Теория струн возникла в середине 1970-х годов в результате развития струнной модели строения адронов. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Важнейшее значение теории струн для физиков, если излагать кратко: она претендует на роль «теории всего», то есть может объединить в одно целое все физические аспекты существования Вселенной. Эти достижения убедили многих физиков, что теория струн способна выполнить свои обещания и стать окончательной объединяющей теорией.
Популярно о теории струн
Предсказания теории струн. | Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. |
Теория суперструн кратко и понятно | Стало отчетливо понятно, что эта программа на самом деле является отнюдь не содержанием теории струн, а только еще одной областью ее приложения. |
Что такое теория струн | В теории струн каждая струна колеблется так же, в зависимости от влияющих на нее факторов. |
Теория струн кратко и понятно
В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Новости науки, высокие технологии и научные открытия. Что такое теория струн, какие пять основных элементов в нее входят, является ли она теорией всего, какие у нее недостатки в статье на Если теория струн это, в том числе, и теория гравитации, то как она соотносится с теорией тяготения Эйнштейна? Теория струн позволила устранить эту проблему, хотя они и не опирается на теорию поля. Вместо теории струн со всеми десятью пространственно-временными измерениями или знакомой нам Вселенной с четырьмя протяжёнными измерениями снова рассмотрим вселенную Садового шланга.
Теория струн: простое объяснение неоднозначной идеи
Прочие фундаментальные объекты В 1995 году оказалось, что не одни только одномерные объекты являются кирпичиками нашего мироздания. Было предсказано существование необычных формаций — бранов — в виде цилиндра или объемного кольца, которые имеют такие особенности: Они в несколько миллиардов раз меньше атомов; Могут распространяться через пространство и время, имеют массу и заряд; В нашей Вселенной они представляют собой трехмерные объекты. Однако предполагают, что их форма гораздо более загадочна, поскольку значительная их часть может простираться в другие измерения; Многомерное пространство, которое скрывается под бранами, является гиперпространством; С этими структурами связывают существование частиц, являющихся переносчиками силы тяжести — гравитонов. Они свободно отделяются от бранов и плавно перетекают в другие измерения; На бранах локализованных также электромагнитные, ядерные и слабые взаимодействия; Наиболее важной разновидностью являются D-браны. На их поверхности крепятся конечные точки открытой струны в тот момент, когда она проходит сквозь пространство.
Критические замечания Как и всякая научная революция, эта пробивается сквозь тернии непонимания и критики со стороны адептов традиционных взглядов. Среди наиболее часто высказываемых замечаний: Введение дополнительных измерений пространства-времени создает гипотетическую возможность существования огромного количества вселенных. По словам математика Питера Вольта, это приводит к невозможности предсказания любых процессов или явлений. Всякий эксперимент запускает большое количество различных сценариев, которые могут быть интерпретированы различными способами; Отсутствует возможность подтверждения.
Современный уровень развития техники не позволяет экспериментально подтвердить или опровергнуть кабинетные исследования; Последние наблюдения за астрономическими объектами не волне укладываются в положения теории, что заставляет ученых пересматривать некоторые свои выводы; Ряд физиков высказывают мнение, что концепция является спекулятивной и тормозит развитие других фундаментальных представлений.
Индустрия 4. Но разные состояния теории отвечают разным типам элементарных частиц. Ситуация аналогична той, что возникает в случае с гитарной струной: если ее дернуть, возникнет стоячая волна. Тогда первая мода когда между зажимами умещается одна полуволна может отвечать, например, фотону.
А вторая когда между зажимами умещается две полуволны или целая длина волны может отвечать какой-то другой элементарной частице: например, электрону. При этом стоит подчеркнуть, что теория струн пока не подтверждена экспериментально. Как появилась теория струн Ученые наблюдали за столкновениями частиц на ускорителях и заметили, что в результате реакций возникали целые семьи частиц. Все выглядело так, будто различные разные частицы внутри одной семьи вели себя, как различные гармоники струны. Одним из первых придал этому наблюдению математическую форму итальянский физик Габриэле Венециано.
Тогда, в 1960-х годах, исследователи пытались найти теорию, которая бы точно предсказывала спектр масс частиц в обсуждаемых семьях. К сожалению, полного сходства с реальностью не получалось. Однако ученые заметили, что в спектре струны возникали частицы, которые имели те же свойства, что и фотоны в случае открытой струны , и гравитоны в случае замкнутой струны. Так и возникла идея попробовать применить создаваемую теорию для описания гравитации и других фундаментальных теорий, а не к описанию поведения адронов — частиц, возникающих в ядерных реакциях.
В ней понятие квант представлен не словом, а физической сущностью кванта, то есть магнитным и электрическим полями в виде вихревых образований. Это на мельчайшая частица энергии, которая содержит строго фиксированное количество магнитной и электрической субстанций, которое приобрело диалектическое свойство: самостоятельно двигаться с определенной скоростью. Об этом подробно рассказано на этом же сайте в соответствующей статье.
То, что в природе существует частица, которая переносит энергию, знал еще Вальтер Ритц, современник Эйнштейна. Она родилась на кончике пера, ровно так, как на кончике пера родился линейный элемент в виде струны. В результате некоторых математических выкладок появилось антисимметричное тензорное поле 3-го ранга, которое по теории могло взаимодействовать только с продолговатыми объектами, которые и назвали струной. Но как Вальтер Ритц, так и разработчики теории струн не смогли наполнить родившиеся объекты материальной сущностью, поэтому были вольны с ними делать любые невероятные процедуры, которые не возможны для реальных объектов. Предложенная мною модель кванта отсекает все не возможное и объясняет все происходящее в природе логично, безо всякого дуализма, суперпозиции , суперсимметрии и т. Обычно ученому, что не рассказывай, он никогда не будет тебя слушать, если ты не подкрепишь свои мысли математикой. Модель моего кванта подтверждается теорией Ритца, а модель фотона — теорией струн, хотя я их и не знаю.
