вообще. Все очень просто. Модуль — это значение числа, но без знака. Например -7 и 3. По модулю -7 будет просто 7 , а 3 так и останется 3. В итоге мы видим, что 7 больше, то есть выходит, что наше отрицательное число больше.
Можно сделать еще проще. Вычитание действуют полностью по такому же принципу.
Почему минус на минус дает плюс?
Новости компании. Почему говорят, что два плюса дают минус? И получается, что минус на минус, дал плюс. Если к минус движению прибавить минус пищевое воздержание, то в результате получим плюс килограммы.
Математика плюс на плюс: Минус на плюс что дает?
Как и ожидалось, “плюс на минус” дал “минус”. И наконец “минус на минус”, когда $X = (Im \ast R_k)$, а. Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее. Лучший ответ: Таня Масян. минус на минус даёт плюс, плюс на плюс даёт плюс, плюс на минус даёт минус. более месяца назад. Как известно, уже в школе всем говорят, что минус на минус дает плюс. Это первое впечатление, со временем все минусы -оказываются плюсы.
Плюс на плюс дает плюс
Класс был слишком большим, он чувствовал себя потерянным и никогда по-настоящему не общался со своим учителем; он был несчастен, я чувствовал себя виноватым, и на этом все закончилось. Перенесемся на 4 месяца вперед; Я счастлив и чувствую облегчение — мой сын очень увлечен, любит ходить на занятия и чувствует себя частью группы. Классы небольшие 4-5 детей , и это лучшее из обоих миров, они по-прежнему полу-приватные, и они также могут общаться с другими детьми и учиться вместе. Мы оба с нетерпением ждем новых программ по математике и других программ в Math Plus в будущем. Яна Рогозина Моя дочь занимается в субботней утренней программе «Математика Плюс» с сентября 2015 года. В школе замечательный и очень индивидуальный подход к обучению математике.
Дети ориентируются на «нестандартное мышление», разгадывая загадки и текстовые задачи и одновременно развивая прочную основу для базовых арифметических навыков. Навыки, приобретенные в математической школе, также пригодились ей при выполнении ее обычной школьной работы. Я с уверенностью рекомендую эту школу родителям, которые ищут индивидуальный и заботливый подход к развитию математических и логических навыков при работе с младшими учениками. Жаль, что я не знал об этой школе в прошлом году. Веселый, но дисциплинированный подход к обучению математике.
Зельфонд Аня, мама ученицы 1 класса. Белла очень знающий учитель. Она делает занятия очень интересными и увлекательными для моих детей. Мы очень довольны успехами наших детей по математике, они любят ходить в Math Plus Ирина Фикслер — мама 2 учеников Макса 2-го класса и Тима Детский сад Мой сын начал заниматься математикой с Беллой в 3 года, что может показаться рано. Однако ей удалось организовать класс таким образом, чтобы развить их логику, когнитивные навыки в решении задач и загадок.
Год спустя мой сын уже может легко писать числа, решать простые математические задачи и логически соединять точки. Очень рекомендуем Беллу. Моему сыну это очень нравится. Мне не нужно дважды просить его пойти на урок или сделать домашнее задание. Занятия проходят очень увлекательно и интересно.
Идея создания историй, основанных на математике, очень интересна. Могу с уверенностью сказать, что у моего сына обострилось восприятие вещей и логика. Мне также нравится размер нашего класса. Я твердо чувствую, что каждый ребенок получает достаточно вашего личного внимания. Это очень важно.
С нетерпением жду следующего года в программе детского сада. Регина Сабитов У Ника хорошие математические способности. В целом кажется, что его математическая работа для него несложна, и мы считаем, что субботний урок дает ему более сильную математическую основу для будущего обучения. Это обеспечивает полезную подготовку к алгебре и геометрии в средней школе. В целом программа оказалась очень полезной.
Арина Гоуэн 4 класс Ник Мой сын начал заниматься математикой с Беллой в 3 года, что может показаться ранним. Тем не менее, она смогла организовать класс таким образом, чтобы развить их логику, когнитивные навыки в решении задач и загадок. Я так рада, что мы нашли Design Squad! Класс обеспечивает игровую атмосферу для обучения по очень широкому кругу тем. Мероприятия варьируются от изучения древней египетской культуры и ритуалов до создания роботов, изготовления натуральных средств из пчелиного воска и научных экспериментов — мой сын любит разнообразие!
У инструктора, миссис Ник, масса энергии, и ей явно нравится то, что она делает — она может увлечь моего сына и поддерживать его интерес неделю за неделей. Шрабштейн, Аннат — мама Ари, 8-летнего ученика группы дизайнеров Я очень впечатлена школой Math Plus. Мой четырехлетний сын добился больших успехов за очень короткое время и сразу же очень заинтересовался математикой. В классе очень мало детей, поэтому каждый ребенок получает много внимания от учителя. Я особенно благодарен Белле Гершт за ее уникальную стратегию обучения.
