Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT?
Искусственный интеллект: ближайшее будущее
Сегодня подобные сети развиваются очень быстро за счет цифровизации информации, увеличения ее оборота и объема. Машины довольно быстро анализируют информацию и обучаются, впоследствии они действительно приобретают способности, ранее считавшиеся чисто человеческой прерогативой. Влияние на жизнь человека: ИИ все больше проникает в экономическую сферу, и, по некоторым прогнозам, это позволит увеличить объем глобального рынка на 15,7 трлн долларов к 2030 году. Лидирующую позицию в освоении сей технологии занимают США и Китай, однако некоторые развитые страны вроде Канады, Сингапура, Германии и Японии не отстают. Искусственный интеллект может оказать существенное влияние на рынок труда. Это может привести к массовому увольнению рабочего персонала из-за автоматизации большинства процессов. Ну и росту востребованности разработчиков, конечно. Некоторые ученые отмечают риски внедрения искусственного интеллекта в повседневную жизнь. Так, британский ученый Стивен Хокинг считал, что создать искусственный интеллект, превосходящий человека по всем параметрам, все же удастся, но справиться с ним будет нам не под силу, и людям будет нанесен существенный вред. Некоторые же считает, что искусственный разум в дальнейшем будет нести куда большую угрозу по сравнении с ядерным оружием. Часть 2.
Области применения искусственного интеллекта на 2022 год. Они помогают найти полезную информацию, о который вы у них просите, используя естественный человеческий язык. Искусственный интеллект в таких приложениях собирают информацию на ваших вопросах и используют ее, чтобы лучше понимать вашу речь и выводить результаты с учетом ваших предпочтений. Microsoft утверждает, что Cortana постоянно получает информацию о своих пользователях и в конечном итоге она будет способна предвидеть потребности своих клиентов. Виртуальные личные помощники обрабатывают огромное количество данных из различных источников, чтобы узнать больше о пользователях и стать более эффективными помощниками в поиске и обработки информации. Сложность и эффективность искусственного интеллекта в видеоиграх возросло в геометрической прогрессии в течении последних нескольких десятилетий, в результате чего видеоигровые персонажи способны вести себя совершенно непредсказуемым образом. Видеоигры активно используют искусственный интеллект для своих персонажей, которые могут анализировать окружающую среду для поиска объектов и взаимодействия с ними. Они способны укрываться, исследовать звуки, использовать фланговые маневры, общаться с другими персонажами и т. Google сообщила об алгоритме, способном научиться водить машину точно так же,как это делает человек: через опыт. Идея заключается в том, что в конечном итоге автомобиль будет способен смотреть на дорогу и принимать решения, основываясь на том, что он видит.
Эта способность реализуется различными способами: купоны, скидки, таргентинговая реклама и т. Как вы уже догадались это очень спорное использование искусственного интеллекта так как заставляет многих людей переживать по поводу возможных нарушений неприкосновенности частной жизни. Многие банки отправляют эти сообщения, если считают, что существует вероятность мошенничества с вашим аккаунтом и хотят убедиться, что вы одобряете покупку, прежде чем перечислить деньги в другую компанию. Часто для наблюдения такого рода мошенничества используется искусственный интеллект. После достаточного обучения, система будет в состоянии обнаружить мошеннические транзакции на основе тех признаков, которые он узнал посредством обучения.
Чем раньше это сделать, тем выше вероятность выживания пациента. Но часто источник заболевания остаётся неизвестным, а узнают о нём по появлению клеток метастаз в лимфе или других биологических жидкостях человека. Врачи научились распознавать некоторые из них, но привязка клеток метастаз к видам онкологии остаётся непростой задачей, а ИИ — это тот инструмент, который может делать это лучше. Клетка метастаз рака молочной железы.