Будем двигаться по книге дальше. Брайан полагает, что это одно из предсказаний теории струн, вытекающее из суперсимметрии. До этого в различных теориях существовала симметрия, но она ничего не говорила о новых частицах. Теория струн расширила симметрию до суперсимметрии, из которой следовало, что моды колебаний струны реализуются парами суперпартнёров, спин которых отличается на?. Они на много тяжелее протона. Из-за этого ученые полагают, мы их и не можем обнаружить. Книгу Брайан писал до постройки Большого адронного коллайдера, но уже знал, что такой ускоритель строится.
Он, и много других ученых, возлагали надежду обнаружить суперпартёры этим ускорителем, но пока положительных результатов нет. Да и быть не должно: там частицы разбиваются, а не собираются. Так что это предсказание пока ничем не подтверждено.
Масса полученного объекта прямо пропорциональна амплитуде совершенного колебания; Теория помогает по-новому взглянуть на черные дыры; Также с помощью нового учения удалось раскрыть силу тяжести во взаимодействиях между фундаментальными частицами; В отличии господствующих ныне представлений о четырехмерном мире, в новой теории вводятся дополнительные измерения; В настоящее время концепция еще не принята официально в широком научном сообществе. Не известно ни одного эксперимента, который бы подтверждал эту гармоничную и выверенную на бумаге теорию. Историческая справка История данной парадигмы охватывает несколько десятилетий интенсивных исследований. Благодаря совместным усилиям физиков по всему миру, была разработана стройная теория, включающая концепции конденсированных сред, космологию и теоретическую математику.
Основные этапы ее развития: 1943—1959 гг. Появилось учение Вернера Гейзенберга об s-матрице, в рамках которого предлагалось отбросить понятия пространства и времени для квантовых явлений. Гейзенберг впервые обнаружил, что участники сильных взаимодействий представляют собой протяженные объекты, а не точки; 1959—1968 гг. Были обнаружены частицы с высокими спинами моментами вращения. Итальянский физик Туллио Редже предложит группировать квантовые состояния в траектории которые были названы его именем ; 1968—1974 гг. Гарибрэле Венециано предложил модель двойного резонанса для описания сильных взаимодействий.
Что такое теория струн?
О как! Переименование старого брэнда «теория струн» было оправданно, ибо по M-теории получается, что основа Вселенной — не только одномерные струны. К ужасу всего научного сообщества, оказалось, что могут существовать и двухмерные аналоги струн — мембраны , и трёхмерные, и четырёхмерные… Эти конструкции были названы бранами струна — 1-брана, мембрана — 2-брана, и так далее. На то, что эти самые браны нигде не были экспериментально зарегистрированы, физики дружно положили болт — хули, не впервой, и вообще мы тут делом заняты, а вы мешаете своими претензиями. Браны у нас на данном этапе принципиально ненаблюдаемы. Что имеем в итоге? Не проходит и пары месяцев, как объявляется о каком-либо очередном серьёзном успехе. Неудивительно, ибо туева хуча физиков по всему глобусу денно и нощно занимаются изучением и развитием теории струн. Большинство из них ведёт голубая мечта — что в один прекрасный день теория струн таки станет Единой теорией всего. Профита от теории струн пока вроде как не намечается, а вот бабла хавает будь здоров один БАК чего стоит. Зато, если окончательный вин таки будет достигнут, то человечество поднимет своё ЧСВ до поистине заоблачных высот; будет что предъявить перед Б-гом.
Но вот будет ли вин — ещё большой вопрос: вспоминаем, как физики ещё после Ньютона полагали, что все законы природы познаны, и больше ловить на этом поле нечего. Как бы то ни было, мозголомка по всему миру продолжается, пока ты сидишь в интернетах. Вины[ править ] Mузыкальное произведение, популяризирующее теорию струн и демонстрирующее какие проблемы привели к её появлению Ясен пень, что никто не стал бы мучиться с этой вашей непонятной теорией, если бы она не обладала большими плюсами в глазах физиков. И таковые действительно есть, причём какие! Прекращение борьбы бобра с ослом. На протяжении ХХ века бобро в лице ОТО и осло в лице квантовой механики цапались друг с другом, причиняя неистовый butthurt физикам. Как написано выше, теория струн нашла способ их помирить — не без обработки напильником, конечно, но осло по крайней мере перестало люто стремиться уничтожить бобро. Избавление от сингулярности. За что физики особенно благодарны теории струн — это за то, что ей в определённом смысле удалось укротить такое чудовище, как сингулярность, то есть возникающую по уравнениям ОТО бесконечную кривизну пространства-времени в экстремальных условиях например, в чёрных дырах или во время Большого взрыва. Теория струн утверждает, что никакой сингулярности не будет, ибо вся Вселенная имеет минимальный размер сжатия так называемый планковский размер , после которого она автоматически «вывернется наизнанку» и вновь начнёт расширяться.
Точнее, продолжит сжиматься, но со стороны это будет выглядеть как расширение. Шанс стать Единой теорией. Физики полагают, что это одна из конечных целей физики как науки. Фейлы и трудности[ править ] M-теория таки идёт к успеху , но пока ещё не пришла, и у неё много своих проблем, при упоминании которых физики прикладывают руку к лицу. Сверхсложная высокость. Уравнения теории струн и уж тем более её последнего релиза — M-теории настолько сложны, что физики большей частью оперируют только их приближёнными формами. Что, конечно, не ведёт к повышению точности результатов. Более того, часто складывается такая ситуация, что для решения этих уравнений даже соответствующих математических методов-то не создано, и приходится придумывать всё на лету. Ёбаный стыд. Только этот стыд, собсно, не к самой теории струн, а к нынешнему состоянию математики.
