Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга.
«Вселенная удваивается»
Доказательство суперсимметрии полностью изменит наше понимание Вселенной | Это позволяет связать суперсимметрии и деформации пространственно-временной метрики, которые, согласно общей теории относительности, и есть причина тяготения. |
Доказательство суперсимметрии полностью изменит наше понимание Вселенной | Спонтанное нарушение суперсимметрии (общая теория). Механизм Файе — Илиопулоса спонтанного нарушения суперсимметрии. |
Гляжусь, как в зеркало: есть ли шансы у суперсимметрии?
Теория струн гласит, что вместо частиц, Вселенная состоит из микроскопических струн. Такая точка зрения может заменить нынешнее объяснение об устройстве Вселенной, Стандартной модели, разработанной в 1970-х годах, но в ней есть пробелы, которые включают гравитацию. Поиск SUSY, или доказать что его не существует, является частью программы подземного ускорителя, где частицы сталкиваются с околосветовой скоростью и создают миллиарды взрывов, наподобие первобытного Большого взрыва. Рольф Хойер, генеральный директор ЦЕРН, регулярно включает его в качестве одной из целей «новой физики» для ускорителя.
Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит к последовательному образованию других частиц.
Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение недостатка энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии.
Однако исследователи отмечают, что пока рано полностью ее исключать — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии. Зачем нужен большой адронный коллайдер Большой адронный коллайдер — ускоритель частиц, благодаря которому физики смогут проникнуть так глубоко внутрь материи, как никогда ранее. Суть работ на коллайдере заключается в изучении столкновения двух пучков протонов с суммарной энергией 14 ТэВ на один протон. Эта энергия в миллионы раз больше, чем энергия, выделяемая в единичном акте термоядерного синтеза.
Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее.
Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее.
Вот все пробелы в физике, которые может исправить суперсимметрия. Суперсимметрия может объяснить, почему бозон Хиггса такой легкий Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории.
Наиболее популярным кандидатом на роль вещества, которое могло бы сформировать первичные черные дыры, выступает темная материя, представляемая суперсимметричными частицами. Ученые полагают, что такого типа симметрия существовала на ранних этапах развития Вселенной, но в процессе ее старения расширения и охлаждения она нарушилась. Свои аргументы ученые из Университета Джонса Хопкинса основывают на двух обстоятельствах. Во-первых, современные модели предполагают, что первичные черные дыры попадают в интервал масс от десяти до ста солнечных.
СУПЕРСИММЕ́ТРИ́Я
Профессор Вал Гибсон, руководитель группы исследователей из Кембриджа, которая участвует в эксперименте LHCb, заявил, что новые результаты ставят в опасное положение тех его коллег, кто работает с теорией суперсимметрии. Эти результаты на самом деле полностью укладываются в Стандартную модель. Суперчастицы до сих пор не обнаружены и другими детекторами на других ускорителях. Загадка темной материи Если теория суперсимметрии не в состоянии объяснить существование темной материи, теоретикам придется искать другие объяснения несоответствий в Стандартной модели. Пока что физики, которые спешат предложить свои варианты новой физической теории, терпят неудачу. Однако сторонники теории суперсимметрии, например, профессор Джон Эллис из Королевского колледжа в Лондоне, возражают на это, указывая, что полученные результаты не противоречат этой теории. Меня лично этот результат не очень расстраивает", - говорит ученый. В 2011 году на Большом адронном коллайдере была проведена серия экспериментов, в ходе которых проверялись фундаментальные выводы теории суперсимметрии, а также верность описания ею физического мира. Как заявила 27 августа 2011 года представитель ЦЕРН профессор Тара Шиарс, эксперименты не подтвердили основные положения теории.
В нашем мире множество фермионов — это все частицы материи — и множество бозонов — это все переносчики взаимодействий. Но ни у одной из этих частиц нет свойств, подходящих для того, чтобы быть кому-то суперпартнёром. Поэтому, если бы суперсимметрия была природной симметрией, у каждого из известных нам типов элементарных частиц должны были бы быть партнёры, пока нами не открытые. А поскольку нам известно более 20 частиц, то работы у нас непочатый край!
