10 апреля 2019 года международная группа астрономов должна представить первые результаты работы Телескопа горизонта событий (Event Horizon Telescope). 12 мая астрофизики проекта Event Horizon Telescope опубликовали первую в истории фотографию сверхмассивной чёрной дыры Стрелец A из самого центра нашей Галактики. EHT is a millimeter-wavelength very-long-baseline interferometry (VLBI) experiment with unprecedented micro-arcsecond angular resolution using an array of millimeter telescopes that spans the Earth. A large team of scientists has used data from the Event Horizon Telescope (EHT) project to create images of the NRAO 530 quasar. В 2019 году с помощью «Телескопа горизонта событий» (Event Horizon Telescope) удалось сделать первый снимок крайней части невероятно большой черной дыры из галактики M87, вокруг которой скапливаются специфические газы.
Астрономы впервые измерили магнитное поле в окрестностях сверхмассивной черной дыры
Опубликован первый снимок гигантской черной дыры в Млечном Пути | The Event Horizon Telescope is an international collaboration aiming to capture the first image of a black hole by creating a virtual Earth-sized telescope. |
Телескоп горизонта событий заметил колебание тени черной дыры | видимой границы черной дыры получено в рамках международного проекта Event Horizon Telescope (EHT) / «Телескоп горизонта событий». |
Телескоп горизонта событий заметил колебание тени черной дыры | Исследователи проекта Телескоп горизонта событий (Event Horizon Telescope, EHT) представили результаты наблюдения за квазаром NRAO 530, свет от которого двигался до Земли 7,5 млрд лет. |
Event Horizon Telescope - today's latest news and major events - Sputnik International | Изображение: Event Horizon Telescope. |
Event Horizon Telescope captures images of NRAO 530 quasar | В рамках международного проекта «Event Horizon Telescope» астрономам впервые за всю историю наблюдений удалось получить снимок черной дыры, а точнее ее тени, «отбрасываемой» на светящийся диск из перегретого газа и пыли. |
3. Представлено первое фото черной дыры в центре нашей Галактики
Event Horizon Telescope observations were made by observations around the globe; data was sent to MIT Haystack Observatory and the Max-Planck-Institut für Radioastronomie for correlation. Using the Event Horizon Telescope, scientists obtained an image of the black hole at the center of galaxy M87, outlined by emission from hot gas swirling around it under the influence of strong gravity near its event horizon. В прямом эфире астрофизики из проекта Event Horizon Telescope («Телескоп горизонта событий») продемонстрировали изображения чёрной дыры в галактике Messier 87, удалённой от Земли на 50 млн световых лет. Event Horizon Telescope observations were made by observations around the globe; data was sent to MIT Haystack Observatory and the Max-Planck-Institut für Radioastronomie for correlation. Сеть обсерваторий из проекта «Телескоп горизонта событий» (EHT) опубликовала первое изображение тени сверхмассивной черной дыры в центре нашей галактики Млечный Путь. Коллаборация Телескопа горизонта событий (EHT) показала первое в истории изображение тени сверхмассивной черной дыры в центре Млечного Пути.
Что будет, если попасть в чёрную дыру в космосе?
- Комментарии
- Event Horizon Telescope captures images of NRAO 530 quasar
- Что такое интерферометрия?
- Куда смотрел телескоп
- Event Horizon 💻 – Telegram
- Сообщить об ошибке в тексте
5 неподвластных учёным загадок космоса, которые раскроет только телескоп Уэбб
This decreases the fidelity of the image, or how accurately the image can recreate the original object. Astronomers use the fact that they do have some idea of what a black hole should look like to narrow down the possibilities. Another complication is just the logistics of moving around so much data. Each station takes data over a range of wavelengths, resulting in massive amounts of information, as much as 5,000 hours of mp3 music files — too much to transmit. For instance, to transport data back from the South Pole Telescope, scientists had to wait until Antarctic spring when the planes finally started flying out again. A shipping pallet packed with the hard drives had to be sent back to the Northern Hemisphere, where data analysis was done at processing centers at the Max Planck Institute in Bonn, Germany, and the MIT-Haystack Observatory in Westford, Massachusetts. There, the data was correlated, or matched between observing sites. And each individual telescope sees a different angle on the sky, so they observe at different times. That means the data must be matched up precisely to produce one unified image. And then we spend another six months worrying about all the things you might have done wrong and ask yourself more and more questions, until finally, you can be certain that what you have is real.
Even more exciting are the repeat images of M87 and other black holes yet to come. Up Next.