Уж пару веков старая добрая ньютоновская небесная механика никаких вам струн поставила общую задачу трех тел , а фиг ли толку? Или вот уравнения Навье — Стокса для турбулентных потоков — старая добрая классическая гидродинамика, двести лет отроду. За доказательство существования и гладкости решения даже не за само решение! Что символизирует. Практически везде, где физика уперлась в тупик, на самом деле в тупик уперлась математика. И в теории струн — тем более, ибо она там сложнее, чем где бы то ни было. И эта проблема служит источником двух других. Экспериментальный вакуум. Главный косяк теории — то, что она описывает явления на таких малых масштабах, что напрямую экспериментально подтвердить её основные утверждения невозможно. И никогда не будет возможно — для этого нужен не страшный ужасный адронный коллайдер длиной 27 километров, а ускоритель размером примерно с видимую Вселенную.
Само по себе это не приговор — нужно только вывести косвенные наблюдаемые следствия. Вот теория великого объединения , например, предсказывает распад протона с ненулевой вероятностью — и физики надеются, загоняя в подземные резервуары туеву хучу тонн воды, что какой-нибудь протон, на глазах у их детекторов, таки распадется. Физика питается косвенными свидетельствами — в конце концов, как электроны движутся вокруг ядра, тоже никто до недавнего времени ни в какой микроскоп не видел, и ускорителей тогда тоже не было. Проблема в том, что выводить наблюдаемые следствия из уравнений теории струн при их нынешнем математическом состоянии — задача для волшебников. А без математического прорыва и прямого эксперимента в теории струн иногда в ход идут такие хитровыебанные аргументации, что любой продажный адвокат пожал бы физикам руку. Элементарные частицы, дополнительные измерения и некто Карл Поппер. Десятимерная теория струн на более привычных масштабах должна, естественно, сводиться к известной и ОЧЕНЬ хорошо проверенной физике элементарных частиц. Но, как выясняется, способов такого сведения существует по меньшей мере 10100 , хотя не исключено, что и 100500 , а то и вовсе бесконечность. При этом каждая из получившихся четырёхмерных теорий описывает свой собственный мир, который может быть похож на реальность, а может и принципиально отличаться от нее. Проблема здесь в том, что свойства частиц считаются способом колебания струн, а возможные способы колебания струн зависят от точной геометрии дополнительных измерений.
Но существующим приближенным уравнениям удовлетворяет туева хуча разных геометрий. То есть эти уравнения были бы справедливы не только в нашем мире, но и в туевой хуче других миров, а возможно — в любом мире. Будь эти приближенные уравнения окончательными, это был бы тотальный экстерминатус в связи с нефальсифицируемостью по Попперу, то есть признаком ненаучности теории.
Оставались открытыми вопросы о том, какая именно теория более адекватна и что делать с остальными четырьмя теориями [18] С. В ходе второй суперструнной революции было показано, что такое представление неверно: все пять суперструнных теорий тесно связаны друг с другом, являясь различными предельными случаями единой 11-мерной фундаментальной теории М-теория [18] [42]. Все пять суперструнных теорий связаны друг с другом преобразованиями, называемыми дуальностями [43]. Если две теории связаны между собой преобразованием дуальности дуальным преобразованием , это означает, что каждое явление и качество из одной теории в каком-нибудь предельном случае имеет свой аналог в другой теории, а также имеется некий своеобразный «словарь» перевода из одной теории в другую [44].
То есть дуальности связывают и величины, которые считались различными или даже взаимоисключающими. Большие и малые масштабы, сильные и слабые константы связи — эти величины всегда считались совершенно чёткими пределами поведения физических систем как в классической теории поля , так и в квантовой. Струны, тем не менее, могут устранять различия между большим и малым, сильным и слабым. Т-дуальность Основная статья: Т-дуальность Т-дуальность связана с симметрией в теории струн, применимой к струнным теориям типа IIA и IIB и двум гетеротическим струнным теориям. Преобразования Т-дуальности действуют в пространствах, в которых по крайней мере одна область имеет топологию окружности. Таким образом, меняя импульсные моды и винтовые моды струны, можно переключаться между крупным и мелким масштабом [46]. Другими словами связь теории типа IIA с теорией типа IIB означает, что их можно компактифицировать на окружность, а затем, поменяв винтовые и импульсные моды, а значит, и масштабы, можно увидеть, что теории поменялись местами.
То же самое верно и для двух гетеротических теорий [47]. Благодаря этому оказывается возможным использовать теорию возмущений , которая справедлива для теорий с константой связи g много меньшей 1, по отношению к дуальным теориям с константой связи g много большей 1 [47]. Суперструнные теории связаны S-дуальностью следующим образом: суперструнная теория типа I S-дуальна гетеротической SO 32 теории, а теория типа IIB S-дуальна самой себе. U-дуальность Существует также симметрия, связывающая преобразования S-дуальности и T-дуальности. Она называется U-дуальностью и наиболее часто встречается в контексте так называемых U-дуальных групп симметрии в М-теории , определённых на конкретных топологических пространствах. U-дуальность представляет собой объединение в этих пространствах S-дуальности и T-дуальности, которые, как можно показать на D-бране , не коммутируют друг с другом [49]. Дополнительные измерения Интригующим предсказанием теории струн является многомерность Вселенной.
Ни теория Максвелла , ни теории Эйнштейна не дают такого предсказания, поскольку предполагают число измерений заданным в теории относительности их четыре. Первым, кто добавил пятое измерение к эйнштейновским четырём, оказался немецкий математик Теодор Калуца 1919 год [50]. Обоснование ненаблюдаемости пятого измерения его компактности было предложено шведским физиком Оскаром Клейном в 1926 году [51]. Требование согласованности теории струн с релятивистской инвариантностью лоренц-инвариантностью налагает жёсткие требования на размерность пространства-времени, в котором она формулируется. Теория бозонных струн может быть построена только в 26-мерном пространстве-времени, а суперструнные теории — в 10-мерном [16]. Поскольку мы, согласно специальной теории относительности , существуем в четырёхмерном пространстве-времени [52] [53] , необходимо объяснить, почему остальные дополнительные измерения оказываются ненаблюдаемыми. В распоряжении теории струн имеется два таких механизма.