Так что же это за симметрия? Это симметрия, связывающая пространство и время с направлениями пространства и времени суперпартнёров — иначе говоря, у пространства-времени имеются дополнительные измерения, непохожие на знакомые нам. В бозонном измерении — к ним мы привыкли — можно двигаться сколько угодно далеко, допустим, шаг за шагом продвигаться влево. В фермионном измерении всё устроено так, что можно сделать только один шаг.
Если сделать ещё один шаг, то вы окажетесь нигде. Вы можете только вернуться. Это звучит странно, и это так и есть; в итоге приходится определять такие измерения через математику, а не при помощи слов или аналогий. Теория относительности Эйнштейна прекрасно справляется с описанием и предсказанием множества аспектов нашего мира.
Его теория состоит из набора уравнению, подчиняющихся определённому набору симметрий. К примеру — трансляционная симметрия, или симметрия, связанная с переносом эксперимента из одного места пространства-времени в другое: эксперимент, проведённый сегодня в Лондоне, даст такой же результат, как тот же самый эксперимент, проведённый через несколько месяцев в Токио. В 1960-х математически было доказано, что суперсимметрия — это единственная симметрия, которую можно добавить к симметриям теории Эйнштейна так, чтобы получившиеся уравнения не стали расходиться со свойствами реального мира. В этом смысле суперсимметрия стоит особняком.
Где же эти частицы-суперпартнёры? Если бы суперссиметрия была точной симметрией природы, мы бы уже нашли множество суперпартнёров. Перед тем, как следовать далее, давайте вспомним, какие нам известны элементарные частицы. В статье по ссылке рис.
Имена у них довольно уродливые, сэлектрон и странный скварк, где «с» означает суперсимметрию. Вы можете спросить, почему их по две и почему для каждого нейтрино всего по одной. Обратитесь к рис. У фотона есть фотино, у глюонов — глюино, и т.
С массивными W-бозонами всё чуть сложнее. К сожалению, в физике частиц с именованием частиц есть постоянная проблема — букв не хватает. У всех этих частиц точно такая же масса, в этом воображаемом суперсимметричном мире.
Эксперимент в Брукхейвене показал, что g-2 отличается от теоретического предсказания на несколько частей на миллион. Эта крохотная разница намекала на существование неизвестных взаимодействий между мюоном и магнитным полем — взаимодействий, которые могут включать новые частицы или силы. К чему приведут новые открытия? Частицы, выходящие за рамки Стандартной модели, могут помочь объяснить загадочные явления, как природа темной материи, загадочной и широко распространенной субстанции, о существовании которой физики знают, но её еще предстоит обнаружить.
А что такое мюоны? Вся наша Вселенная построена из частиц размером меньше атома. Некоторые из этих частиц состоят из еще более мелких частиц, другие уже не дробятся. Это и есть элементарные частицы. Мюоны как раз и являются такими элементарными частицами: они похожи на электроны, только в 200 раз тяжелее. В ходе эксперимента Muon g-2 частицы разгонялись по 14-метровому кольцу в циркулярном коллайдере под воздействием мощного магнитного поля. Согласно известным законам физики, это должно было приводить к колебанию мюонов с определенной частотой.
Однако физики обнаружили, что частота их колебаний оказалась выше предполагаемой. По их мнению, это может свидетельствовать о действии силы, ранее не известной науке. Никто не знает точно, что еще, кроме воздействия на мюон, подвластно этой новой силе. Иными словами, поведение мюонов выходило за рамки того, что знают ученые. Физики задумались, а не причастна ли тут какая-то еще неизвестная, пятая сила? О какой пятой силе идет речь? Вся наша жизнь подчинена законам физики.
Все эти силы, с которыми мы имеем дело каждый день, можно свести к четырем фундаментальным категориям взаимодействий: электромагнитное, сильное, слабое и гравитационное. Четыре фундаментальных силы определяют взаимодействие всех объектов и частиц во Вселенной.
Как разлетаются бозоны Физики думают, что мы найдем доказательства суперсимметрии? Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной. Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн.
Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти. Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя. Мы не узнаем этого, пока БАК не заработает. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми. Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу.
Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия. Ждем запуска.
"Теория проигрывает эксперименту": новый кризис в физике высоких энергий?