Достигнуть успеха удалось благодаря объединению восьми радиообсерваторий по всей планете в один виртуальный телескоп «размером с Землю». Хоть мы и не можем видеть чёрную дыру, так как она действительно абсолютно чёрная, её выдаёт окружающий её светящийся газ: мы наблюдаем тёмную центральную область называемую тенью , окружённую яркой кольцеобразной структурой. Изображение сформировано световыми лучами, искривлёнными мощной гравитацией чёрной дыры, масса которой в четыре миллиона раз превышает массу нашего Солнца. Так как эта чёрная дыра находится от Земли на расстоянии около 27 000 световых лет, её видимые размеры на небе примерно соответствуют размерам пончика на Луне.
Чтобы получить её изображение, группа создала сверхмощную антенную решётку EHT: восемь крупнейших радиообсерваторий всей планеты, объединившись, создали единый гигантский виртуальный телескоп размером с земной шар.
Трансляцию можно посмотреть на сайте ESO или на Youtube. Проект EHT начался в апреле 2017 года — восемь обсерваторий в разных уголках Земли работают как один телескоп на длине волны 1,3 миллиметра. В апреле 2019 года ученые сообщили о первом полученном изображении тени черной дыры — это была сверхмассивная черная дыра в центре активной гигантской эллиптической галактики M87 Messier 87, Мессье 87, еще ее называют Дева A.
Moscibrodzka, T. Falcke Чтобы обойти эти технические ограничения несколько лет назад был дан старт проекту «Event Horizon Telescope», целью которого является получения снимков сверхмассивных черных дыр в сердце Млечного Пути и галактики Messier 87. Почему были выбраны именно эти объекты? Все просто. Однако с черной дырой ситуация совсем другая: обладая крайне сильной гравитацией, она отклоняет и изгибает траекторию движения света настолько, что мы фактически можем видеть то, что находится за ней.
И, учитывая, что сама по себе черная дыра не излучает свет, ожидаемое изображение представляет собой яркое кольцо, состоящее из всех отклоненных ею лучей. И то, что мы увидели, отлично согласуется с моделями», — добавил Роман Голд из Франкфуртского университета им. Гете, также участник проекта «Event Horizon Telescope».
Телескоп горизонта событий
Теперь они имеют возможность сравнивать изображения черных дыр друг с другом и искать отличия. В материале уточняется: над получением результата работало более трехсот исследователей из 80 институтов всего мира.
Эта связка даст возможность получить гигантское угловое разрешение 3. Что касается диапазона исследований, то у «Миллиметрона» он будет беспрецедентно широким — с длиной волны от 70 мкм тепловое излучение средней длины до 10 мм миллиметровые волны , в то время как предшественник вел наблюдения в чистом радиодиапазоне. В числе отличий и координаты точки назначения: «Спектр-Р» вглядывался в бесконечность, вращаясь вокруг Земли по эллиптической орбите, а «Миллиметрон» для выполнения своей миссии направится в точку Лагранжа L2, находящуюся на прямой линии между Солнцем и нашей планетой на расстоянии 1. Орбита в окрестности точки L2 была выбрана главным образом для обеспечения охлаждения до сверхнизких температур.
Из рода «Спектров» Было запланировано создать четыре обсерватории серии «Спектр» для изучения астрономических объектов в различных диапазонах электромагнитных волн. Первый аппарат — «Спектр-Р» — стартовал в 2011 г. Отправленная на орбиту летом 2019 г. В середине десятилетия эстафету подхватит разрабатываемый аппарат «Спектр-УФ», который будет собирать информацию о далеких объектах в ультрафиолете. Завершит масштабный проект обсерватория «Спектр-М», чьей задачей станет исследование Вселенной в миллиметровом и инфракрасном диапазонах. Космический цветок Главное зеркало «Миллиметрона», где отразятся ответы на загадки Вселенной, отправится в космическое путешествие аккуратно сложенным и раскроется как огромный космический цветок сразу по выведении на орбиту.
После этого его полет к точке L2 составит еще три месяца. Это время будет использовано для начального охлаждения конструкции. У обсерватории-цветка будет 24 трансформируемых лепестка и центральное стационарное зеркало диаметром три метра. На каждом лепестке будет установлено по три панели из высокомодульного углепластика с алюминиевым радиоотражающим покрытием. Кинематика раскрытия зеркала будет такой же, как и у обсерватории «Спектр-Р», но устройство раскрытия модернизировано для достижения более высокой точности этого процесса. Лепестки космического цветка будут зафиксированы по краям специальными защелками.