Они взяли за основу 12 типов наиболее распространённой онкологии, которые сопровождаются выбросом раковых клеток в лёгочную жидкость и жидкость брюшной полости, включая рак лёгких, яичников, молочной железы и желудка. Некоторые другие формы рака, в том числе те, которые возникают в предстательной железе и почках, включить в исследование не удалось, поскольку они обычно не сопровождаются выбросом клеток метастаз в биологические жидкости человека. По словам учёных, каждый год из 300 тыс. Против рака нет универсального метода лечения — оно своё для каждого случая, поэтому выживаемость среди больных без диагноза самая низкая. Исследователи обучили свою ИИ-модель примерно на 30 тыс. Затем они протестировали свою модель на 27 тыс. Наконец, в процессе анализа примерно 500 изображений ИИ оказался лучшим прогнозистом, чем опытные врачи. Также была проверена группа из 391 пациента, четыре года назад получившая лечение в соответствии с прогнозом ИИ и прогнозами врачей. Оказалось, что если курс лечения соответствовал прогнозу ИИ, то выживаемость пациентов была выше, а если врачи не брали в расчёт прогноз ИИ, то ниже.
В сочетании с другими методами диагностики онкологических заболеваний, считают исследователи, использование ИИ для распознавания источников опухолей по идентификации клеток метастаз обещает значительно повысить вероятность лечения этого смертельного недуга. По мнению главы компании Arm Рене Хааса Rene Haas , это может привести к тому, что уже к концу текущего десятилетия общие объёмы потребляемой системами ИИ энергии превзойдут объёмы энергопотребления Индии, самой густонаселённой страны в мире. Чтобы эти системы стали лучше, им потребуется дополнительное обучение — этап, который включает в себя бомбардировку программного обеспечения огромными наборами данных. Этот процесс рано или поздно столкнётся с пределом наших энергетических мощностей», — рассказал Хаас в интервью Bloomberg. Хаас формально ставит себя в один ряд с растущим числом людей, выражающих обеспокоенность по поводу возможного ущерба, который ИИ может нанести мировой энергетической инфраструктуре. Но он также заинтересован в том, чтобы отрасль перешла на использование чипов с Arm-архитектурами, которые всё больше завоёвывают популярность в центрах обработки данных. Технологии компании, которые к настоящему моменту получили широкое распространение в смартфонах, разработаны с целью более эффективного использования энергии по сравнению с традиционными серверными чипами. Arm рассматривает ИИ в качестве одного из основных драйверов своего роста. Технологии компании уже используются в процессорах, являющихся основой серверных систем AWS, Microsoft и Alphabet, разработавших собственные чипы для снижения своей зависимости от Intel и AMD.
По словам Хааса, используя больше чипов, изготовленных по индивидуальному заказу, компании могут сократить ограничивающие факторы и повысить энергоэффективность их систем. Однако отрасль нуждается в более масштабных технологических прорывах. В 2022 году, опираясь на полученный в этих сферах опыт, он создал Mentee Robotics —стартап в области робототехники. Сегодня компания представила гуманоидного робота Menteebot, главными преимуществами которого создатель называет продвинутое машинное зрение и обучающийся генеративный ИИ. Источник изображений: Mentee Robotics «Мы находимся на пороге сближения компьютерного зрения, понимания естественного языка, мощных и детальных симуляторов, а также методологий перехода от моделирования к реальному миру, — заявил Шашуа. Представленный робот во многом является прототипом, хотя его создатели считают, что добились достаточного прогресса, чтобы оправдать публичный дебют после двух лет напряжённой работы. Творческий и инженерный состав Mentee Robotics впечатляет. Особое внимание уделяется способности сочетать передвижение и ловкость, то есть динамическое балансирование робота при переносе тяжестей или движении манипуляторов», — говорится в пресс-релизе компании. Mentee Robotics утверждает, что новый робот адаптирован как для промышленного, так и для потребительского рынков, в отличие от конкурирующих моделей.
В конце 80-х годов появился компьютер Deep Thought, который сумел обыграть гроссмейстера Бента Ларсена в шахматах. Вызов программному решению решил бросить советский и российский шахматист Гарри Каспаров. Первый матч он выиграл, а во втором победу одержала машина. Фото: gazeta. Примером такого использования может служить распознавание лиц в системах видеонаблюдения или даже вызов врача с помощью робота-ассистента. Элементы ИИ Чтобы понять, как устроен искусственный интеллект, рассмотрим элементы, которые необходимы для его создания Алгоритмы и обработка данных: основой ИИ являются алгоритмы, которые определяют последовательность действий для выполнения определённых задач. Эти алгоритмы используются для обработки и анализа больших объёмов данных, которые являются основой обучения и принятия решений ИИ. Машинное обучение: процесс, при котором компьютерные системы обучаются на основе данных, чтобы распознавать образы, выявлять закономерности и прогнозировать результаты.