Фактически, гипотеза суперсимметрии позволяет при помощи преобразований связать воедино вещество и излучение. На сегодня эта гипотеза не была подтверждена экспериментально. Для того чтобы фактически проверить ее, существует несколько возможностей. Одна из них заключается в поиске определенных цепочек превращения элементарных частиц в коллайдере внутри БАК элементарные частицы сталкиваются друг с другом, и этот процесс приводит последовательному образованию других частиц. Ученые искали такие цепочки превращений в данных, собранных детектором CMS. Второй вариант подразумевает не поиск новых частиц, а обнаружение «недостатка» энергии при определенных типах столкновений. Согласно положениям гипотезы суперсимметрии, за такой недостаток «ответственны» нейтралино — один из типов гипотетических суперсимметричных частиц. По итогам анализа части данных, собранных на детекторах CMS и ATLAS в течение 2010 года, ученые не обнаружили событий, которые соответствовали бы проявлениям гипотезы суперсимметрии. Однако исследователи отмечают, что пока рано полностью исключать ее — с их точки зрения, новые результаты только устанавливают более высокие энергетические пределы для проявления суперсимметрии.
Synge J. Anti-Compton scattering. Временные спектры аннигиляции позитронов 22Na в газообразном неоне различного изотопного состава. Об аннигиляции позитронов в газообразном неоне. ХВЭ, т. Di Vecchia and Schuchhardt V. Susskind Leonard. Перевод: Л. Ландау Л. Теоретическая физика. Том II, Теория поля. Хорган Джон. Конец науки. При использовании материалов сайта активная ссылка на первоисточник обязательна.
Поскольку эту идею нельзя было приписать к стандартным понятиям симметрии, она получила претенциозное название «суперсимметрия». Рука об руку Суперсимметрия постулирует, что каждой частице Стандартной модели соответствует ее «суперпартнер» - фермион, соответствующий бозону, или наоборот. Партнеры фермионов — сфермионы: скварк для кварка, сэлектрон для электрона и так далее. Партнер фотона был назван фотино, глюона — глюино, а для бозона Хиггса — хиггсино. Кроме спина, суперпартнеры обладают абсолютно одинаковыми свойствами — массой, зарядом и другими. Достижения суперсимметрии Суперсимметрия объясняет некоторые важные проблемы Стандартной модели. Мы знаем, что взаимодействия между частицами имеют разную интенсивность. Самым «сильным» действительно является сильное взаимодействие, затем идут электромагнитное и слабое. Это был момент «великого объединения». Стандартная модель такого поведения не предсказывает, а вот суперсимметрия в силах изменить эволюцию интенсивности взаимодействий. Статья по теме Морская болезнь: что такое гравитационные волны и как их обнаружили Другое сообщество ученых бьется над так называемой проблемой иерархии: массы переносчиков слабого взаимодействия, W и Z-бозонов, в 10,000,000,000,000,000 массы Планка — масштаба энергий, на котором гравитационное взаимодействие становится интенсивным. Откуда берется такая разница, неизвестно. И на самом деле, без «тонкой подстройки» параметров Стандартной модели мы должны наблюдать массы W и Z-бозонов гораздо больше, чем показывают эксперименты. В суперсимметрии, однако, естественным образом переносчики слабого взаимодействия оказываются именно тех масс, которые измеряются. Также среди суперпартнеров физикам очень нравится искать кандидатов на роль частиц темной материи. Претенденты — гипотетическая нейтральная частица нейтралино, предсказываемая суперсимметричными теориями, снейтрино, двойник нейтрино или гравитино, партнер гравитона. Ложка дегтя Проблем с физической точки зрения у суперсимметрии тоже хватает. Самая главная — огромное число свободных параметров, то есть значений различных констант, которые необходимо вводить искусственно, экспериментально они не измеряются.
