Их получила обсерватория «Телескоп горизонта событий» (Event Horizon Telescope), объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам.
Газета «Суть времени»
- Публикации
- #Event Horizon Telescope
- Stories from those working behind the scenes on the biggest discovery of the year
- Опубликован первый снимок гигантской черной дыры в Млечном Пути
- Комментарии
Блазар: цель телескопов, снявших силуэт черной дыры
После получения первого фото черной дыры группы ученых сосредоточились на новом объекте — черной дыре в центре нашей галактики. Эта сверхмассивная черная дыра весит как 4 млн наших Солнца. Находится в созвездии Стрельца. О ее существовании подозревали с 1970-х годов, но до сих пор не было подтверждения, что это именно черная дыра, а не какое-то другое скопление материи. Размером объект — примерно как орбита Меркурия. На нашем небе примерно такого размера, как если бы мы пытались разглядеть бублик на Луне невооруженным глазом. Фото очень похоже на фото первой черной дыры.
И вот, наконец, получено изображение, подтверждающее ранее сделанные выводы, и позволяющее продолжать исследования на новом уровне. Дело в том, что вещество в окрестности чёрной дыры движется почти со скоростью света. Как пошутил один из астрономов, они предпринимали что-то вроде попытки сделать чёткий снимок щенка, быстро гоняющегося за своим хвостом.
Тем не менее, обе чёрные дыры выглядят удивительно похожими, несмотря на совершенно разные типы галактик и разницу в массе более чем в тысячу раз. Поразительная похожесть этих чёрных дыр вблизи края говорит нам, что там ими «управляет» общая теория относительности, и любые различия, которые мы видим дальше, должны быть связаны с различиями в окружающем их материале. Теперь астрономы смогут изучить различия между этими двумя сверхмассивными чёрными дырами, чтобы получить новые ценные сведения о том, как протекают процессы, играющие огромную роль в космологии, и как гравитация ведёт себя в экстремальных условиях. Телескоп горизонта событий в этом исследовании объединил восемь радиообсерваторий, расположенных в разных концах Земли, превратив их в огромный телескоп, обладающий большой разрешающей способностью, то есть способностью различать мелкие детали на огромном расстоянии.
Credit: Event Horizon Telescope Существование черных дыр следует из Общей теории относительности Альберта Эйнштейна, считающейся сегодня стандартной теорией гравитации, неоднократно подтвержденной экспериментально. Они представляют собой области пространства-времени, гравитационное притяжение которых настолько велико, что покинуть их не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Другими словами, все, что подойдет слишком близко черной дыре и будет затянуто за горизонт событий, уже не сможет вырваться обратно. Однако это теория, и никогда ранее черные дыры, а точнее их тени, не наблюдались напрямую. Проблема в том, что, даже обладая огромными массами, размеры этих объектов не столь велики, чтобы современные телескопы в одиночку могли их рассмотреть с разрешением, позволяющим разделить аккреционный диск, окружающий черную дыру, и горизонт событий.
Смоделированное изображение окружения сверхмассивной черной дыры. Credit: M. Moscibrodzka, T.
Блазары — это космические объекты, отличающиеся высокой степенью светимости, их джеты направлены в сторону наблюдателя, что значительно увеличивает яркость. Они представляют большой интерес для ученых, поэтому все исследователи с энтузиазмом потирают руки, рассчитывая, что именно на них обратит свой взор The Event Horizon Telescope. Кстати, «Телескоп Горизонта Событий» будет не единственным участником операции. Предполагается, что такой тандем даст еще больше полезных данных для дальнейших исследований.
Оцените статью.
Первое в истории изображение черной дыры уже стало мемом
Однако российские учёные из проекта «Радиоастрон», параллельно наблюдавшие за чёрной дырой с помощью космического радиотелескопа, указали иностранным коллегам на искажения, вызываемые межзвёздной средой. Дополнительная обработка данных заняла ещё год. Сверхмассивные чёрные дыры , к которым относится объект в галактике Messier 87, больше Солнца в миллионы раз. Первое теоретическое описание устройства этих объектов и их «поведения» было сделано советскими астрофизиками почти полвека назад. Изображения EVT полностью подтвердили предположения отечественных учёных — чёрные дыры существуют. И они выглядят именно так, как предполагалось. Роль отечественной науки в изучении чёрных дыр невозможно переоценить, считает научный руководитель Государственного астрономического института им. В те времена термин «чёрная дыра» был в астрономии ругательным. Наши учёные впервые описали эти объекты», — говорит Черепащук в беседе с RT. Также по теме «Исключительная находка»: как свет умирающей звезды помог вычислить скорость вращения чёрной дыры Американские учёные измерили массу и впервые вычислили скорость вращения сверхмассивной чёрной дыры в центре значительно удалённой от...