Большие объёмы данных используются для обучения и принятия решений. Они могут включать текстовую информацию, изображения, аудиофайлы и другие форматы. Вычислительные ресурсы: для обработки и анализа больших объёмов данных требуются мощные компьютеры и серверы, а также специализированные аппаратные ускорители. Типы искусственного интеллекта Сильный AGI. На данный момент нам доступен только первый тип ИИ. Сюда можно отнести распознавание лиц, виртуальные и голосовые помощники, системы распознавания речи и т. Сильный ИИ стремится к достижению уровня когнитивных способностей, сопоставимых с человеческим интеллектом, и предполагает наличие самосознания в соответствии с классическим определением Тьюринга. Развитие данного типа ИИ ожидается примерно к 2075 году, а ещё через 30 лет может наступить эра Супер-ИИ — искусственного интеллекта, превосходящего интеллект человека во всех аспектах.
Разница между нейронной сетью и искусственным интеллектом ИИ и нейронные сети являются связанными, но в то же время у них есть отличия. Искусственный интеллект — это широкий термин, который описывает область науки и технологии, направленную на создание компьютерных систем и программ, способных выполнять задачи, которые обычно требуют интеллектуальных способностей человека. Нейронные сети, с другой стороны, являются подмножеством искусственного интеллекта, которое имитирует функционирование нервной системы живых существ. Они являются инструментом или техникой, используемой в рамках искусственного интеллекта для решения задач, требующих обработки и анализа данных.
После восторгов люди начали задумываться: не грозит ли человечеству глобальная безработица и восстание машин, о котором снимали фильмы и писали книги фантасты прошлого. Так, Илон Маск и руководители крупнейших мировых IT-корпораций призвали на полгода остановить улучшение нейросетей, чтобы определиться с правилами их безопасности.
А тем временем MSK1. RU узнал у экспертов, чего нам ждать от искусственного интеллекта и не придут ли машины на смену homo sapiens, потеснив тех, кто их же и создал. Директор по науке и технологиям Агентства искусственного интеллекта Роман Душкин называет технологию «искусственный интеллект» инструментом, которым будет пользоваться человечество. Он вспоминает, что в ходе истории всегда находились те, кто ратовал за научный прогресс, и ретрограды, склонные жить прошлым и привычным. Один говорит: «Пойду-ка я на тракториста-механика учиться». А другой ему говорит: «Нет, не ходи, это бесовское изобретение, я вот лучше со своей лошадкой буду землю бороной пахать, как мне мои деды и прадеды завещали», — рассказал MSK1.
RU Роман Душкин. О том, что человек не останется без работы, уступив ее машинам, заявляют и экономисты. Меньше всего стоит опасаться за свое будущее «синим воротничкам», а работникам умственного труда нужно всего лишь быть в курсе новых технологий и своевременно прокачивать скиллы. Собственно говоря, основная задача машины — это выполнять самый примитивный функционал.
Как искусственный интеллект изменит нашу жизнь через 30–50 лет
— Какие изменения нас ждут в области искусственного интеллекта через 30–50 лет? Актуальность работы: изучение и применение Искусственного интеллекта является важной частью стратегии развития цифровой экономики национального проекта «Искусственный интеллект» Российской Федерации. В торгово-финансовом секторе искусственный интеллект так же хорошо себя показывает в работе. Искусственный интеллект призван стать помощником и источником повышения качества человеческого капитала, но не оппонентом, полностью вымещающим работников с рынка труда.