Предполагается, что аппарат проработает на орбите десять лет, из которых три — в одиночном режиме. В это время его научная аппаратура для поддержания высоких параметров чувствительности и противодействия тепловым помехам будет сильно охлаждаться.
Благодаря синхронизации работы телескопов, расположенных на разных континентах, при помощи атомных часов и использовании суперкомпьютеров для обработки данных ученые в 2019 году впервые в истории получили изображение тени сверхмассивной черной дыры в центре активной эллиптической галактики M87, увидели ее колебания и измерили магнитное поле вблизи дыры. Первоначально о существовании компактного объекта ученые узнали в конце прошлого века путем отслеживания движения звезд вблизи черной дыры, за что в 2020 году была вручена Нобелевская премия по физике. Для такой массы радиус горизонта событий составляет около 12 миллионов километров. Это стало возможным благодаря модернизации проекта EHT и применения новых методов обработки получаемых данных.
Расположение телескопов принципиально, потому что облака могут помешать приему сигналов. Так у нас появился гигантский механизм, который может из Парижа разглядеть блоху на загривке дворняги во Владивостоке. Его четкость в 2000 раз выше, чем на снимках, сделанных космическим телескопом «Хаббл».
Но для чего это нам? Целью проекта стали не какие-то условные черные дыры, а два вполне конкретных объекта: черная дыра в центре эллиптической галактики М87 и Sgr A в центре Млечного Пути. Именно фотография первой из них потрясла мир в апреле 2019 года, когда люди по всему миру читали в новостях одно и то же: «Мир получил первый в истории снимок черной дыры». И снимок этот сделан Телескопом Горизонта Событий. Собрать пазл без миллиона деталей Правда, наша «подзорная труба» не идеальна и дает картинку только из тех мест, где расположены части Телескопа Горизонта Событий, а он не покрывает всю планету. Этот недостаток отчасти компенсирует вращение Земли: в момент наблюдения те кусочки, которые видят радиотелескопы, тоже движутся, и в результате получаются не точки наблюдения, а линии. Основываясь на данных с таким количеством белых пятен, трудно сделать однозначные выводы, поэтому был разработан специальный алгоритм, который может достроить изображение, — CHIRP Continuous High-resolution Image Reconstruction using Patch priors. Алгоритм, разработанный ученой Кэти Боуман Katie Bouman , собирает изображение из маленьких частей, как пазл, но пользуется ради научной достоверности тремя наборами «подсказок»: из смоделированных черных дыр, астрономических изображений и повседневных фотографий, как если бы вы дали одинаковое техническое задание трем разным иллюстраторам, а потом сравнили результат. Как на смоделированной черной дыре, так и на других возможных картинках алгоритм получает идентичные изображения.
Скриншот из «Твиттера» Массачусетского технологического института.
3. Представлено первое фото черной дыры в центре нашей Галактики
Данные проекта «Телескоп горизонта событий» позволили ученым получить изображение тени сверхмассивной черной звезды. Телескоп горизонта событий (антенная решетка планетарного масштаба из восьми наземных радиотелескопов) был создан специально, чтобы фотографировать черные дыры. МОСКВА, 12 мая — РИА Новости, Владислав Стрекопытов. Ученые коллаборации "Телескопа горизонта событий" сообщили, что им удалось получить изображение сверхмассивной черной дыры в центре Млечного Пути. 20 мая сотрудники Европейской южной обсерватории (ESO) и команда, занимающаяся исследованиями на Телескопе горизонта событий (EHT, Event Horizon Telescope), провели пресс-конференцию, на которой показали фото черной дыры в центре нашей Галактики. Команда проекта Event Horizon Telescope (Телескоп горизонта событий) поделилась уникальными кадрами магнитного поля вокруг сверхмассивной чёрной дыры Стрелец А* (Sagittarius A*), которая находится в самом центре нашего Млечного Пути.
