Новости биология огэ 1 задание теория

В том числе — урок и тестовое задание на тему «9. Алгоритм выполнения заданий ОГЭ». ОГЭ по биологии – это основной экзамен, который оценивает знания школьников в области биологии и их способность применять полученные знания для решения практических задач. Задание 1. Биология как наука.

Вся ботаника за один урок. Теория, которая точно пригодится тебе на ОГЭ и ЕГЭ

Вся теория для 1 задания ОГЭ по биологии | Умскул. 1 задание огэ по биологии теория Теория к заданию №1 ОГЭ по биологии 2020 Биология ВКонтакте Полезное от Вюрца chemical element is a collection of atoms with the Тренажер задания 1 химии chemege ru Задача По Фото Онлайн telegraph Тесты онлайн. БиологиЯ. Блог создан в помощь ученику при подготовке к ГИА. Методичка со всей теорией по заданию №1 pdf. Гистограмма просмотров видео «Вся Теория Для 1 Задания Огэ По Биологии, Умскул» в сравнении с последними загруженными видео.

Свойства живого

  • Тренировочные варианты ОГЭ 2024 по биологии
  • Поделиться:
  • Источники:
  • Огэ биология 1 задание теория
  • Форма для написания комментария

Вся теория для 1 задания ОГЭ по биологии | Умскул

Решение проблемы ведет к получению нового знания. Научная проблема всегда скрывает какое-то противоречие между известным и неизвестным. Решение проблемы требует от ученого сбора фактов, их анализа, систематизации. Примером проблемы может служить, например, такая: «Как возникает приспособленность организмов к окружающей среде? Сформулировать проблему бывает достаточно сложно, однако всегда, когда есть затруднение, противоречие, появляется проблема.

Гипотеза — предположение, предварительное решение поставленной проблемы. Выдвигая гипотезы, исследователь ищет взаимосвязи между фактами, явлениями, процессами. Именно поэтому гипотеза чаще всего имеет форму предположения: «если … тогда». Например, «Если растения на свету выделяют кислород, то мы сможем его обнаружить с помощью тлеющей лучины, так как кислород должен поддерживать горение».

Гипотеза проверяется экспериментально. Слайд 10 Теория — это обобщение основных идей в какой-либо научной области знания. Например, теория эволюции обобщает все достоверные научные данные, полученные исследователями на протяжении многих десятилетий. Со временем теории дополняются новыми данными, развиваются.

В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы. Наследственностью называют передачу признаков родительских форм в ряду поколений. Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство — Изменчивость. Изменчивость — это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов.

Эволюция — это необратимый процесс исторического развития живого. Она базируется на Прогрессивном размножении, наследственной изменчивости, борьбе за существование и Естественном отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным условиям среды обитания. Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов.

Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме Генетика, ее задачи Успехи естествознания и клеточной биологии в XVIII—XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами. Даже сформулированная Х. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются.

Лишь труды чешского исследователя Г. Менделя 1822—1884 стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К. Корренсом и Х.

Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими. Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека. Наследственность и изменчивость — свойства организмов Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений. Изменчивость — свойство организмов приобретать новые признаки в течение жизни. Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.

Признаки организмов можно разделить на Качественные и Количественные. Качественные признаки имеют два-три контрастных проявления, которые называют Альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные удойность коров, урожайность пшеницы не имеют четко выраженных различий. Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: Генотипическую и Цитоплазматическую. Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также Материнской.

В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности. Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения. Методы генетики 1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства.

При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г. Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития.

Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т. Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. Основные генетические понятия и символика Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма.

Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется Плейотропией. Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии паучьи пальцы , вызывает также искривление хрусталика, патологии многих внутренних органов. Каждый ген занимает в хромосоме строго определенное место — Локус. Так как в соматических клетках большинства эукариотических организмов хромосомы парные гомологичные , то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются Аллельными.

Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита A, B, C и др. Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах. Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется Гомозиготным по данному гену, или Гомозиготой AA, aa, ААBB, ааbb и т. Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — I A, I B, i.