EHT VLBI combines a network of widely separated millimeter telescopes to simulate a much larger aperture to study supermassive black holes at the highest resolutions ever achieved. From the EHT observations, we expect to better understand the physics around the black hole, as well as probe General Relativity.
Телескоп горизонта событий антенная решетка планетарного масштаба из восьми наземных радиотелескопов был создан специально, чтобы фотографировать черные дыры. Сегодня астрономы-исследователи EHT представили миру первое прямое визуальное свидетельство существования сверхмассивной черной дыры и ее тени в центре галактики Мессье 87. Тень черной дыры — это наибольшее возможное приближение к изображению самой черной дыры, полностью темного объекта, который не выпускает из себя свет. Граница черной дыры — «горизонт событий» этому термину EHTи обязан своим названием примерно в 2. Хотя этот размер и может показаться большим, получающееся световое кольцо имеет видимый поперечник всего около 40 угловых микросекунд, что эквивалентно видимому размеру кредитной карты, лежащей на поверхности Луны.
Как это возможно, астрофизики пока не могут сказать, но они склоняются в пользу того, что выбросы черной дыры действительно могут быть направлены в сторону Земли. В прошлом, как отмечает Иссаун, подобное совпадение казалось им крайне неправдоподобным, однако наблюдения и EHT, и GMVA вполне однозначно говорят в пользу этого сценария. Ученые надеются, что окончательный ответ на эту загадку будет найден в ближайшее время, когда астрономы завершат обработку последней порции данных с EHT. Новые, более детальные снимки, очищенные от помех схожим образом, точно укажут на то, куда смотрит джет черной дыры и есть ли он у нее вообще, заключает астроном.
A story of overcoming differences between people and telescopes
- Ученые сфотографировали тень космического монстра в сердце Млечного Пути
- Фото черной дыры в центре Млечного Пути: почему это важно - Мнения ТАСС
- Media in category "Event Horizon Telescope"
- Впервые представлено фото черной дыры и горизонта событий
- Use saved searches to filter your results more quickly
Первое в истории изображение черной дыры уже стало мемом
Первая сверхмассивная черная дыра, изображение окрестностей которой было получено при помощи Телескопа горизонта событий, предоставила также и то, что исследователи называют «однозначным доказательством вращения черных дыр». Телескоп Event Horizon Telescope (EHT) запечатлел квазар под названием NRAO 530. EHT (Event Horizon Telescope) представляет собой глобальный радиоинтерферометр со сверхдлинной базой, работающий на длине волны 1,3 миллиметра. Команда телескопа горизонта событий показала первое изображение черной дыры в центре Млечного Пути. Именно эта идея и легла в основу проекта «Телескоп горизонта событий», объединившего свыше 300 учёных из шести десятков научных учреждений по всему миру.
Subcategories
- Event Horizon 💻 – Telegram
- На фото показали магнитное поле вокруг сверхмассивной чёрной дыры нашей Галактики
- Stories from those working behind the scenes on the biggest discovery of the year
- Ученые сфотографировали тень космического монстра в сердце Млечного Пути -
- Последние комментарии
- Черную дыру впервые разглядели в телескоп - Открытая Дубна
Опубликован первый снимок гигантской черной дыры в Млечном Пути
вы делаете те новости, которые происходят вокруг нас. 20 мая сотрудники Европейской южной обсерватории (ESO) и команда, занимающаяся исследованиями на Телескопе горизонта событий (EHT, Event Horizon Telescope), провели пресс-конференцию, на которой показали фото черной дыры в центре нашей Галактики. Изображение было получено международной исследовательской группой — Коллаборацией «Телескоп горизонта событий» (EHT), которая выполнила наблюдения объекта при помощи глобальной сети р. Результаты 11 новостей.
Search code, repositories, users, issues, pull requests...
Изображение: Event Horizon Telescope. Их получила обсерватория «Телескоп горизонта событий» (Event Horizon Telescope), объединившая в глобальную сеть несколько крупнейший радиотелескопов, разбросанных по разным континентам. Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. Как предполагают теоретики, "Телескоп горизонта событий" (Event Horizon Telescope) сможет зарегистрировать изображение тени сверхмассивной черной дыры, находящейся в центре нашей Галактики, а также и.
Photographing a black hole
Многие, включая «Комсомолку», подумали, что её фото и покажут. Были такие планы. Но показали другую — черную дыру в галактике М87. Наша хоть и ближе — в 26 000 световых годах от Земли, но гораздо меньше. С ее фотографиями, как пояснили ученые, придется подождать. Возникли трудности.