Компактификация Проекция 6-мерного пространства Калаби — Яу , полученная с помощью Mathematica Первый из них заключается в компактификации дополнительных 6 или 7 измерений, то есть замыкание их на себя на таких малых расстояниях, что они не могут быть обнаружены в экспериментах.
Струны более массивных частиц совершают более интенсивные колебания, а струны более легких частиц колеблются менее интенсивно. В конечном итоге колебания на определенной частоте определяют свойства струн: массу и электрический заряд, что позволяет отнести их к определенной разновидности фундаментальных частиц, будь то кварк, фотон, глюон и др.
Уровни строения мира. Макроскопический — вещество. Атомный — протоны, нейтроны и электроны.
Субатомный — электрон. Субатомный — кварки. Струнный От пяти теорий к одной Теория струн оказалась крепким орешком даже для самых высоколобых ученых.
В 1970-е и 1980-е теория струн была очень популярна. За нее брались разные ученые, и в результате родилось несколько разновидностей. Одни авторы придумали гипотетическую частицу — тахион, которая якобы двигается в вакууме быстрее скорости света.
Другие изобрели суперсимметрию, предположив, что у всех известных элементарных частиц есть суперпартнеры, что фермионы и бозоны в природе связаны. Третьи попытались гипотетически подсчитать, сколько измерений может быть у Вселенной и как они могут быть свернуты. Дело в том, что теория струн сама по себе требует, чтобы Вселенная, кроме трех привычных пространственных измерений и одного временного, имела еще как минимум шесть.
Беда, как и водится, случилась из-за ерунды — одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно — при расчете энергии излучения абсолютно черного тела гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны — NS. Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.
Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после. Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса.
Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других — проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики. Уровни строения мира: 1. Макроскопический уровень — вещество 2. Молекулярный уровень 3.
Атомный уровень — протоны, нейтроны и электроны 4. Субатомный уровень — электрон 5. Субатомный уровень — кварки 6. Ramos В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут — гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени — то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» — квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром.
Вот тут на помощь и приходит теория струн. Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть — даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле. ОТО описывает одну из самых известных сил Вселенной — гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил. С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое.
Впоследствии к ним добавилось и сильное ядерное взаимодействие — но вот гравитация к ним не присоединяется никак. Теория струн — одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной — недаром ее еще называют «Теорией Всего». Вначале был миф До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение — легенда. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали не чем иным, как математической диковинкой, описывает это сильное взаимодействие.
Как же было на самом деле?
Теория суперструн популярным языком для чайников
Теория струн, или Теория всего. Новости науки, высокие технологии и научные открытия. Теория струн взяла на вооружение старую идею Калуцы-Клейна о скрытом «дополнительном» измерении и значительно расширила ее.
Теория струн: простое объяснение неоднозначной идеи
Через некоторое время даже пришлось забыть о перспективной теории струн, так как возникали новые предпосылки в квантовой хромодинамики. В ней использовалась точечная модель частиц. Позже часть ученых не смогла полностью отказаться от теории струн, и были найдены отдельные конфигурации колеблющихся струн. Они напоминали свойства глюонов. Это давало возможность предположить, что существует теория сильного взаимодействия. В 70-е годы прошлого века европейские ученые смогли сделать громкое предположение, что превращало недостаток и пробел в квантовой теории струн в достоинство. Они изучили странные моды колебаний струн, которые напоминали частицы-переносчики.
Свойства точным образом совпадали с предполагаемыми свойствами гипотетической частицы-переносчика гравитационного взаимодействия. Его называли гравитоном. Гипотетические сверхмалые частицы гравитона до сих пор не удалось обнаружить, однако исследователи сегодня могут предсказать некоторые фундаментальные свойства, которыми должны обладать эти частицы. Особенности теории струн Европейские ученые заявил, что у них есть предположения, согласно которым теория струн обладает примечательными свойствами.
Что, собственно, физики уже давно и с успехом наблюдают. Как по нотам Петли, составляющие частицы, не просто парят в пространстве. В теории струн они колеблются, причем множеством различных способов. В игре на гитаре в зависимости от толщины и длины струны последнюю мы регулируем, зажимая пальцами музыкант воспроизводит разные ноты. Разные колебания микрострун, в свою очередь, соответствуют разным частицам. Таким образом теория струн даёт единый способ описания всех видов материи. Почему теория струн нравится физикам Замена частиц на соответствующие им струны приводит к некоторым крайне важным следствиям. Изучив свойства колеблющейся петли, ученые пришли к выводу, что они удивительно схожи с характеристиками гравитона — на данный момент не открытой частицы, которой отводится роль переносчика гравитации. Теория струн, имеет все шансы разрешить главный спор в физике XX века — включить гравитационное взаимодействие в Стандартную модель. Длина, ширина, высота Ни для кого не секрет, что мы живем в трехмерном мире — у каждого объекта есть длина, ширина и высота. К трем измерениям добавляется еще четвертое — время. Со временем ученые выяснили, что теория струн «работает» только в пространстве с десятью или одиннадцатью измерениями.