Как показывают примеры темной материи и темной энергии, проблемы макро- и микромира неразрывно связаны между собой. Есть, конечно, и более пессимистический сценарий — не исключено и то, что мы просто достигли пределов человеческого знания и способности познавать мир. Кто-то из великих физиков, кажется, Леонард Сасскинд, любит говорить, что коту можно объяснять квантовую механику до посинения, но он никогда не поймет, как решать уравнение Шредингера. Мне вот кажется, что котик просто отлично понимает, что его покормят колбаской и без всякого уравнения Шредингера. Лично я, как простой советский человек, усердно конспектировавший "Материализм и эмпириокритицизм", верю в бесконечность познания и неисчерпаемость наших возможностей расширять пределы науки. К сожалению, этого не произошло и не понятно, произойдет ли в будущем. Вероятность этого, на мой взгляд, крайне мала, но экспериментаторы скрипят зубами, но продолжают эти поиски. Что касается гравитационных волн от астрофизических черных дыр, ситуация тут сложнее, так как эти волны больше касаются классической физики, нежели квантовой гравитации. Могут ли они дать нам что-то принципиально новое в смысле обобщений теории гравитации, я не знаю. Их изучение было бы интересным, однако тут мы столкнемся с теми же ограничениями и проблемами, которые накладываются теорией струн и отсутствием надежных предсказаний. Схема ускорительного комплекса проекта NICA К примеру, если попытаться оценить космологическую постоянную Эйнштейна из соображений размерности — она обратно пропорциональна квадрату планковской длины, то у нас получится значение, на 120 порядков превышающее то, что мы наблюдаем в реальности. Это, как часто говорят, худшее предсказание теоретической физики за всю ее историю. Почему это так, и почему космологическая постоянная так мала, но не равна нулю, мы не знаем, и это еще одна из демонстраций того, что теоретическая физика высоких энергий находится в кризисе. Кстати, в этом году Кумрун Вафа, знаменитый физик-теоретик из Гарвардского университета, и его коллеги опубликовали работу, из которой вроде бы следует, что теория струн не совместима с существованием космологической модели с положительной космологической постоянной. К их числу относится и наша Вселенная. Правда, там есть разные допущения. Жаркие споры по этому поводу сейчас сотрясают научное сообщество. Этого не произошло, и сама судьба коллайдера сейчас стала довольно туманной. Почему ILC? Иными словами, нам хотелось перенести хотя бы часть переднего края науки на территорию нашей страны. Сам факт существования подобной установки очень сильно стимулирует развитие науки и новых технологий. В последние 30 лет сложилась ситуация, при которой во многих отраслях научного знания реальные открытия и их обсуждение происходит где-то "там", а не здесь, в России. Это демотивирует всех и прежде всего молодых ученых. Наши молодые специалисты, получив великолепное базовое образование, поступают в аспирантуру и обнаруживают, что реальная научная работа на "переднем крае" происходит не в их институте, а где-то в Калифорнии. Естественно, что они уезжают — не потому, что они Родину не любят, а ради работы на этом самом переднем крае научных поисков.
Доказательство суперсимметрии полностью изменит наше понимание Вселенной
Теория суперсимметрии выдвигалась многими физиками-теоретиками в качестве средства объяснения некоторых несоответствий в Стандартной модели Вселенной. Для завершения обоснования суперсимметрии природы инфраструктурной динамикой -позитрония в «условиях резонанса» остаётся напомнить о возможности представления. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН). Многие думают, что даже если большинство теорий суперсимметрии не подтвердились, появятся новые, которые будут включать этот принцип, но в другой концепции. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия.
Большой адронный коллайдер подорвал позиции теории суперсимметрии
Все мезоны состоят из кварка и антикварка. Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином. Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства. Бозоны — частицы с нулевым или целым спином.
В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства. Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны. Глюоны от англ.
В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой. Барионы от греч. Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, —1 у антибарионов и 0 у всех остальных частиц. Читайте в любое время о — они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы.
Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково. Но оказалось, что первый распад происходит примерно на 10 процентов чаще. Источник Доказательство суперсимметрии полностью изменит наше понимание Вселенной Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам.
На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг. Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства. Неполная теория Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией. Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации.
Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна. Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество. Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков.
Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером.
Поиск SUSY, или доказать что его не существует, является частью программы подземного ускорителя, где частицы сталкиваются с околосветовой скоростью и создают миллиарды взрывов, наподобие первобытного Большого взрыва. Рольф Хойер, генеральный директор ЦЕРН, регулярно включает его в качестве одной из целей «новой физики» для ускорителя. Но в некоторых прогнозах, перед тем, как гигантская машина начала свою работу в марте 2010 предполагалось, что сигналы SUSY окажутся быстрее. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в новых принципах природы, которые можно открыть только при большой энергии коллайдеров.
Дмитрий Васильевич не останавливался в поиске, для исследований он выбирал наиболее сложные научные проблемы, выдвигая новые идеи и фундаментальные подходы.