До галактики М87 - 50 миллионов световых лет. Черную дыру в ней в 2011 году обнаружила группа американских астрономов во главе с Карлом Гебхардтом Karl Gebhardt из Университета Техаса University of Texas in Austin. Открытие они сделали с помощью 8-метрового телескопа на Гавайских островах 8. Астрономы уже тогда определили массу объекта - около 7 миллиардов солнечных. Чудовищными оказались и размеры «монстра» - внутри него целиком поместилась бы Солнечная система.
Темная центральная область, известная как тень, черной дыры окружена яркой кольцевой структурой. На снимке запечатлен свет, искривленный мощной гравитацией черной дыры, которая в четыре миллиона раз массивнее нашего Солнца. Наблюдения говорят нам об активной сверхмассивной черной дыре, которая притягивает к себе материал и заставляет его погружаться в свою пасть. Изучив ее орбиту, были оценены масса и радиус сверхмассивной черной дыры. Более поздние наблюдения определили массу в 3,7 млн солнечных масс в объеме с радиусом в 6,25 световых часов, или 6,7 млрд км. Ее активность в центре Млечного Пути превращает ее в своего рода двигатель, который, поглощая материю из того, что проходит поблизости, производит энергию в виде интенсивного излучения. Первое изображение черной дыры было получено EHT в 2019 году.
Это была сверхмассивная черная дыра в центре галактики Мессье 87.
Татьяна Ларченкова объяснила, что при определении приоритетов важно было выявить задачи, которые до запуска «Миллиметрона» не будут решены другими проектами. Строгая иерархия работ оправдана ограниченным временем работы в режиме активного охлаждения порядка трех лет , которое даст «Миллиметрону» особую чувствительность в режиме одиночного телескопа. На этом этапе он сможет пробиться взглядом к очень слабым объектам, например, самым первым галактикам. Исследуя жизнь Что касается астробиологических задач, они присутствовали в концепции проекта с самого начала и со временем все глубже прорабатывались. Их наблюдения, в том числе спектральные, нужны, чтобы понять состав их поверхностей, атмосфер, изучать их льды и понять, из чего они состоят.
Такие спектральные исследования как раз сможет проводить наша обсерватория». Особенно привлекает возможность изучить окрестности Сатурна, к которому в ближайшие годы не планируется направлять автоматические межпланетные миссии с Земли. С помощью телескопа ученые смогут оценить астробиологический потенциал Энцелада и Титана, под поверхностью которых предположительно есть океаны с условиями, пригодными для живых организмов. Анализ химического состава этих миров поможет ученым исследовать особенности взаимодействия океана с поверхностью спутника и ответить на вопрос, есть ли там жизнь. В погоне за «кротовыми норами» В объектив «Миллиметрона» попадут также центральные области активных ядер галактик. По всей видимости, это сверхмассивные черные дыры, но нельзя исключать, что некоторые из них окажутся «кротовыми норами».
Поиск «кротовых нор» — одна из самых интересных и захватывающих задач «Миллиметрона». В отличие от черных дыр, эти таинственные объекты в космосе наблюдателями пока не обнаружены. На сегодняшний день «кротовая нора» — это гипотетическое явление, существование которого допускается общей теорией относительности. Она предположительно состоит из двух входов, своеобразных порталов, которые могут располагаться на значительном удалении друг от друга, возможно, даже в разных Вселенных. Открытие этих объектов произвело бы революцию в наших представлениях о пространстве и окружающем мире. Благодаря своим параметрам «Миллиметрон» сможет приблизиться к разгадке этой тайны.
Статус проекта Как рассказали Сергей Лихачев и Евгений Голубев, в настоящее время создается ряд опытных образцов различных составных частей космической обсерватории.
Несмотря на то, что саму чёрную дыру невозможно наблюдать, вращающийся газ и вещество в её окрестностях излучают достаточно яркий свет, который можно зарегистрировать. Для получения нового изображения коллаборация Event Horizon Telescope использовала эффект поляризации света, что позволило отобразить мощные магнитные поля, окружающие чёрную дыру. Исследователи обнаружили схожесть в строении магнитных полей обеих чёрных дыр.