Математические методы, используемые в квантовой теории струн, часто связаны с алгебрами Ли, теорией представлений и дифференциальной геометрией. Квантовая теория струн также стремится объединить гравитацию и квантовую механику, две фундаментальные теории, которые до сих пор не были полностью совмещены. Она предлагает новый подход к объединению этих двух теорий, позволяя описывать гравитацию в терминах квантовых объектов — струн. Это открывает новые возможности для понимания природы пространства, времени и гравитационных взаимодействий. Применение квантовой теории струн Квантовая теория струн имеет широкий спектр применений и вносит значительный вклад в различные области физики. Вот некоторые из них: Связь с теорией поля и инфляцией Вселенной Квантовая теория струн предлагает новый подход к объединению теории гравитации и теории поля. Она позволяет описывать гравитацию в терминах квантовых объектов — струн, что открывает новые возможности для понимания взаимодействия между элементарными частицами и гравитацией. Это может привести к разработке единой теории, объединяющей все фундаментальные взаимодействия в природе. Квантовая теория струн также имеет важное значение для теории инфляции Вселенной. Инфляция — это модель, которая объясняет быстрое расширение Вселенной в первые моменты ее существования. Квантовая теория струн может предложить новые механизмы, которые могут объяснить происхождение и свойства инфляционного поля. Вклад в единое поле физики элементарных частиц Квантовая теория струн играет важную роль в поиске единой теории, объединяющей все фундаментальные взаимодействия и элементарные частицы. Она предлагает новый подход к объединению гравитации и других фундаментальных сил, таких как электромагнитная, сильная и слабая силы. Квантовая теория струн может быть ключом к пониманию природы и происхождения всех фундаментальных частиц и взаимодействий. Кроме того, квантовая теория струн может предложить новые модели элементарных частиц, которые могут быть проверены экспериментально. Она может предсказать существование новых частиц, таких как суперсимметричные партнеры известных частиц, которые могут быть обнаружены на ускорителях частиц или в космических экспериментах. Перспективы и возможности для дальнейших исследований Квантовая теория струн остается активной областью исследований, и у нее есть много перспектив и возможностей для дальнейших разработок. Ученые продолжают исследовать различные аспекты теории струн, такие как сверхсимметрия, дополнительные измерения и свойства струнных моделей. Одной из перспективных областей исследований является разработка математических методов и техник, которые позволят более точно описывать и анализировать свойства и поведение струнных моделей. Это может привести к новым математическим открытиям и развитию смежных областей физики и математики. Кроме того, квантовая теория струн может иметь практические применения в различных областях, таких как квантовые вычисления, криптография и материаловедение. Исследования в этих областях могут привести к разработке новых технологий и приложений, которые могут иметь значительный вклад в науку и технологию. Критика и альтернативные подходы Квантовая теория струн, несмотря на свою значимость и потенциал, также подвергается критике и вызывает дискуссии среди ученых. Вот некоторые из основных критических моментов и альтернативных подходов, которые были предложены: Ограничения и проблемы квантовой теории струн Одним из основных ограничений квантовой теории струн является ее сложность и математическая трудность. Формализм теории струн требует использования высокоабстрактных математических концепций, таких как теория операторов и топология. Это делает ее трудно доступной для понимания и применения в практических расчетах. Кроме того, квантовая теория струн страдает от проблемы отсутствия экспериментального подтверждения.
В настоящее время не ясно, сможет ли теория струн объяснить фундаментальную природу пространства и времени больше, чем это сделал Эйнштейн. В ней измерения являются фоном для взаимодействия струн и самостоятельного реального смысла не имеют. Предлагались объяснения, до конца не доработанные, касавшиеся представления пространства-времени как производного общей суммы всех струнных взаимодействий. Такой подход не отвечает представлениям некоторых физиков, что привело к критике гипотезы. Конкурентная теория петлевой квантовой гравитации в качестве отправной точки использует квантование пространства и времени. Некоторые считают, что в конечном итоге она окажется лишь другим подходом ко все той же базовой гипотезе. Квантование силы тяжести Главным достижением данной гипотезы, если она подтвердится, будет квантовая теория гравитации. Текущее описание силы тяжести в ОТО не согласуется с квантовой физикой. Последняя, накладывая ограничения на поведение небольших частиц, при попытке исследовать Вселенную в крайне малых масштабах ведет к возникновению противоречий. Унификация сил В настоящее время физикам известны четыре фундаментальные силы: гравитация, электромагнитная, слабые и сильные ядерные взаимодействия. Из теории струн следует, что все они когда-то являлись проявлениями одной. Согласно этой гипотезе, так как ранняя вселенная остыла после большого взрыва, это единое взаимодействие стало распадаться на разные, действующие сегодня. Эксперименты с высокими энергиями когда-нибудь позволят нам обнаружить объединение этих сил, хотя такие опыты находятся далеко за пределами текущего развития технологии. Пять вариантов После суперструнной революции 1984 г. Физики, перебирая версии теории струн в надежде найти универсальную истинную формулу, создали 5 разных самодостаточных варианта. Какие-то их свойства отражали физическую реальность мира, другие не соответствовали действительности. М-теория На конференции в 1995 году физик Эдвард Виттен предложил смелое решение проблемы пяти гипотез. Основываясь на недавно обнаруженой дуальности, все они стали частными случаями единой всеобъемлющей концепции, названной Виттеном М-теория суперструн. Одним из ключевых ее понятий стали браны сокращение от мембраны , фундаментальные объекты, обладающие более чем 1 измерением. Хотя автор не предложил полную версию, которой нет до сих пор, М-теория суперструн кратко состоит из таких черт: 11-мерность 10 пространственных плюс 1 временное измерение ; двойственности, которые приводят к пяти теориям, объясняющих ту же физическую реальность; браны — струны, с более чем 1 измерением. Следствия В результате вместо одного возникло 10500 решений. Для некоторых физиков это стало причиной кризиса, другие же приняли антропный принцип, объясняющий свойства вселенной нашим присутствием в ней. Остается ожидать, когда теоретики найдут другой способ ориентирования в теории суперструн. Некоторые интерпретации говорят о том, что наш мир не единственный. Наиболее радикальные версии позволяют существование бесконечного числа вселенных, некоторые из которых содержат точные копии нашей. Теория Эйнштейна предсказывает существование свернутого пространства, которое называют червоточиной или мостом Эйнштейна-Розена. В этом случае два отдаленных участка связаны коротким проходом. Теория суперструн позволяет не только это, но и соединение отдаленных точек параллельных миров.
Теория струн. Что это?