Он постоянно следил за достижениями в различных областях физики и математики, старался расширять круг своих интересов. Этому способствовали научные командировки в международные центры Европы и Америки и общение с выдающимися учеными. Ездил он туда регулярно — с 1958 г. Каждая поездка завершалась подробным отчетом, где давался глубокий анализ не только основных теоретических исследований, проводимых в ЦЕРНе, но и организации научной работы; отмечались ее преимущества, давались конкретные рекомендации. В 1994 г. Волков был приглашен на Международную конференцию авторов оригинальных идей и открытий XX века в физике элементарных частиц в Эриче Италия , где выступил с докладом «Supergravity before 1976».
Последний раз он докладывал на конференции «Суперсимметрия-95» SUSY-95 во Франции, где выдвинул новую концепцию обобщенного принципа действия для суперструн и супермембран. К Дмитрию Васильевичу всегда тянулась молодежь, потому что он щедро делился идеями и открытиями и искренне радовался успехам и достижениям своих учеников и коллег. Созданная им в Харькове научная школа пользуется заслуженной мировой известностью. На его научных идеях и под его непосредственным руководством подготовлено около 20 кандидатских и докторских диссертаций. Много сил и энергии Д. Волков отдавал научно-организационной работе.
Он входил в состав ряда проблемных научных Советов, редколлегий, научных журналов и сборников. Достижения Д. Волкова неоднократно отмечались орденами и медалями. Ему было присвоено звание заслуженного деятеля науки Украины. В 1997 г. Интересы Дмитрия Васильевича далеко не исчерпывались одной наукой.
Он увлекался индийской философией, любил классическую литературу, занимался спортом, прекрасно плавал, был хорошим лыжником. Он любил семью, своих друзей, он горячо любил жизнь! В поселке Пятихатки есть улицы и проспекты, названные в честь известных ученых. В физике симметрии играют двоякую роль. Во-первых, каждому типу симметрии физической системы соответствует сохраняющаяся величина. Во-вторых, от новых физических теорий можно требовать выполнения различных симметрий.
Чем больше таких требований — тем меньше произвол в построении теории. Примером физической теории, обладающей симметрией, является обычная квантовая механика, оперирующая волновыми функциями. Волновая функция частицы — это комплексная функция, например, пространственных координат грубо говоря, комплексное число в каждой точке. Ее можно рассчитать из уравнения Шрёдингера. Физический смысл имеет не сама волновая функция, а квадрат ее модуля, который показывает вероятность нахождения частицы в каком-либо месте. Если все волновые функции умножить на одно и то же комплексное число с модулем 1, никакие предсказания теории не изменятся.
Действительно, модуль произведения комплексных чисел равен произведению модулей, и от такого домножения никакие вероятности не изменяются. Это пример так называемой глобальной симметрии глобальной — потому, что волновая функция умножалась в разных точках на одно и то же число. Суть этой симметрии заключается в том, что теория не изменяется относительно некоторого класса преобразований в нашем случае эти преобразования — умножение на произвольное комплексное число с модулем, равным 1. Квантовая электродинамика обладает симметрией относительно преобразований, называемых калибровочными. Эти преобразования заключаются в домножении поля электронов на комплексное число с модулем 1 правда, чтобы теория не изменялась, одновременно с преобразованием поля электронов нужно выполнить и некоторые другие преобразования электромагнитного поля. В отличие от рассмотренного выше случая квантовой механики, это число уже может быть в каждой точке различным локальная симметрия.
Интересно отметить следующий момент. Как было сказано выше, с каждой симметрией связана сохраняющаяся величина. В случае калибровочных преобразований квантовой электродинамики такой сохраняющейся величиной является обычный электрический заряд. В пятидесятых годах Янг и Миллс построили модель, уравнения которой не менялись под действием более сложных локальных калибровочных преобразований. Сначала интерес был исключительно математическим. Однако потом на основе теории Янга — Миллса были созданы важнейшие теории взаимодействия элементарных частиц — теория электрослабых взаимодействий и квантовая хромодинамика.
Эти теории, обладающие калибровочной симметрией, получили экспериментальное подтверждение. Стандартная модель фундаментальных взаимодействий В шестидесятых годах удалось объединить электромагнетизм и слабые взаимодействия. Салам, Глэшоу и Вайнберг построили теорию электрослабых взаимодействий. В 1979 году им была присуждена Нобелевская премия. Новая теория предсказала существование новых частиц, так называемых W- и Z-бозонов. Они отвечают за «перенос» слабого взаимодействия.