Значимость искусственного интеллекта и нейронных сетей в современном мире
Четвертая глава доклада посвящена растущей интеграции ИИ в экономику, так что ниже выделим главное. В целом за последнее десятилетие инвестиции в искусственный интеллект значительно возросли. В 2022 году объем частных инвестиций в искусственный интеллект был в 18 раз больше, чем в 2013 году. Безумно странная картинка, сгенерированная по запросу «роботы радуются потому что отобрали работу у людей» В 2022 году областью, ориентированной на искусственный интеллект, в которую было вложено больше всего инвестиций, была медицина 6,1 миллиарда долларов ; за ней следовали управление данными, их обработка и облачные технологии 5,9 миллиарда долларов ; и финтех 5,5 миллиарда долларов. Организации, внедрившие искусственный интеллект, сообщают о значительном снижении затрат и увеличении доходов. США лидируют в мире по общему объему частных инвестиций в ИИ. В 2022 году 47,4 миллиарда долларов, инвестированных в США, были примерно в 3,5 раза больше, чем в следующей по величине стране — Китае 13,4 миллиарда долларов.
Доклад Стэндфордского университета содержит 386 страниц и является самым объемным из ранее опубликованных. За последнее десятилетие развитие ИИ с большим отрывом перешло от академических кругов к промышленности. Выходит, чтобы не остаться за бортом технологического прогресса, нужно научиться работать с ИИ-системами. Ввиду их стремительного развития медлить не стоит, так как от этого в ближайшем будущем может зависеть ваша зарплата. Если вы еще не успели пообщаться с ChatGPT, узнать как им пользоваться можно здесь. Лидер мировой экономики За последнее десятилетие Китай заложил прочный фундамент для поддержки своей экономики искусственного интеллекта и внес значительный вклад в развитие ИИ во всем мире.
Так, в 2021 году в стране было опубликовано около трети научных статей в области искусственного интеллекта. Проведенный в рамках доклада анализ показал, что в ближайшее десятилетие в Китае возрастет производство программного обеспечения. Правительство Китая также может создать новое государственное предприятие SOE , чтобы монополизировать рынок ИИ, подобно тому, как государственные предприятия монополизируют энергетический и телекоммуникационный секторы. Напомним, что государственные предприятия традиционно контролируют отрасли, которые считаются важными для национальных интересов и экономики страны. Китай может стать мировым лидером в области технологий Читайте также: Что происходит с экономикой: инфляция, дефолт и девальвация Согласно оценкам, к 2030 году Китай станет лидером мировой экономики — ее вклад составит 15,7 трлн долларов. Системы искусственного интеллекта, в свою очередь, превратятся в инструменты повседневной жизни.
Что, в целом, не удивительно, так как внедрение цифровых технологий, включая инструменты и платформы для изучения данных, в Поднебесной происходит повсеместно и постоянно растет. Как ИИ-системы влияют на образование? В середине 2000-х, когда я была студентом-переводчиком, основным инструментом была программа автоматизированного перевода Trados. Эта система, разработанная в 1992 году, помогала переводить и редактировать тексты. Стоила она недешево, да и пользоваться ей было непросто, однако уже тогда преподаватели предупреждали нас о неизбежном прогрессе в этой области. Сегодня чат-боты переводят тексты любой сложности за несколько секунд, что неизменно влияет на рынок труда как минимум в области письменного перевода.
Такие языковые системы как ChatGPT пишут безупречные академические эссе, сочинения и дипломные работы. Но что это означает для образования?
Область применений практически безгранична. На текущий момент мы находимся только в начале пути. Перспективы роста сохраняются и на 2024 и включают в себя создание новых профессий и перестройку множества текущих.
Этот процесс с нами на долгие годы, потому что ИИ полезен для бизнеса. Он повышает эффективность работы и снижает издержки. В целом в 2023 году наблюдался революционный прорыв в технологиях машинного обучения. Успешные кейсы были зафиксированы практически во всех ключевых областях и особенно в разработке. Сильно вырос интерес к автоматизации и интеллектуализации бизнес-процессов.