Такое явление называется Множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены. Геном — совокупность генов, характерная для гаплоидного набора хромосом. Генотип — совокупность генов, характерная для диплоидного набора хромосом. Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды. Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве.

Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется МоногибридныМ, по двум парам — Дигибридным, по большему количеству признаков — Полигибридным. По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм АА , так и гетерозиготный Аа будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют Анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками. Для записи схем скрещиваний чаще всего применяются следующие условные обозначения: Р от лат. Хромосомная теория наследственности Основоположник генетики Г.

Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов. Однако уже в 1902—1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. Данные предположения стали краеугольным камнем хромосомной теории наследственности. В 1906 году английские генетики У.

Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л. Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно. В 1910 году начинаются эксперименты группы Т. Моргана на новом экспериментальном объекте — плодовой мушке дрозофиле.

Результаты этих экспериментов позволили к середине 20-х годов XX века сформулировать основные положения хромосомной теории наследственности, определить порядок расположения генов в хромосомах и расстояния между ними, т. Основные положения хромосомной теории наследственности: Гены расположены в хромосомах. Гены одной хромосомы наследуются совместно, или сцепленно, и называются Группой сцепления. Число групп сцепления численно равно гаплоидному набору хромосом. Каждый ген занимает в хромосоме строго определенное место — локус. Гены в хромосомах расположены линейно.

Нарушение сцепления генов происходит только в результате кроссинговера.

Некоторые условия могут содержать важные указания, которые необходимо учитывать при решении задания. Например, задание может требовать указать «четвероногих животных», а ученик укажет «всех животных», что приведет к неверному ответу. Недостаточная подготовка к практическим заданиям Ученики часто имеют проблемы с практическими заданиями, так как им необходимо не только знать теоретические основы, но и уметь применять их на практике. Например, в задании может требоваться определить тип клетки по ее внешнему виду, а ученик не знает, как это сделать и на что обратить внимание. Ошибки в расчетах и переводах величин Некоторые задания могут требовать расчетов или перевода величин, например, вычисление скорости реакции или перевода температуры из градусов Цельсия в Кельвины.

Ошибки в расчетах или переводах могут привести к неверному ответу. Недостаточная самостоятельность и логическое мышление Некоторые задания могут требовать не только знаний, но и умения анализировать и логически мыслить. Например, задание может требовать определить наличие связи между двумя явлениями на основе предоставленных данных. Недостаточная самостоятельность и логическое мышление могут привести к неверному ответу даже при наличии достаточных знаний. Советы по подготовке к заданию 1.

Пищу они всасывают всем телом, передвигаются вслепую, размножаются. Больше им ничего и не нужно для жизни. Приспособиться — главная цель.

По-другому «приспособиться» можно сказать «адаптироваться». Следующий путь — идиоадаптация. Идиоадаптация — приобретение полезных признаков для жизнедеятельности. Или же по-научному: Идиоадаптация — направление эволюции, заключающееся в приобретении новых признаков при сохранении уровня организации предковых форм. Все знают, как выглядит муравьед. У него вытянутая морда, а все это нужно для того, чтобы добывать свою пищу — мелких насекомых. Такое изменение формы морды не внесло кардинальных изменений в жизнь муравьедов, однако есть им стало удобнее, чем из предкам с менее вытянутой мордой. Ароморфоз — возникновение в ходе эволюции признаков, которые существенно повышают уровень организации живых организмов.

Например, возникновение покрытосеменных растений значительно повысило выживаемость. Ответ: идиодаптация pазбирался: Ксения Алексеевна обсудить разбор оценить Задание EB22949 Рассмотрите предложенную схему строения органов цветкового растения. Стебель, почки и листья вместе составляют наземную часть растения — побег. Ответ: побег pазбирался: Ксения Алексеевна обсудить разбор оценить Задание EB22415 Рассмотрите предложенную схему классификации органоидов. По количеству мембран органеллы делятся: Одномембранные органоиды: эндоплазматическая сеть, комплекс Гольджи, лизосомы. Двумембранные органоиды: ядро, митохондрии, пластиды лейкопласты, хлоропласты, хромопласты. Немембранные органоиды: рибосомы, центриоли, ядрышко. В схеме вопрос стоит о двумембранных органоидах.