Астрономы впервые зафиксировали фотонное кольцо у черной дыры
Чем ближе траектория луча к черной дыре, тем сильнее изменения. Лучи света движутся мимо черной дыры со всех сторон, но мы видим только те, которые направлены на нас. Таким образом, черная дыра может служить очень мощной линзой. Следовательно, мы должны видеть тонкий круг света, или фотонное кольцо. Правая сторона кольца будет ярче из-за вращения черной дыры. Размер кольца зависит от массы черной дыры, а яркость более ярких областей зависит от скорости вращения. Однако на изображении черной дыры М87 фотонного кольца нет, потому что пространство между ней и Землей не полностью пустое. Есть зоны холодного газа, проходя сквозь которые, свет рассеивается, делая изображение более размытым.
В числе отличий и координаты точки назначения: «Спектр-Р» вглядывался в бесконечность, вращаясь вокруг Земли по эллиптической орбите, а «Миллиметрон» для выполнения своей миссии направится в точку Лагранжа L2, находящуюся на прямой линии между Солнцем и нашей планетой на расстоянии 1. Орбита в окрестности точки L2 была выбрана главным образом для обеспечения охлаждения до сверхнизких температур. Из рода «Спектров» Было запланировано создать четыре обсерватории серии «Спектр» для изучения астрономических объектов в различных диапазонах электромагнитных волн.
Первый аппарат — «Спектр-Р» — стартовал в 2011 г. Отправленная на орбиту летом 2019 г. В середине десятилетия эстафету подхватит разрабатываемый аппарат «Спектр-УФ», который будет собирать информацию о далеких объектах в ультрафиолете.
Завершит масштабный проект обсерватория «Спектр-М», чьей задачей станет исследование Вселенной в миллиметровом и инфракрасном диапазонах. Космический цветок Главное зеркало «Миллиметрона», где отразятся ответы на загадки Вселенной, отправится в космическое путешествие аккуратно сложенным и раскроется как огромный космический цветок сразу по выведении на орбиту. После этого его полет к точке L2 составит еще три месяца.
Это время будет использовано для начального охлаждения конструкции. У обсерватории-цветка будет 24 трансформируемых лепестка и центральное стационарное зеркало диаметром три метра. На каждом лепестке будет установлено по три панели из высокомодульного углепластика с алюминиевым радиоотражающим покрытием.
Кинематика раскрытия зеркала будет такой же, как и у обсерватории «Спектр-Р», но устройство раскрытия модернизировано для достижения более высокой точности этого процесса. Лепестки космического цветка будут зафиксированы по краям специальными защелками. Предполагается, что аппарат проработает на орбите десять лет, из которых три — в одиночном режиме.
В это время его научная аппаратура для поддержания высоких параметров чувствительности и противодействия тепловым помехам будет сильно охлаждаться. Хотя российский и американский аппараты рассчитаны на работу в разных диапазонах электромагнитного излучения «Джеймс Уэбб» будет работать в видимом и среднем инфракрасном cпектре, а «Миллиметрон» — в субмиллиметровом и миллиметровом диапазонах , отечественный телескоп будет иметь несомненное преимущество: он позволит изучать объекты, закрытые межзвездной пылью. Например, активное звездообразование — загадочный и при этом очень «пыльный» процесс.
Еще одна часть истории, которая имеет место, огромный прогресс в научной сфере. Не только за наши знания о Млечном Пути или за то, чему он нас учит, но и потому, что он еще раз подтверждает, куда могут двигаться научные исследования. Работа велась в течение пяти лет с использованием суперкомпьютеров для объединения и анализа данных, при этом была собрана беспрецедентная библиотека смоделированных черных дыр для сравнения с наблюдениями. Усилия более чем 300 исследователей из 80 институтов по всему миру, которые вместе составляют коллаборацию EHT, позволили добиться этого замечательного достижения. Таким образом, мы можем пойти гораздо дальше в проверке поведения гравитации в этих экстремальных условиях, чем когда-либо прежде". Его данные в сочетании с данными новых рентгеновских телескопов и будущих передовых технологий могут позволить нам исследовать неизученные глубины галактического центра. Будущие наземные телескопы, такие как Европейский чрезвычайно большой телескоп, Квадратный километровый массив и все другие, находящиеся в стадии разработки, будут иметь огромное значение в этом поиске. Чтобы помочь нам уловить свет космоса и понять таинственную красоту того, что мы называем домом.
На изображениях, полученных Телескопом горизонта событий, видна яркая особенность, расположенная на южном конце джета. Снимок квазара NRAO 530, полученный с использованием различных методов визуализации. Джет квазара простирается в проекциях на плоскости неба на расстояние, которое свет проходит примерно за 1,7 года. Исследователи отметили две особенности: ортогональная поляризация наблюдается в параллельном и перпендикулярном направлениях по отношению к джету. Ученые полагают, что это свидетельствует о винтовой структуре магнитного поля в джете.