Теория струн предполагает объединения идей квантовой механики и теории относительности, представляя элементарные частицы, составляющие атом из ультрамикроскопических волокон, называемых струнами. Теория струн предполагает, что в нашей Вселенной существует гораздо больше измерений, чем четыре нам привычные: три пространственных плюс время. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. Теория струн предположительно решает эту проблему и стремится описать гравитацию в соответствии с принципами квантовой механики, называются теориями квантовой гравитации. Не так давно физический мир облетела новость: знаменитая теория струн несовместима с существованием тёмной энергии, какой её себе представляет большинство космологов. Та материя, сутью которой являются струны, составляет только 5% массы Вселенной — ее видимая часть.
Теория струн кратко и понятно
•Краткая история теории струн. 20–минутное видео о теории струн. Про эту теорию впервые прочитал в журнале "Юный техник" ещё в школе. Антропный принцип в теории струн. В своей основе Теория струн отрицает теорию Большого взрыва и утверждает, что Вселенная существовала всегда. А теория струн может объединить эти две теории, например если сказать что световая волна это и есть струна с набором гармоник, которая и соответствует фотону. Как известно, теория струн была предложена в 1970-х годах для решения проблем квантовой гравитации и Стандартной модели.
Теория струн, или Теория всего
Просто проводим дополнительные эксперименты — и все. Сначала математики не поверили, конечно: мол, как так — мы бились, у нас ничего не получалось, а тут какой-то эксперимент и все? Но потом, поглядев на эти числа достаточно долго, они вдохновились и придумали, как решить задачу уже для произвольных чисел вращения. Теория струн не единственная претендует на звание теории всего. Расскажите про ее основных конкурентов. Пожалуй, лучше всего развита петлевая квантовая гравитация. Чтобы понять основную идею, нужно сделать шаг назад. Необходимо понимать, что изначально физики пытались применить к уравнениям теории относительности стандартный подход квантовой механики, то есть проквантовать их так же, как, например, электромагнитное взаимодействие. Из этого ничего не получилось.
Если обратиться к теории струн, то «квантованная» в некотором смысле гравитация там появляется сама собой. Она оказывается следствием фундаментальных свойств самой теории, нам не приходится насильно склеивать теорию относительности и квантовую механику. Петлевая же гравитация занимается именно этим, то есть пытается склеить ТО и квантовую механику. Для этого уравнения Эйнштейна переписываются совсем в другом но эквивалентном исходному, это важно виде, в совершенно других переменных. При этом оказывается, что в таком виде уравнения уже поддаются квантованию, пусть и не совсем классическому. Полученные при этом квантовые переменные могут пониматься как петли — отсюда и название. Насколько эти петли связаны с нашими струнами и связаны ли вообще все-таки звучит похоже , мы пока не знаем. Петлевая гравитация, конечно, менее экзотична, чем теория струн.
В ней не требуются дополнительные измерения, не нужна суперсимметрия. То есть их можно добавить, но сами по себе они не возникают. Тут, однако, возникает тонкий момент — уверен, что специалисты по петлевой квантовой гравитации со мной не согласятся. Смотрите, стандартная Ньютонова механика получается как предел квантовой при устремлении к нулю некоторого параметра. Традиционно считается, что квантование — это обратный процесс, то есть построение теории, зависящей от параметра, которая, при стремлении этого параметра к нулю, дает нам доквантовую теорию. Так вот, на самом деле не очень понятно, получаются ли из петлевой квантовой гравитации обычная квантовая механика и теория относительности при переходе к некоторому пределу? Специалисты по этой теории считают, что получается и никакой проблемы тут нет. И возможно, они правы, а я нет — все-таки я не разбираюсь в деталях теории так, как они.
Но издалека лично мне кажется, что там все не очень корректно. А есть какие-то предсказания петлевой гравитации, которые отличались бы от предсказаний теории струн? Желательно, чтобы эти предсказания еще и можно было проверить. Я думаю, если бы перед вами сидел специалист по петлевой квантовой гравитации, ответ был бы иным. Я ни в коем случае не утверждаю, что кто-то там нечестен, просто речь идет скорее о том, что у людей есть разные воззрения на то, что считать предсказанием и что считать фальсифицируемостью конкретной теории. Как бы то ни было, но я смею утверждать, что ни у кого из этих специалистов нет утверждения такого уровня: если не выполнено некоторое X, то вся теория не верна. Я никогда не слышал от них такого утверждения и думаю, они не могут его сделать. Мы, правда, тоже не можем ничего такого заявить на данном уровне развития технологии — в этом смысле мы с ними в равных условиях.
Есть ли какие-нибудь еще теории? За годы их было довольно много скажем, причинная динамическая триангуляция , но ни одна из них не была доведена до уровня теории струн или теории петлевой гравитации. В частности, конечно, в вопросах внутренней непротиворечивости последних была проделана огромная работа, намного опередившая остальных конкурентов. Конечно, теории отдельно проверялись в экстремальных теоретических экспериментах — например, насколько хорошо та или иная теория описывает физику в окрестности, скажем, сверхмассивных черных дыр. Это ведь очень полезная работа — посмотреть на теорию в экстремальных условиях. Даже если мы не можем получить нужные условия экспериментально, такой подход бывает очень плодотворным. Недавно, например, в таком теоретическом эксперименте были получены довольно интересные результаты. Тут снова надо сделать небольшое отступление в прошлое.
В 70-х годах прошлого века Стивен Хокинг заинтересовался вот каким вопросом: что происходит с материей, когда она падает в черную дыру? Ученые до него сказали бы, что все понятно — материя падает, пропадает, она в черной дыре, конец. Однако Хокинг обнаружил, что черные дыры могут излучать. Это означает, что как минимум часть материи, попавшей в черную дыру, попадает наружу в виде излучения. Свое открытие Хокинг сделал, добавив в теорию относительности немного квантовой механики. Он не объединил эти теории полностью, но объединил их в достаточной мере, чтобы делать конкретные космологические предсказания, которые позволяли кое-что в этой самой космологии объяснить. В 1997 году Хокинг уже на пару с Кипом Торном заключил пари на полное издание Британской энциклопедии с Джоном Прескиллом, профессором Калифорнийского технологического института и директором Института квантовой информации. Прескилл утверждал, что информация в черной дыре не исчезает — просто мы не в состоянии расшифровать то, что дыра излучает.