Мы знаем, что к двумембранным относятся митохондрии и пластиды. Рассуждаем: пропуск всего один, а варианта два. Это не просто так. Нужно внимательно перечитать вопрос. Есть два типа клеток, но нам не сказано, о каком идет речь значит, ответ должен быть универсален. Пластиды характерны только растительным клеткам, следовательно, остаются митохондрии. Ответ: митохондрии pазбирался: Ксения Алексеевна обсудить разбор оценить Задание EB23030 Рассмотрите предложенную схему строения скелета верхней конечности. К свободной верхней конечности относится рука.

Если пока не вдаваться в подробности с костями, которые ее составляют, то нужно просто запомнить три отдела: плечо, предплечье, кисть. Плечо начинается плечевым суставом, а заканчивается локтевым суставом. Предплечье, соответственно, должно заканчиваться локтем, а начинается от запястья включительно. Кисть — косточки, составляющие ладонь и фаланги пальцев. Ответ: плечо Источник 23.

Огэ биология 1 задание теория

Решения заданий 2 части ОГЭ по биологии на максимум. ОГЭ-Биология. Задание 1 — Знать признаки биологических объектов на разных уровнях организации живого. В изображённом на рисунке опыте экспериментатор поместил кристалл соли в каплю воды с живыми амёбами. Тестовые задания в формате ОГЭ. Практикующие учителя портала Cknow разработали для вас систему бесплатной теоретической и практической подготовки к ОГЭ и ЕГЭ по биологии 2019 года. Биология как наука. Ты узнаешь, по каким признакам живое отличается от неживого, какие уровни организации материи изучает биология, какие методы есть в арсенале биологических наук.

Как подготовиться к ОГЭ по биологии

Особенности рефлекторной и гуморальной регуляции функций организма 7. Скелет человека, строение его отделов и функции. Особенности скелета человека, связанные с прямохождением и трудовой деятельностью. Мышечная система. Строение и функции скелетных мышц. Работа мышц.

Утомление мышц. Роль двигательной активности в сохранении здоровья. Нарушения опорно-двигательной системы. Первая помощь при травмах опорно-двигательного аппарата 7. Форменные элементы крови: эритроциты, лейкоциты и тромбоциты.

Плазма крови. Постоянство внутренней среды гомеостаз. Свёртывание крови. Группы крови. Переливание крови.

Иммунитет и его виды. Вакцины и лечебные сыворотки 7. Строение и работа сердца. Автоматизм сердца. Сердечный цикл, его длительность.

Большой и малый круги кровообращения. Движение крови по сосудам. Лимфатическая система, лимфоотток. Регуляция деятельности сердца и сосудов. Гигиена сердечно-сосудистой системы.

Первая помощь при кровотечениях 7. Органы дыхания. Взаимосвязь строения и функций органов дыхания. Газообмен в лёгких и тканях. Жизненная ёмкость лёгких.

Механизмы дыхания. Дыхательные движения. Регуляция дыхания. Оказание первой помощи при поражении органов дыхания 7. Питание и его значение.

Органы пищеварения, их строение и функции. Ферменты, их роль в пищеварении. Всасывание питательных веществ и воды. Пищеварительные железы, их роль в пищеварении. Регуляция пищеварения.

Гигиена питания 7. Пластический и энергетический обмен. Обмен воды и минеральных солей. Обмен белков, углеводов и жиров в организме. Регуляция обмена веществ и превращения энергии.

Витамины и их роль для организма. Нормы и режим питания. Кожа и её производные. Кожа и терморегуляция. Строение и функции кожи.

Закаливание и его роль. Профилактика и первая помощь при тепловом и солнечном ударах, ожогах и обморожениях 7. Значение выделения. Органы выделения. Органы мочевыделительной системы, их строение и функции.