Эти бозоны были открыты на протонном суперсинхротроне в 1983 году. Казалось бы, каким образом можно объединить электромагнитные и слабые взаимодействия, если у первых радиус взаимодействия бесконечен действительно, мы видим свет — электромагнитное излучение — от удаленных галактик и других астрономических объектов , а у вторых он не превышает размеры атомного ядра? Оказывается, такая «несимметричность» связана с тем, что масса фотонов равна нулю, а масса W- и Z-бозонов очень большая, они примерно в 100 раз тяжелее протона. Нарушение так называемой электрослабой симметрии является важным свойством теории электрослабых взаимодействий этой симметрией обладают уравнения теории. В результате нарушения W- и Z-бозоны и некоторые другие частицы например, электроны приобретают массы. В рамках модели Янга — Миллса калибровочные бозоны нельзя сделать массивными, не разрушив калибровочную симметрию.
Для нарушения электрослабой симметрии был придуман механизм Хиггса. Основная идея заключается в том, что все пространство пронизывает специальное хиггсовское поле, которое взаимодействует с остальными полями и нарушает симметрию, хотя уравнения теории остаются симметричными. Возмущения хиггсовского поля должны проявляться на эксперименте как новые частицы — хиггсовские бозоны. Бозон Хиггса — очень тяжелая частица, тяжелее W- и Z-бозонов. Поэтому она пока не открыта экспериментально. Теория сильных взаимодействий, квантовая хромодинамика, тоже основана на уравнениях Янга — Миллса.
Квантовая хромодинамика говорит, что многие элементарные частицы — мезоны и барионы например, протон — состоят из кварков. Однако изолированные кварки никогда не наблюдались это явление называется конфайнментом.
Таким образом, имеется некая скрытая пока от нас материя. Подтверждает существование тёмной материи и такой феномен, как гравитационное линзирование.
Это явление, при котором фотоны лучи света отклоняются от своего движения по прямой при прохождении рядом с массивным космическим телом. В основе линзирования лежит эффект искривления пространства вблизи массивного тела. Наблюдая за объектами, находящимися на большом удалении от Земли, учёные заметили, что происходит искажение направления распространения фотонов, причём это искажение нельзя объяснить только лишь наблюдаемой массой «обычной» материи. Искажение возникает под влиянием некой скрытой массы объектов, то есть тёмной материи.
Что касается природы тёмной материи, то условно можно выделить два её типа: барионная, состоящая из обычного вещества, но невидимая по каким-то причинам, и небарионная, состоящая из не обнаруженных пока частиц. Возможный кандидат на роль барионной тёмной материи — первичные чёрные дыры. Такие чёрные дыры образовывались не за счёт гравитационного коллапса крупной звезды, как обычные чёрные дыры, а из сверхплотной материи в момент начального расширения Вселенной. Наши коллеги из Новосибирского государственного университета активно занимаются этим направлением.
Учёные предполагают, что при столкновении подобных частиц может родиться частица тёмной материи. Но непосредственно зарегистрировать частицы неизвестного вещества вряд ли получится, так как они должны иметь крайне низкую вероятность регистрации системами детектора. С помощью... Однако при помощи детектора можно проанализировать все другие частицы, появившиеся при столкновении, и определить, что объём детектора покинула какая-то частица, которая, предположительно, может быть связана с частицами тёмной материи.
Однако не факт, что частицы, рождённые в коллайдерах, — это те самые, которые отвечают за скрытую массу во Вселенной. Существуют и методы регистрации тёмной материи с помощью регистрации излучения от массивных объектов. Учёным известно, что там, где наблюдаются большие скопления видимого вещества, тёмная материя тоже имеет более высокую плотность. Ожидается, что при достаточной плотности частицы тёмной материи могут столкнуться и аннигилировать, излучая при этом частицы обычной материи, которая уже может быть зарегистрирована.
Однако этот метод не позволяет точно определить, что излучение исходит именно от тёмной материи.
СУПЕРСИММЕТРИЯ
Лектор рассказывает о теории суперструн, голографических чёрных дырах, столкновениях параллельных вселенных и о других интересных явлениях. активно развивающейся области теоретической физики, которая вполне может оказаться в центре будущего развития физики. Однако Тара Шиарс отказалась полностью отвергнуть теорию суперсимметрии и заметила, что не нашли подтверждения выводы ее упрощенной версии, а не более сложного варианта. Поскольку суперсимметрия является необходимым компонентом теории суперструн, любая обнаруженная суперсимметрия будет согласована с теорией суперструн.