В августе 2004 года на Международной конференции по общей теории относительности и космологии в Дублине Хокинг признал правоту Прескилла и предложил примерный механизм излучения информации правда, не принятый до конца научным сообществом. Как бы то ни было, возник вопрос. Квантовая механика требует, чтобы информация сохранялась. Это означает, что излучение дыры должно нести информацию о том, что в нее попало. Однако расчеты Хокинга показали, что излучение дыры имеет тепловой спектр. Это означает, что дыра излучает как абсолютно черное тело определенной температуры — в частности, это излучение не несет никакой информации о том, что в эту самую дыру упало. Возникает проблема исчезновения информации в черной дыре, которую сам Хокинг считал вовсе не проблемой, а просто законом природы. Мол, так устроена жизнь и информацию можно уничтожить.
Потом пришла теория струн. И только совсем недавно, летом 2012 года, когда физики стали разбираться в тонкостях того, что происходит с информацией в черной дыре, как она «вырывается» наружу, они обнаружили, что три факта о черных дырах, которые до последнего времени считались верными, на самом деле противоречат друг другу. Речь идет о представлении горизонта событий черной дыры как гладкого региона пространства, в окрестностях которого ничего особенного, вообще говоря, не происходит; представлении о том, что квантовая механика унитарна то есть, в частности, требует сохранения информации , а также о том, что при достаточно низких энергиях на достаточном удалении от самой дыры применимы методы квантовой теории поля. Как разрешить это противоречие, пока никто не знает. Это, кстати, заставляет уже многих ученых ставить под сомнение саму теорию струн. Например, тот же Леонард Зюскинд, которого я упоминал выше, в связи с этим парадоксом выдвинул гипотезу, что, мол, теория струн в современном понимании, возможно, не полностью квантует гравитацию. А мы в это верили многие десятилетия. И это здорово, это именно то, что нужно — пусть не реальные эксперименты, а теоретические, но они заставляют ученых пересматривать теорию.
Это чем-то напоминает зеркальную симметрию, о которой мы говорили раньше, только это соответствие более кардинальное.
Поэтому, если бы кому-то захотелось описать другую силу, например, электромагнетизм, ему понадобилось бы добавить новое измерение. Ученые написал уравнения, описывающие кривые и дефекты вселенной с дополнительным измерением, и получил оригинальное уравнение электромагнетизма. Удивительное открытие.
Дополнительные измерения теории струн могут нам помочь объяснить, почему числа в нашей Вселенной настолько выверены, что позволяют всему существовать. Например, почему скорость света 299 792 458 метров в секунду? Они также пытаются ответить на вопрос о гравитации — почему эта сила настолько слабая? Она самая слабая из четырех фундаментальных взаимодействий: в 1040 раз слабее электромагнитной силы.
Достаточно будет просто наклониться и поднять книгу с пола, чтобы противодействовать ей. Теоретически это происходит потому, что гравитация просачивается в более высокие измерения. Гравитация состоит из нитей с замкнутым контуром, что позволяет ей покидать наше измерение, в отличие от разомкнутых нитей, которые лучше заземлены. Почему мы не видим всех этих измерений?
Потому что они существуют на таком малом уровне, что невидимы для нас, не поддаются обнаружению. Они компактные, укомплектованные таким образом, что воспроизводят физику нашего мира, складываясь в интересные формы Калаби-Яу.
Конечно, может. Некоторое время назад, например, мы с коллегами написали работу, в которой — при определенных предположениях такие предположения нужны, чтобы можно было что-то посчитать — как уже говорилось, какие-то детали теории нам, вообще говоря, неизвестны — оказывалось, что в реликтовом излучении должен быть своего рода «отпечаток». Его не нашли. Я бы и рад сказать, что теория струн неверна, однако отсутствие предсказанного нами рисунка означает только то, что неверны наши технические предпосылки. И это снова возвращает нас к тому, что с точки зрения математики мы пока понимаем теорию не в полной мере и не обладаем оборудованием для проверки теории без каких-либо дополнительных предположений. Кадр из сериала «Теория большого взрыва» Шелдон Купер, один из главных героев сериала «Теория большого взрыва», является специалистом по теории струн Зачастую разные ученые под теорией струн могут понимать разные вещи. Верно ли, что за этой вывеской скрывается несколько теорий?
Я прекрасно понимаю, о чем вы говорите, но я бы так не сказал. Я бы сформулировал это по-другому: теория струн — это единый теоретический инструмент, позволяющий формулировать модели того, как Вселенная в принципе может работать. При этом какого-либо критерия отбора модели, имеющей отношение к нашей конкретной Вселенной, у нас нет. Есть идея, что так получилось, потому что каждая из этих моделей в некотором смысле реальна — просто она описывает какую-то другую Вселенную, где-то там, далеко. Такая вот радикальная интерпретация наших неудач. Применительно к теории струн регулярно вспоминают теорию Янга-Миллса с ней связан один из вопросов , за решение которых Математический институт Клэя обещал миллион долларов. Расскажите, что это такое? В 50-е годы прошлого века ученые обнаружили тогда без участия идей из теории струн , что уравнения для описания сильного и слабого взаимодействия в квантовой механике можно записать в особой симметричной форме. Симметрии, о которых идет речь, напоминают симметрии снежинки — если ее поворачивать на некоторый угол, то она переходит сама в себя.