Регуляция мочеобразования и мочеиспускания. Органы репродукции, строение и функции. Внутриутробное развитие. Половое созревание. Наследование признаков у человека.

Наследственные болезни, их причины и предупреждение. Набор хромосом, половые хромосомы, гены 7. Сенсорные системы. Глаз и зрение. Оптическая система глаза.

Зрительное восприятие. Ухо и слух. Строение и функции органа слуха. Механизм работы слухового анализатора. Органы равновесия, мышечного чувства, осязания, обоняния и вкуса.

Взаимодействие сенсорных систем организма 7. Потребности и мотивы поведения. Рефлекторная теория поведения. Высшая нервная деятельность человека. Механизм образования условных рефлексов.

У нас же эти задания и есть в свободном доступе всегда, круглосуточно. Еще один немаловажный момент, что они кроме того и с ответами. То есть можно сразу изучать и вопросы и ответы, тем самым полноценно готовиться в экзамену по биологии в 9 классе.

Количественные изменения организма называются ростом. Они проявляются, например, в виде увеличения массы и линейных размеров организма, что основано на воспроизведении молекул, клеток и других биологических структур. Развитие организма — это появление качественных различий в структуре, усложнение функций и т.

Рост организмов может продолжаться всю жизнь или заканчиваться на каком-то определенном ее этапе. В первом случае говорят о Неограниченном, или Открытом росте. Он характерен для растений и грибов. Во втором случае мы имеем дело с Ограниченным, или закрытым ростом, присущим животным и бактериям. Продолжительность существования отдельной клетки, организма, вида и других биологических систем ограничена во времени в основном из-за воздействия факторов окружающей среды, поэтому требуется постоянное воспроизведение этих систем. В основе воспроизведения клеток и организмов лежит процесс самоудвоения молекул ДНК. Размножение организмов обеспечивает существование вида, а размножение всех видов, населяющих Землю, обеспечивает существование биосферы.

Наследственностью называют передачу признаков родительских форм в ряду поколений. Однако, если бы при воспроизведении признаки сохранялись, приспособление к меняющимся условиям окружающей среды было бы невозможным. В связи с этим появилось противоположное наследственности свойство — Изменчивость. Изменчивость — это возможность приобретения в течение жизни новых признаков и свойств, которое обеспечивает эволюцию и выживание наиболее приспособленных видов. Эволюция — это необратимый процесс исторического развития живого. Она базируется на Прогрессивном размножении, наследственной изменчивости, борьбе за существование и Естественном отборе. Действие этих факторов привело к огромному разнообразию форм жизни, приспособленных к различным условиям среды обитания.

Прогрессивная эволюция прошла ряд ступеней: доклеточных форм, одноклеточных организмов, все усложняющихся многоклеточных вплоть до человека. Генетика, ее задачи. Наследственность и изменчивость — свойства организмов. Методы генетики. Основные генетические понятия и символика. Хромосомная теория наследственности. Современные представления о гене и геноме Генетика, ее задачи Успехи естествознания и клеточной биологии в XVIII—XIX веках позволили ряду ученых высказать предположения о существовании неких наследственных факторов, определяющих, например, развитие наследственных болезней, однако эти предположения не были подкреплены соответствующими доказательствами.

Даже сформулированная Х. Вейсмана, согласно которой приобретенные в процессе онтогенеза признаки не наследуются. Лишь труды чешского исследователя Г. Менделя 1822—1884 стали основополагающим камнем современной генетики. Однако, несмотря на то, что его труды цитировались в научных изданиях, современники не обратили на них внимания. И лишь повторное открытие закономерностей независимого наследования сразу тремя учеными — Э. Чермаком, К.