Она очень преданный и профессиональный учитель, который делает все возможное, чтобы убедиться, что ваш ребенок преуспевает в математике и других науках. Катрина Генерозов, доктор фармацевтических наук Когда мы начали отдавать нашу дочь в MathPlus в третьем классе, она говорила что-то вроде: «Я не силен в математике». Мы сразу же увидели улучшения в ее понимании и комфорте в математике. Через три года она неизменно была лучшей в своем классе по математике в своей французской двуязычной школе. Теперь она говорит: «Математика — мой любимый предмет!
Я видел, как сильно возросла ее любовь к изучению математики, и ее уверенность в себе взлетела, когда она понимает и решает задачи. Я очень доволен уровнем профессионализма в MathPlus и небольшим размером класса. Я убежден, что она находится на продвинутом уровне, потому что мы начали ее склоняться на уровне детского сада. Выученные методы продолжают делать математику веселой и легкой для Рене и во втором классе. Я настоятельно рекомендую MathPluss всем родителям, которые хотят заинтересовать своих детей и привить любовь к учебе с раннего возраста.
Симона Шустер Цеглин, родитель ученика MathPlus. У меня двое сыновей, которые в этом году учатся в 3-м и 5-м классах.
Когда создавалось понятие отрицательных чисел, самой естественной моделью были денежные долги.
Скажем, у Корнея есть 3 рубля. То есть остался у Корнея только долг в 4 рубля. Здесь важно слово "Аналогично" -- так по аналогии вводился смысл вычитания из меньшего числа большего.
Иначе говоря, чтобы умножение было осмысленным, "минус на плюс" должен давать "минус".
Итак, я сказал, НЕ даёт, но не сказал, что именно она даёт ДА даёт , хотя намекнул: даёт абсурд. А предыдущее действие может закончиться только утверждением, так как два подряд отрицания логикой не допускаются.
Между ними обязательно должен быть антипод или по меньшей мере пустое место для него. Это большая тема, но если в двух словах, то отрицание да-числа может дать "не число", может дать "не-число", но может дать и "да-число", если операция отрицания не выполнена не завершена , и, следовательно, предыдущий элемент в цепочке антиподов просто пропущен.
Пример 3. Деление чисел с одинаковыми знаками Действует тожк правило, что при умножении положительных или отрицательных чисел.
Чтобы разделить отрицательное число на отрицательное два отрицательных числа , надо разделить модуль делимого на модуль делителя. Пример 4. Деление чисел с разными знаками Действует тожк правило, что при делении положительных или отрицательных чисел. Чтобы разделить два числа с разными знаками, надо: 1 разделить модуль делимого на модуль делителя; 2 перед полученным числом поставить знак минус.
Почему результат вычитания минуса из минуса может быть положительным
Смарт бритва Huawei Dynacare с HiLink, минус на минус плюс не даёт, буду бородатымПодробнее. Лента новостей Друзья Фотографии Видео Музыка Группы Подарки на МИНУС даёт ПЛЮС. В последнем варианте как раз минус на минус дает плюс. «Враг моего врага — мой друг». Рисунок © Е.В. Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Не важно, что по математическим правилам минус на плюс дает минус. И получается, что минус на минус, дал плюс.
Когда два минуса дают плюс. Как понять, почему ";плюс"; на ";минус"; дает ";минус";
Правила умножения и деления отрицательных чисел - | «Минус» на «минус» дает «плюс» – об этом знают все без исключения. |
Почему минус на минус дает плюс? | Математика | | Минус, умноженный на минус, дает плюс; минус, умноженный на плюс, дает минус; а знаком минуса является усеченный Ψ, перевернутый вверх ногами, таким образом, Λ [с третьей центральной ветвью]. |
Почему минус на минус дает плюс? | Плюс на минус всегда даёт минус. |
Справедливая математика: разбираемся в тайнах операции «плюс» и «минус» | И получается, что минус на минус, дал плюс. |
Правило минус на минус дает
Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты.
Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность!
А вот перечень негативных событий: был задержан по подозрению во взяточничестве Валерий Усатов, чиновник администрации Омска; в Эстонии задержан бывший депутат Горсовета Александр Дмитриев, он же — бывший директор одного из отделений банка «АК Барс Банк», которого обвиняют в мошенничестве. К негативным событиям отнесено выведение из состава учредителей коммерческих фирм Вадима Цыганкова, возглавляющего Калачинский район; коррупционный скандал с Виктором Барановым, возглавлявшим управление Министерства экономики области; превышение должностных полномочий Анатолием Стадниковым, возглавлявшим Нижнеомский район; долг «Омскэнергосбыта» размером в 2 млрд. Но, несмотря на такой ворох проблем, эксперты посчитали, что социально-политическая устойчивость нашего региона достаточно высока. С чем, очевидно, можно поздравить жителей Омска. Самую нижнюю строку рейтинга занял Дагестан, его уровень устойчивости составляет 2,4 балла. Тому причиной стали множественные негативные явления и отставка Магомедали Магомедова, возглавлявшего регион.