Откройте свой Мир!
Теория струн предсказывает, что между этими двумя частицами существует связь, называемая суперсимметрией, при которой для каждого фермиона должен существовать бозон, и наоборот. Теории, включающие суперсимметрию, дают возможность решить несколько проблем, присущих Стандартной модели. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в. Левин Б.М. Реализация суперсимметрии в атоме дальнодействия и конфайнмент, барионная асимметрия, тёмная материя/тёмная энергия. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Сформулированная в 1973 году, теория Суперсимметрии предполагает наличие у каждой известной науке элементарной частицы двойника, отличающегося своими характеристиками.
Большой адронный коллайдер подорвал позиции теории суперсимметрии
Абстрактное преобразование суперсимметрии связывает бозонное и фермионное квантовые поля, так что они могут превращаться друг в друга. Образно можно сказать, что преобразование суперсимметрии может переводить материю во взаимодействие или в излучение , и наоборот. По состоянию на начало 2008 года суперсимметрия является физической гипотезой, не подтверждённой экспериментально. Совершенно точно установлено, что наш мир не является суперсимметричным в смысле точной симметрии, так как в любой суперсимметричной модели фермионы и бозоны, связанные суперсимметричным преобразованием, должны обладать одинаковыми массой, зарядом и другими квантовыми числами за исключением спина. Данное требование не выполняется для известных в природе частиц.
Вот если бы БАК или другой ускоритель нашли бы "новую физику", тогда дело бы пошло веселей. А так, в основном, мы имеем только косвенные подтверждения, что новая физика есть.
По сути, мы сейчас идем за экспериментами — мы строим коллайдер, он, к счастью, находит бозон Хиггса, но не открывает микро-черные дыры или какие-то другие новые и интересные объекты, вроде суперпартнеров. Теоретики задыхаются от недостатка новых данных и у них, образно говоря, начинаются разнообразные сугубо математические галлюцинации… И это все при том, что острые нерешенные вопросы еще у нас есть. Мне, теоретику, ситуация, в которой теория становится ведомой, совсем не по душе. Мне кажется, что вопрос "нужно ли идти дальше? Я верю в то, что тяга к фундаментальному знанию будет существовать до тех пор, пока существует человечество. Не думаю, что апокалиптическая картина "общества всеобщего потребления", которую нам часто рисуют футуристы, будет воплощена в жизнь до такой степени, что фундаментальная наука станет никому не нужна и ее полностью прекратят финансировать.
С другой стороны, есть немало примеров саморазрушительной динамики на уровне индивидуумов и сообществ, поэтому гарантий тут нет. Что касается чисто технической стороны, то в последнее время большое внимание уделяется разработке новых принципов ускорения частиц. Если прогресс в этом направлении будет достигнут, вовсе необязательно строить ускоритель размером с половину континента. В любом случае, пока экспериментаторы ведут в изучении физики частиц, мы будем двигаться в этом направлении. Бозон Хиггса - недостающее звено Стандартной модели За пределами Стандартной модели сейчас находится своеобразная "полоса незнания", побуждающая экспериментаторов строить новые машины и копаться в ней. Это копание проявляется в двух вещах — мы сталкиваем частицы на все более высоких энергиях, надеясь найти что-то новое, и более точно промеряем параметры их взаимодействий.
Это тоже очень большая работа, которая, может быть, не принесет каких-то громких фундаментальных открытий, но крайне важна для понимания общей картины устройства мироздания. Иными словами, я пока не готов окончательно хоронить ни экспериментальную, ни теоретическую физику высоких энергий. При этом меня очень раздражает то, что мы уже несколько десятилетий топчемся на одном месте и так и не можем сформулировать убедительного обобщения всего, что было открыто за последние годы и того, что лежит за пределами Стандартной модели. Я бы сказал, что теоретическая физика высоких энергий находится в кризисе, причем достаточно серьезном. С чем они связаны? Когда развитие замедляется, то, как правило, начинаются поиски "злодеев", которые довели нас "до такой жизни".