Корренсом и Х. Генетика — это наука, изучающая закономерности наследственности и изменчивости и методы управления ими. Задачами генетики на современном этапе являются исследование качественных и количественных характеристик наследственного материала, анализ структуры и функционирования генотипа, расшифровка тонкой структуры гена и методов регуляции генной активности, поиск генов, вызывающих развитие наследственных болезней человека и методов их «исправления», создание нового поколения лекарственных препаратов по типу ДНК-вакцин, конструирование с помощью средств генной и клеточной инженерии организмов с новыми свойствами, которые могли бы производить необходимые человеку лекарственные препараты и продукты питания, а также полная расшифровка генома человека. Наследственность и изменчивость — свойства организмов Наследственность — это способность организмов передавать свои признаки и свойства в ряду поколений. Изменчивость — свойство организмов приобретать новые признаки в течение жизни. Признаки — это любые морфологические, физиологические, биохимические и иные особенности организмов, по которым одни из них отличаются от других, например цвет глаз. Свойствами же называют любые функциональные особенности организмов, в основе которых лежит определенный структурный признак или группа элементарных признаков.

Признаки организмов можно разделить на Качественные и Количественные. Качественные признаки имеют два-три контрастных проявления, которые называют Альтернативными признаками, например голубой и карий цвет глаз, тогда как количественные удойность коров, урожайность пшеницы не имеют четко выраженных различий. Материальным носителем наследственности является ДНК. У эукариот различают два типа наследственности: Генотипическую и Цитоплазматическую. Носители генотипической наследственности локализованы в ядре и далее речь пойдет именно о ней, а носителями цитоплазматической наследственности являются находящиеся в митохондриях и пластидах кольцевые молекулы ДНК. Цитоплазматическая наследственность передается в основном с яйцеклеткой, поэтому называется также Материнской. В митохондриях клеток человека локализовано небольшое количество генов, однако их изменение может оказывать существенное влияние на развитие организма, например приводить к развитию слепоты или постепенному снижению подвижности.

Пластиды играют не менее важную роль в жизни растений. Так, в некоторых участках листа могут присутствовать бесхлорофильные клетки, что приводит, с одной стороны, к снижению продуктивности растения, а с другой — такие пестролистные организмы ценятся в декоративном озеленении. Воспроизводятся такие экземпляры в основном бесполым способом, так как при половом размножении чаще получаются обычные зеленые растения. Методы генетики 1. Гибридологический метод, или метод скрещиваний, заключается в подборе родительских особей и анализе потомства. При этом о генотипе организма судят по фенотипическим проявлениям генов у потомков, полученных при определенной схеме скрещивания. Это старейший информативный метод генетики, который наиболее полно впервые применил Г.

Мендель в сочетании со статистическим методом. Данный метод неприменим в генетике человека по этическим соображениям. Цитогенетический метод основан на исследовании кариотипа: числа, формы и величины хромосом организма. Изучение этих особенностей позволяет выявить различные патологии развития. Биохимический метод позволяет определять содержание различных веществ в организме, в особенности их избыток или недостаток, а также активность целого ряда ферментов. Молекулярно-генетические методы направлены на выявление вариаций в структуре и расшифровку первичной последовательности нуклеотидов исследуемых участков ДНК. Они позволяют выявить гены наследственных болезней даже у эмбрионов, установить отцовство и т.

Популяционно-статистический метод позволяет определить генетический состав популяции, частоту определенных генов и генотипов, генетический груз, а также наметить перспективы развития популяции. Метод гибридизации соматических клеток в культуре позволяет определить локализацию определенных генов в хромосомах при слиянии клеток различных организмов, например, мыши и хомяка, мыши и человека и т. Основные генетические понятия и символика Ген — это участок молекулы ДНК, или хромосомы, несущий информацию об определенном признаке или свойстве организма. Некоторые гены могут оказывать влияние на проявление сразу нескольких признаков. Такое явление называется Плейотропией. Например, ген, обусловливающий развитие наследственного заболевания арахнодактилии паучьи пальцы , вызывает также искривление хрусталика, патологии многих внутренних органов. Каждый ген занимает в хромосоме строго определенное место — Локус.