Экспертами была указана тенденция на снижение уровня политической устойчивости всех областей РФ по сравнению с данными сентября 2012 года.
Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример?
Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов. Так, в XIX веке математики поняли, что у целых чисел и многочленов, при всей их внешней непохожести, есть много общего: и те, и другие можно складывать, вычитать и перемножать. Эти операции подчиняются одним и тем же законам — как в случае с числами, так и в случае с многочленами. А вот деление целых чисел друг на друга, чтобы в результате снова получались целые числа, возможно не всегда. То же самое и с многочленами.
Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды , непрерывные функции... Наконец, пришло понимание, что если изучить свойства самих операций, то потом результаты можно будет применять ко всем этим совокупностям объектов такой подход характерен для всей современной математики. В итоге появилось новое понятие: кольцо. Это всего-навсего множество элементов плюс действия, которые можно над ними производить. Основополагающими здесь являются как раз правила их называют аксиомами , которым подчиняются действия, а не природа элементов множества вот он, новый уровень абстракции! Желая подчеркнуть, что важна именно структура, которая возникает после введения аксиом, математики говорят: кольцо целых чисел, кольцо многочленов и т. Отталкиваясь от аксиом, можно выводить другие свойства колец. Мы сформулируем аксиомы кольца которые, естественно, похожи на правила действий с целыми числами , а затем докажем, что в любом кольце при умножении минуса на минус получается плюс. Кольцом называется множество с двумя бинарными операциями т.
Заметим, что кольца, в самой общей конструкции , не требуют ни перестановочности умножения, ни его обратимости т. Если вводить эти аксиомы, то получаются другие алгебраические структуры, но в них будут верны все теоремы, доказанные для колец. Для этого нам потребуется установить некоторые факты. Сперва докажем, что у каждого элемента может быть только один противоположный. В самом деле, пусть у элемента A есть два противоположных: B и С. Заметим теперь, что и A, и - -A являются противоположными к одному и тому же элементу -A , поэтому они должны быть равны. Значит, это произведение равно нулю. А то, что в кольце ровно один ноль ведь в аксиомах сказано, что такой элемент существует, но ничего не сказано про его единственность! Евгений Епифанов 1 Почему минус один умножить на минус один равно плюс один?
Мы сначала постараемся понять это, исходя из истории развития арифметики, а потом ответим на этот вопрос с точки зрения современной математики. Но числа сами по себе довольно бесполезны - нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел - тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение - это, по сути, то же сложение, если мы говорим о натуральных числах. В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже - сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом - так появились дробные числа. Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений - это был лишь инструмент для получения положительного ответа. Это недоверие сохранялось очень долго, и даже Декарт - один из «основателей» современной математики - называл их «ложными» в XVII веке! Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин - а это уже шаг в направлении превращения математики в абстрактную науку.
Эти операции подчиняются одним и тем же законам - как в случае с числами, так и в случае с многочленами. Потом обнаружились другие совокупности математических объектов, над которыми можно производить такие операции: формальные степенные ряды, непрерывные функции... Заметим, что кольца, в самой общей конструкции, не требуют ни перестановочности умножения, ни его обратимости т. Заметим теперь, что и A , и — —A являются противоположными к одному и тому же элементу —A , поэтому они должны быть равны. Но для уровня старшекласника-первокурсника. Допустим мы идем вдоль дороги, нас обгоняет машина и начинает удаляться. Время растет - и расстояние до нее растет. Скорость такой машины будем считать положительной, она может быть например 10 метров в секунду. Кстати, а сколько это километров в час?
Наверное дорога плохая... А вот машина идущая нам навстречу не удаляется, а приближается. Поэтому и скорость ее удобно считать отрицательной.
Но разбираться с этим лучше на примере. Кроме того, для каждого C есть противоположный элемент, который можно обозначить, как -C. Выведение аксиом для отрицательных чисел Приняв приведенные выше утверждения, можно ответить на вопрос: «"Плюс" на "минус" дает какой знак?
Для этого придется вначале доказать, что у каждого из элементов существует лишь один ему противоположный «собрат». Рассмотрим следующий пример доказательства. Давайте попробуем представить, что для C противоположными являются два числа - V и D. Вспоминая о переместительных законах и о свойствах числа 0, можно рассмотреть сумму всех трех чисел: C, V и D. Попробуем выяснить значение V. Для того чтобы понять, почему все же «плюс» на «минус» дает «минус», необходимо разобраться со следующим.