Так же и эти уравнения после определенного «поворота» оказывались такими же. Такой подход оказался очень удобным, и физикам удалось много чего посчитать с его помощью. Сами Янг, Миллс и их последователи смогли заложить единую и очень изящную с математической точки зрения основу для Стандартной модели. Эту теорию вспоминают в контексте теории струн, потому что она очень естественно возникает из ее уравнений. То есть пойди история теоретической физики немного по-другому вполне возможно, так и произошло где-нибудь на другой планете или в другой Вселенной , теория Янга-Миллса была бы обычным следствием теории струн. То есть этот факт можно рассматривать как теоретическое а не экспериментальное подтверждение теории струн? В некотором смысле — да. В такую игру с теорией струн можно играть достаточно долго: из теории струн естественным образом вытекает теория Янга-Миллса, разного рода дискретные симметрии, играющие важную роль в квантовой механике. Теория струн также позволяет объяснить, почему элементарные частицы объединяются в семейство — например, фермионы и бозоны.
То есть многое из того, что приходилось добавлять в уравнения вручную, исходя из экспериментальных соображений, в теории струн возникает само собой. Это не является, конечно, доказательством истинности теории, но с математической точки зрения означает, что теория включает в себя все, что мы знали до сих пор. У квантовой механики есть множество интерпретаций — копенгагенская, многомировая, теория квантовой информации и прочие. У них имеется общий математический аппарат, однако они кардинально различаются в описании того, что представляет собой реальность. Есть ли такие же интерпретации у теории струн? Во-первых и это, конечно, тема для совершенно отдельного и большого разговора, совсем не связанного с темой нашей беседы , я бы не согласился с первой частью вашего утверждения. Различные интерпретации квантовой механики различаются не только на уровне интерпретации, но и на уровне механики, которую они используют. Точнее, аккуратно определяя квантовую механику в рамках той или иной интерпретации, вы обнаружите, что эти интерпретации либо некорректно определены, либо дают разные теории. Они могут отличаться как предсказаниями, так и в онтологическом смысле — то есть они расходятся в том, что реально, а что — нет.
Например, копенгагенская интерпретация не полна — она не говорит, что происходит во время так называемого коллапса волновой функции, вызванного наблюдением. Многомировая интерпретация и теория де Бройля-Бома дают различные уравнения для описания квантового мира. Поскольку теория струн использует квантовую механику, то, с одной стороны, последняя никак не меняется. С другой стороны, если в квантовой механике есть какие-то вопросы, которые нужно интерпретировать, то они есть и в теории струн. Все эти многомировые и прочие вещи тут присутствуют в полной мере. Сама же теория при этом никаких дополнительных факторов, требующих интерпретации, не привносит. То есть мы имеем дело с квантовомеханическими вопросами и только с ними. Теория всего - гипотетическая объединённая физико-математическая теория, описывающая все известные фундаментальные взаимодействия сильное, слабое, электромагнитное и гравитационное. Первые три взаимодействия описываются в настоящий момент квантовой механикой, последнее - теорией относительности С другой стороны, в теории струн есть эффект, называемый двойственностью.
Его, если угодно, можно считать двоюродным братом вопроса интерпретации. Дело в том, что в теории одна и та же физическая ситуация допускает несколько математических описаний математических интерпретаций, если угодно. В некотором смысле противоположная история. Главное отличие двойственности в том, что это не источник споров или философских диспутов о том, как и что надо понимать, а мощный инструмент для работы. Расскажу из личного опыта. Некоторое время назад я как раз занимался зеркальной симметрией. Дело в том, что, как уже говорилось выше, дополнительные измерения в теории струн компактифицированы — то есть свернуты особым образом, так что на первый взгляд наш мир видится четырехмерным. Оказывается, возможные формы дополнительных измерений, то есть то, каким образом они свернуты, существуют парами. В каждой паре элементы могут отличаться геометрией, топологией, но при этом дают одну и ту же физическую теорию.
Так как физика одна и та же, то один и тот же эксперимент — скажем, рассеивание частиц — дает информацию о строении сразу двух объектов. Благодаря зеркальной симметрии физикам удается получить информацию о математике, которая стоит за этими объектами. То есть смотрите, пусть мы знаем, что наша теория описывает именно нашу Вселенную. Мы хотим предсказать результаты экспериментов по рассеиванию частиц. Начинаем считать — офигеть, не получается, слишком сложная математика. Тут мы вспоминаем о зеркальной симметрии и говорим себе: «Стоп! Мы же можем заменить одно пространство на другое, ведь физика, как известно, будет той же самой». Мы так поступаем, и оказывается, что в зеркально-симметричной ситуации тот же эксперимент описывается много проще и мы все можем посчитать. И что, есть примеры, когда эта схема работает?
И таких примеров множество. Другое дело, что мы пока точно не знаем, каким параметрам соответствует именно наша Вселенная. Вот в чем проблема. А как устроены эти симметрии, которые дают в результате два пространства? Исходное и зеркальное пространство связаны через подходящий орбифолд — грубо говоря, фактор многообразия по дискретной группе изометрий.
К примеру, фотон является бозоном, переносящим электромагнитное взаимодействие, гравитон — гравитационное, или тот же бозон Хиггса, распространяющий взаимодействие с полем Хиггса. Так вот если теория струн учитывала лишь бозоны, то теория суперструн также учла и фермионы, что позволило избавиться от тахионов. Читайте также: Ученые утверждают, что много кофе сердцу не вредит Конечный вариант принципа суперструн разработан Эдвардом Виттеном и называется «м-теория», согласно которой для объединения всех различных версий суперструнной теории следует ввести 11-тое измерение. На этом, пожалуй, можно и закончить. Работы по решению проблем и доработки имеющейся математической модели усердно ведутся физиками-теоретиками разных стран мира.
Что такое Теория струн и существует ли 10-ое измерение
Главное преимущество теории струн является ее способность объединить общую теорию относительности Эйнштейна и квантовую механику. Теория струн, обобщение квантовой теории поля (КТП), связанное с ослаблением требований локальности и перенормируемости, открывшее возможность. Понятно, что с математиче ской точки зрения с гладкими поверхностями работать гораздо лучше и плодотворнее, чем с сингулярными — в этом объяснение успехов математи ческого аппарата теории струн.