Navigation Menu
- Фото черной дыры в центре Млечного Пути: почему это важно - Мнения ТАСС
- Первое в истории изображение черной дыры уже стало мемом
- Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А* • AB-NEWS
- Первый взгляд на чёрную дыру в центре Млечного пути
- Впервые представлено фото черной дыры и горизонта событий | ИА Красная Весна
- Космический дебют: о чём может рассказать первая в истории фотография сверхмассивной чёрной дыры
Телескоп Event Horizon показал магнитные поля вокруг черной дыры Стрелец А*
В рамках международного проекта «Event Horizon Telescope» астрономам впервые за всю историю наблюдений удалось получить снимок черной дыры, а точнее ее тени, «отбрасываемой» на светящийся диск из перегретого газа и пыли. The event horizon is a team of programmers and specialists in the field of cryptocurrencies. В 2019 году с помощью «Телескопа горизонта событий» (Event Horizon Telescope) удалось сделать первый снимок крайней части невероятно большой черной дыры из галактики M87, вокруг которой скапливаются специфические газы. Sputnik International. Международная группа учёных, работающая в рамках проекта «Телескоп горизонта событий» (Event Horizon Telescope — EHT), получила изображения квазара NRAO 530, который находится на расстоянии 7,5 млрд световых лет от Земли. Телескоп горизонта событий заметил круговую поляризацию излучения от сверхмассивной черной дыры в галактике М87.
#Event Horizon Telescope
Чтобы получить изображение этого объекта, астрофизики использовали сеть из восьми обсерваторий в разных частях Земли, которые и образуют все вместе виртуальный телескоп размером с планету, носящий название Телескопа горизонта событий. Сбор данных велся в течение «множества ночей» по много часов подряд, что можно сравнить с фотосъемкой с длинной экспозицией, говорят ученые. Затем информация долго обрабатывалась суперкомпьютерами. Это было словно пытаться сделать четкое фото щенка, стремительно гоняющегося за собственным хвостом», — говорит о работе ученых Чи-Кван Чан из Университета Аризоны. Полученные изображения — это результат сведения воедино различных снимков, их «среднее арифметическое».
В киноленте изображение изобилует деталями и оптическими эффектами. Считается, что черная дыра представляет собой объект с такой сильной гравитацией, что даже свет не может отдалиться от него на бесконечное расстояние и из черной дыры не может выбраться никакое тело. Концепция таких объектов связана с современным взглядом на гравитацию, общей теорией относительности Эйнштейна, и представлением тяготения в ней через искривление пространства-времени. Что хотели узнать астрофизики Предполагалось, что совместная работа телескопов поможет разглядеть тень черной дыры. Измерения позволят протестировать общую теорию относительности и получить очередное доказательство существования черных дыр. Черные дыры остаются гипотетическими объектами, но у астрономов не осталось сомнений в том, что они существуют.
Уже получено большое количество косвенных свидетельств их существования, начиная от наблюдений тесных двойных систем и до гравитационных волн.
В "Телескоп горизонта событий" объединились несколько радиотелескопов. Черная дыра — это объект огромной массы, гравитация которого не выпускает даже свет.
Горизонт событий — эта некая граница, за которую он — свет - не может вырваться. На фото горизонт событий выглядит темным пятном. Его окружает кольцо огня, порожденное, по словам ученых, «огромной силой гравитации этого объекта».
Астрономы хотели бы разглядеть еще и черную дыру, которая расположена в центре нашей галактики — Млечного пути. Многие, включая «Комсомолку», подумали, что её фото и покажут. Были такие планы.
Но показали другую — черную дыру в галактике М87. Наша хоть и ближе — в 26 000 световых годах от Земли, но гораздо меньше. С ее фотографиями, как пояснили ученые, придется подождать.
Получен первый в истории снимок сверхмассивной черной дыры 10. Сверхмассивная черная дыра, запечатленная на снимке,тяжелее Солнца в 6,5 миллиардов раз. Она находится в центре галактики М87 Messier 87 — сверхгигантской эллиптической галактики, крупнейшей в созвездии Девы. М87 удалена от Земли на 53,5 миллиона световых лет.
Телескоп горизонта событий разглядел рекордно далекий для себя квазар
По словам Татьяны Ларченковой, на сегодняшний день наиболее перспективными наземными партнерами «Миллиметрона» являются интерферометрическая сеть «Телескоп горизонта событий» (Event Horizon Telescope) — телескопы восьми обсерваторий на разных. Участники проекта Event Horizon Telescope впервые измерили магнитное поле в окрестностях горизонта событий сверхмассивной черной дыры, наблюдая. Европейская южная обсерватория (ESO) совместно с Телескопом горизонта событий (Event Horizon Telescope, EHT) показали первую в истории фотографию сверхмассивной черной дыры в центре Млечного Пути.
Subcategories
- ESO показала первую в истории фотографию черной дыры в центре Млечного Пути
- Комментарии
- Получен первый в истории снимок сверхмассивной черной дыры
- Новый телескоп поможет с поиском планет, напоминающих Землю