Так как в соматических клетках большинства эукариотических организмов хромосомы парные гомологичные , то в каждой из парных хромосом находится по одной копии гена, отвечающего за определенный признак. Такие гены называются Аллельными. Аллельные гены чаще всего существуют в двух вариантах — доминантном и рецессивном. Доминантной называют аллель, которая проявляется вне зависимости от того, какой ген находится в другой хромосоме, и подавляет развитие признака, кодируемого рецессивным геном. Доминантные аллели обозначаются обычно прописными буквами латинского алфавита A, B, C и др. Рецессивные аллели могут проявляться только в том случае, если они занимают локусы в обеих парных хромосомах. Организм, у которого в обеих гомологичных хромосомах находятся одинаковые аллели, называется Гомозиготным по данному гену, или Гомозиготой AA, aa, ААBB, ааbb и т.

Ряд генов может иметь три и более структурных варианта, например группы крови по системе AB0 кодируются тремя аллелями — I A, I B, i. Такое явление называется Множественным аллелизмом. Однако даже в этом случае каждая хромосома из пары несет только одну аллель, то есть все три варианта гена у одного организма не могут быть представлены. Геном — совокупность генов, характерная для гаплоидного набора хромосом. Генотип — совокупность генов, характерная для диплоидного набора хромосом. Фенотип — совокупность признаков и свойств организма, которая является результатом взаимодействия генотипа и окружающей среды. Поскольку организмы отличаются между собой многими признаками, установить закономерности их наследования можно только при анализе двух и более признаков в потомстве.

Скрещивание, при котором рассматривается наследование и проводится точный количественный учет потомства по одной паре альтернативных признаков, называется МоногибридныМ, по двум парам — Дигибридным, по большему количеству признаков — Полигибридным. По фенотипу особи далеко не всегда можно установить ее генотип, поскольку как гомозиготный по доминантному гену организм АА , так и гетерозиготный Аа будет иметь в фенотипе проявление доминантной аллели. Поэтому для проверки генотипа организма с перекрестным оплодотворением применяют Анализирующее скрещивание — скрещивание, при котором организм с доминантным признаком скрещивается с гомозиготным по рецессивному гену. При этом гомозиготный по доминантному гену организм не будет давать расщепления в потомстве, тогда как в потомстве гетерозиготных особей наблюдается равное количество особей с доминантным и рецессивным признаками. Для записи схем скрещиваний чаще всего применяются следующие условные обозначения: Р от лат. Хромосомная теория наследственности Основоположник генетики Г. Мендель, равно как и его ближайшие последователи, не имели ни малейшего представления о материальной основе наследственных задатков, или генов.

Однако уже в 1902—1903 годах немецкий биолог Т. Бовери и американский студент У. Сэттон независимо друг от друга предположили, что поведение хромосом при созревании клеток и оплодотворении позволяет объяснить расщепление наследственных факторов по Менделю, т. Данные предположения стали краеугольным камнем хромосомной теории наследственности. В 1906 году английские генетики У. Бэтсон и Р. Пеннет обнаружили нарушение менделевского расщепления при скрещивании душистого горошка, а их соотечественник Л.

Донкастер в экспериментах с бабочкой крыжовенной пяденицей открыл сцепленное с полом наследование. Результаты этих экспериментов явно противоречили менделевским, но если учесть, что к тому времени уже было известно о том, что количество известных признаков для экспериментальных объектов намного превышало количество хромосом, а это наводило на мысль, что каждая хромосома несет более одного гена, а гены одной хромосомы наследуются совместно. В 1910 году начинаются эксперименты группы Т.

Для получения более высокого результата требуется решение заданий повышенной сложности. За каждое верно решённое задание можно получить от 1 до 3 баллов в зависимости от типа задачи и уровня сложности. План подготовки к экзамену с нуля В определённый момент перед выпускником возникает множество вопросов: с чего начать подготовку к финальному испытанию? Вдруг это будет трудно? Переживать по этому поводу не стоит, ведь ОГЭ — это не конец света, а жизненный этап, который проходят все школьники страны. Чтобы успешно справиться с экзаменом, вполне достаточно школьных знаний. Но чтобы правильно их применить, с ними нужно разобраться и их систематизировать.