Нужно разделять теорию — феноменологию частиц и теорию струн, чье отношение к "реальной физике" пока не до конца определено. Есть огромное число моделей, которые никак с ней не связаны, и многие практические вопросы тоже ее не затрагивают и не зависят от нее. Ожидает ли нас такая же революция, сопоставимая по масштабам с созданием квантовой физики? В каком-то смысле современная ситуация и то, что происходило в конце 19 века, очень похожи друг на друга. В то время мы достигли пределов классической физики, но еще не начали замечать квантовых эффектов.
Унификация калибровочных бегущих констант.
Известно, что в калибровочных теориях возникает явление бегущей константы связи, то есть значение константы взаимодействия изменяется в зависимости от того, на каком энергетическом масштабе наблюдается взаимодействие. Стандартная модель базируется на трёх различных калибровочных группах. Значения констант этих групп различны на малых энергиях, и с увеличением энергии они меняются. На энергетическом уровне порядка 100 ГэВ две константы становятся одинаковыми явление электрослабого объединения. На энергетическом уровне 1016 ГэВ все три константы сходятся примерно к одному значению, но в Стандартной модели они не могут стать равными друг другу. То есть, строго говоря, в рамках Стандартной модели «великое объединение» электрослабого и сильного взаимодействия невозможно.
Поправки за счёт новых полей МССМ меняют вид энергетической эволюции констант, так что они могут сойтись в одну точку. Тёмная материя.
В основе линзирования лежит эффект искривления пространства вблизи массивного тела. Наблюдая за объектами, находящимися на большом удалении от Земли, учёные заметили, что происходит искажение направления распространения фотонов, причём это искажение нельзя объяснить только лишь наблюдаемой массой «обычной» материи.
Искажение возникает под влиянием некой скрытой массы объектов, то есть тёмной материи. Что касается природы тёмной материи, то условно можно выделить два её типа: барионная, состоящая из обычного вещества, но невидимая по каким-то причинам, и небарионная, состоящая из не обнаруженных пока частиц. Возможный кандидат на роль барионной тёмной материи — первичные чёрные дыры. Такие чёрные дыры образовывались не за счёт гравитационного коллапса крупной звезды, как обычные чёрные дыры, а из сверхплотной материи в момент начального расширения Вселенной.
Наши коллеги из Новосибирского государственного университета активно занимаются этим направлением. Учёные предполагают, что при столкновении подобных частиц может родиться частица тёмной материи. Но непосредственно зарегистрировать частицы неизвестного вещества вряд ли получится, так как они должны иметь крайне низкую вероятность регистрации системами детектора. С помощью...
Однако при помощи детектора можно проанализировать все другие частицы, появившиеся при столкновении, и определить, что объём детектора покинула какая-то частица, которая, предположительно, может быть связана с частицами тёмной материи. Однако не факт, что частицы, рождённые в коллайдерах, — это те самые, которые отвечают за скрытую массу во Вселенной. Существуют и методы регистрации тёмной материи с помощью регистрации излучения от массивных объектов. Учёным известно, что там, где наблюдаются большие скопления видимого вещества, тёмная материя тоже имеет более высокую плотность.
Ожидается, что при достаточной плотности частицы тёмной материи могут столкнуться и аннигилировать, излучая при этом частицы обычной материи, которая уже может быть зарегистрирована. Однако этот метод не позволяет точно определить, что излучение исходит именно от тёмной материи. Согласно научным представлениям, Вселенная состоит из элементарных частиц двух типов: переносчиков взаимодействий — бозонов — и «кирпичиков» материи — фермионов. Существует также теория суперсимметрии — гипотетическая симметрия, связывающая бозоны и фермионы.
В данной теории, образно говоря, взаимодействие становится материей, а материя — взаимодействием.
🔸 Доказательство суперсимметрии полностью изменит наше понимание Вселенной🔸
Если рассмотреть квантовую электродинамику, то это теория с не очень большим, по сравнению с суперсимметрией, количеством симметрий. му же, в этом случае у нас исчезают расходимости в первом порядке теории возмущений, что тоже является одним из плюсов суперсимметрии. Во всех теориях суперсимметрии предполагается, что персимметрию уже на основе первых данных с БАК. Знаменитая теория Суперсимметрии, объясняющая основы мироздания, не нашла подтверждения в ходе исследований в Европейском центре ядерных исследований (ЦЕРН) на. Существует много споров об этой теории, но суперсимметрия является одним из наиболее привлекательно возможных расширений Стандартной модели и ведущим претендентом в.