Так, для элемента -C противоположными являются C и - -C , то есть между собой они равны. А это значит, что прибавление произведения 0 х V никак не меняет установленную сумму. Ведь это произведение равняется нулю. Зная все эти аксиомы, можно вывести не только, сколько «плюс» на «минус» дает, но и что получается при умножении отрицательных чисел. Умножение и деление двух чисел со знаком «-» Если не углубляться в математические нюансы, то можно попробовать более простым способом объяснить правила действий с отрицательными числами. Этот пример объясняет, почему в выражении, где идут два «минуса» подряд, упомянутые знаки следует поменять на «плюс».
Теперь разберемся с умножением. Аналогично можно доказать, что и в результате деления двух отрицательных чисел выйдет положительное. Общие математические правила Конечно, такое объяснение не подойдет для школьников младших классов, которые только начинают учить абстрактные отрицательные числа. Им лучше объяснять на видимых предметах, манипулируя знакомым им термином зазеркалья. Например, придуманные, но не существующие игрушки находятся именно там. Их и можно отобразить со знаком «-».
Умножение двух зазеркальных объектов переносит их в еще один мир, который приравнивается к настоящему, то есть в результате мы имеем положительные числа. А вот умножение абстрактного отрицательного числа на положительное лишь дает знакомый всем результат. Ведь «плюс» умножить на «минус» дает «минус». Правда, в дети не слишком-то пытаются вникнуть во все математические нюансы. Хотя, если смотреть правде в глаза, для многих людей даже с высшим образованием так и остаются загадкой многие правила. Все принимают как данность то, что преподают им учителя, не затрудняясь вникать во все сложности, которые таит в себе математика.
Это верно как для целых, так и для дробных чисел. Действительно, а почему? Проще всего ответить: «Потому что таковы правила действий над отрицательными числами». Правила, которые мы учим в школе и применяем всю жизнь. Однако учебники не объясняют, почему правила именно такие. Мы запомнили - что вот именно так и больше не задаемся вопросом.
А давайте зададимся... Давным-давно людям были известны только натуральные числа: 1, 2, 3,... Их использовали для подсчета утвари, добычи, врагов и т. Но числа сами по себе довольно бесполезны — нужно уметь с ними обращаться. Сложение наглядно и понятно, к тому же сумма двух натуральных чисел — тоже натуральное число математик сказал бы, что множество натуральных чисел замкнуто относительно операции сложения. Умножение — это, по сути, то же сложение, если мы говорим о натуральных числах.
В жизни мы часто совершаем действия, связанные с этими двумя операциями например, делая покупки, мы складываем и умножаем , и странно думать, что наши предки сталкивались с ними реже — сложение и умножение были освоены человечеством очень давно. Часто приходится и делить одни величины на другие, но здесь результат не всегда выражается натуральным числом — так появились дробные числа. Без вычитания, конечно, тоже не обойтись. Но на практике мы, как правило, вычитаем из большего числа меньшее, и нет нужды использовать отрицательные числа. Этим можно объяснить, почему люди долго не пользовались отрицательными числами. В индийских документах отрицательные числа фигурируют с VII века н.
Их применяли для учета долгов или в промежуточных вычислениях для упрощения решения уравнений — это был лишь инструмент для получения положительного ответа. Тот факт, что отрицательные числа, в отличие от положительных, не выражают наличие какой-либо сущности, вызывал сильное недоверие. Люди в прямом смысле слова избегали отрицательных чисел: если у задачи получался отрицательный ответ, считали, что ответа нет вовсе. Это недоверие сохранялось очень долго, и даже Декарт — один из «основателей» современной математики — называл их «ложными» в XVII веке! При таком решении нам даже не встретились отрицательные числа. Что демонстрирует этот нехитрый пример?
Во-первых, становится понятна логика, которой определялись правила действий над отрицательными числами: результаты этих действий должны совпадать с ответами, которые получаются другим путем, без отрицательных чисел. Во-вторых, допуская использование отрицательных чисел, мы избавляемся от утомительного если уравнение окажется посложнее, с большим числом слагаемых поиска того пути решения, при котором все действия производятся только над натуральными числами. Более того, мы можем больше не думать каждый раз об осмысленности преобразуемых величин — а это уже шаг в направлении превращения математики в абстрактную науку. Правила действий над отрицательными числами сформировались не сразу, а стали обобщением многочисленных примеров, возникавших при решении прикладных задач. Вообще, развитие математики можно условно разбить на этапы: каждый следующий этап отличается от предыдущего новым уровнем абстракции при изучении объектов.