Шаг 1 Если вы решили готовиться к ОГЭ по биологии самостоятельно, постарайтесь грамотно распределить время, чтобы не оставлять всё на последний момент. Лучше всего будет начать подготовку за год до экзамена — так вы сможете проработать весь материал в удобном для себя темпе и усвоите всю важную информацию вовремя. Составьте план. Разделите все темы для повторения на те, которые хорошо усвоены, вызывающие затруднение и которые вы не помните совсем. Лучше всего начинать двигаться от простого к сложному. Шаг 2 Обязательно ознакомьтесь с форматом экзамена. На официальном сайте ФИПИ вы сможете найти документы, демонстрирующие актуальную на текущий учебный год структуру и содержание контрольных материалов. Важно понимать, на какие темы стоит обратить больше внимания и по каким критериям эксперты будут выставлять баллы. При проработке заданий с развёрнутым ответом держите перед глазами документ с критериями, он поможет вам выработать персональный шаблон решения поставленных задач. Шаг 3 Для того чтобы успешно подготовиться к ОГЭ по биологии, следует с вниманием отнестись к изучению теоретической составляющей, так как основная его часть состоит из заданий по теории дисциплины.

Самый доступный вариант — обратиться к учебникам биологии. Кроме того, существует масса онлайн-ресурсов, которые смогут помочь вам в разборе особо сложных и непонятных тем. Шаг 4 Составляя конспекты по изученному материалу, делайте это грамотно: используйте схемы, таблицы и рисунки — так будет проще систематизировать информацию. Заведите словарь биологических терминов, выписывайте их вместе с определением и сразу же заучивайте. Попробуйте пересказать выученный материал друзьям — так вероятность того, что он отложится в долгосрочной памяти, значительно повысится. Задействуйте не только зрительную, но и слуховую память. Для этого смотрите видеоуроки и слушайте аудиолекции по выбранной теме. Например, в библиотеке видеоуроков ИнтернетУрока есть материалы по всем школьным темам. К ним прилагаются конспекты, тренажёры и тесты, которые помогут убедиться, что вы правильно усвоили информацию и готовы двигаться дальше. Шаг 5 Сосредоточьтесь на выполнении вариантов тренировочных экзаменационных работ.

Самое важное при подготовке к ОГЭ — набить руку на типовых заданиях, представленных в соответствующих сборниках, так как они часто встречаются на самом испытании. Будьте последовательны в своей работе, это придаст вам уверенности в своих силах.

Подготовка к ЕГЭ 2024 по Биологии | Задание 1 из 307

Огэ биология теория по заданиям. Главная» Новости» Теория биология огэ 2024. Еще одно выдающееся достижение биологии XIX в. — создание немецким ученым Т. Шванном клеточной теории, доказавшей, что все живые организмы состоят из клеток.

Демонстрационные варианты ОГЭ по биологии

  • 1. Биология как наука (Панина, теория) | ОГЭ для VIP
  • Тренировочные варианты ОГЭ 2024 по биологии
  • Разбор задания по биологии ОГЭ 2024: подробное объяснение первого вопроса, читать онлайн
  • Огэ биология 1 задание теория

Разбор задания №1

Но чтобы всё-таки ребята смогли показать свои настоящие знания, сложность в них нарастает постепенно: от базового к высокому уровню. Базовый уровень сложности включает в себя 16 вопросов, повышенный — 9, а высокий — 4 последних вопроса. Структура и темы ОГЭ по биологии Биология как наука Считается, что это самый простой блок в экзамене, но по статистики ребята здесь часто ошибаются. В заданиях этого блока есть вопросы о биологических науках, о том, как повлияла биология на современную картину мира. Признаки живых организмов В этой теме в процессе подготовки важно разобрать вопросы о строении клетки, изучить генетику и научиться решать задачи. На экзамене могут встретиться вопросы о наследственности и о способах разведения животных и растений. Самыми сложными заданиями в этом блоке считаются задания о строении клеток: очень важно учить тренировать ребёнка работать с изображениями — по ним нужно будет определить часть клетки, например. Проблема в том, что заучить теорию можно всегда, а чтобы увидеть и понять — нужна практика. Система, многообразие и эволюция живой природы Здесь будут задания по зоологии, микробиологии и ботаники. Ученикам важно изучить и запомнить систему классификации царств, информацию об устойчивости экосистем. Обычно в нём даётся 5 пунктов, и ученику нужно расставить их в правильной последовательности.

Человек и его здоровье Анатомия человека, особенности его физиологии, гигиена и психология — это самый масштабный тематический блок в ОГЭ, и он посвящается человеку. Школьники должны знать, как устроен человек, какие основные функции выполняет его организм и какие правила нужно соблюдать, чтобы вести здоровый образ жизни. Сложностей с определением органов, их названий и функций у девятиклассников обычно не возникает, а вот вопрос расщепления ферментов в процессе пищеварения остаётся очень сложным для многих. Этой теме на этапе подготовки следует выделить отдельное время. Взаимосвязи организмов и окружающей среды В экзамене будет два задания по этой теме. Здесь важно знать, как взаимосвязаны организмы в окружающей среде и как это влияет на экологическую ситуацию. Как правильно спланировать подготовку к ОГЭ по биологии? С чего начать?

Часть 2 содержит 4 задания с развернутым ответом, из них: 1 повышенного уровня сложности на работу с текстом, предполагающее использование информации из текста контекстных знаний для ответа на поставленные вопросы; остальные высокого уровня сложности: 1 на анализ статистических данных, представленных в табличной форме; 2 на применение биологических знаний для решения практических задач. Шкала перевода баллов в оценки: «2» — от 0 до 12 «3» — от 13 до 25 «4» — от 26 до 36 «5» — от 37 до 46 Система оценивания выполнения отдельных заданий и экзаменационной работы в целом За верное выполнение каждого из заданий 1—22 выставляется 1 балл. В другом случае — 0 баллов. За верное выполнение каждого из заданий 23—27 выставляется 2 балла. За ответы на задания 23 и 24 выставляется 1 балл, если в ответе указаны две любые цифры, представленные в эталоне ответа, и 0 баллов во всех других случаях.

Разделы КЭС 2023: Признаки живых организмов. Тип ответа: Краткий ответ. Признаки живого клеточное строение, питание, дыхание, выделение, рост и др.

Помимо этого, оформление активатора максимально минималистичное и не нагружает юзера. Есть функция удаления истории предыдущих активаций и KMS-сервера. Отключение Защитника Windows. Активация операционных систем Windows 11, 10, 8. Активация пакета офисных программ Microsoft Office 2010, 2013, 2016, 2019, 2021 VL. Не требует наличия Фреймворк. Функция для повышения сборки Windows — домашнюю можно заменить на профессиональную и максимальную. Для активации даже не требуется особая инструкция — достаточно следовать указаниям установщика и правильно выбрать нужную именно в вашем случае утилиту, ведь в сборке их аж 10. Также крайне важно перед началом работы с активатором KMS Tools добавить его в исключения антивирусной программы. Для этого активатор лучше поместить в отдельную папку и добавить ее и ее содержимое в исключения. На время работы также антивирус лучше отключить.

Задание 1. Биология как наука. ЕГЭ 2024 по биологии

В ЕГЭ есть задание 11, в котором необходимо выбрать характеристики какого-либо одного организма. ОГЭ 2023 по биологии 9 класс задание №1. Признаки биологических объектов на разных уровнях организации живого. ОГЭ по биологии состоит из двух частей, включающих в себя 32 задания. ОГЭ биология. Задания 1. Признаки биологических объектов. Составитель: Минасян Назик Бениковна учитель биологии МБОУ СОШ №20 Туапсинский район. признаки биологических систем.

Похожие новости:

Оцените статью
Добавить комментарий