Спрос на нейросети естественным образом увеличил потребность в ML-инженерах и повлек рост зарплат для специалистов в этой области. В 2024 году ML-инженерам будут нужны глубокие знания в машинном обучении, владение программными инструментами и языками PyTorch, TensorFlow и т. Елена Кравченко Нейромаркетолог, эксперт по искусственному интеллекту Утверждение, что в 2023 все были без ума от нейросетей — не совсем верное. Восхищались нейросетями только пионеры, но есть огромное количество людей, которые замерли и думают о том, что ИИ уйдет из их жизни. При этом они забывают о том, что уже все банки и приложения давно работаю с помощью ИИ и с нами давно общаются боты.
Почему нейросети выстрелили именно 2023 год? Можно сравнить с бамбуком. Он набирает корневую систему -56 лет и потом за 40 дней вырастает до 5 метров. Тут тоже самое. У ИИ база накапливалась годами и сейчас она просто стала видна.
Интерес к нейросетям сохранится и он будет только нарастать. Потому что это не хайповая история, это технологическая революция, которая произошла, как факт. Интерес будет набирать ход, все больше людей будут сокращать, все больше позиций работников будет заменять ИИ. Ожидается, что человеку придется пересмотреть свою роль в жизни. Интерес сохранится, потому что это выгодно бизнесу.
С ИИ выгоднее и проще работать, чем с людьми. ИИ не болеет, у него нет перепада настроения, он четко выполняет ТЗ. Единственная задача собственник — правильно поставить задачу. Поэтому с точки зрения бизнеса, ИИ будет набирать ход. С точки зрения государства — это очень быстрая обработка данных.
Государству выгодно быстро и качественно собирать налоги, начислять и вычислять. Ни для кого ни секрет, что решения о выдаче кредитов в банке давно принимает ИИ, а не человек. ML-инженеры, как пользовались, так и пользуются колоссальным успехом. И это будет продолжаться дальше. Это происходит во всем мире, не только в России и СНГ.
Все больше людей обучается, появляются свои платформы. Потому что кто владеет качественной платформой по ИИ, тот владеет практически миром. К ним приходят запросы, данные и т. Без ИИ 3. Это огромный прорыв.
Сейчас мы находимся в движении к 2025 году. Использование терабайтов в мире будет в 4 раза больше, чем в 2020 году. ML-инжиниринг будет востребован все больше. Они без работы точно не останутся.
Сейчас есть все предпосылки для развития в этом направлении.
Развитие опенсорсных моделей и демократизация ИИ Что случилось за год Параллельно с закрытыми проприетарными моделями развились нейросети с открытым исходным кодом. Если в 2022 году анонс свободной языковой модели BLOOM BigScience large open-science open-access multilingual language model стал громким событием, то в 2023 году IT-комьюнити представило сотни опенсорсных нейронок. Начало этому процессу положила представленная в феврале 2023 года цукерберговская модель LLaMA , а затем её более продвинутый вариант LLaMA 2 , разработанный совместно с Microsoft. Нейросетка, представленная в типоразмерах на 7, 13, 33, 65 и 70 миллиардов параметров, по ряду показателей показала результаты, сопоставимые с GPT-3. Цукерберг решил сыграть против тренда на закрытость и объявил, что LLaMA будет доступна с рядом ограничений для научных организаций, которые его компания посчитает заслуживающими доверия.
Но модель вскоре «утекла» в интернет , где её начали распространять и «допиливать» энтузиасты ИИ и свободного ПО. Она стала основой для множества проектов, развивающих модель за счёт экспериментов с архитектурой, вариантами тонкой настройки и обучения. Следующий прорыв случился, когда учёные из Стэнфорда провели тонкую настройку модели и научили один из вариантов LLaMA следовать инструкциям пользователя, затратив на это всего лишь 600 долларов. Нейросеть получила название Alpaca. Сейчас таких проектов стало больше и не все они основаны на LLaMA.
Вот некоторые из самых интересных опенсорсных моделей, которые появились в 2023 году: Dolly от компании Databricks, специализирующейся на разработках в области больших данных. Отечественная ruGPT-3. Для неё опубликована лишь предобученная версия «претрейн» , поэтому для выполнения инструкций её нужно дообучать. Orca 2 от Microsoft. Даже из нашей скромной подборки видно, что открытые LLM разрабатывают все: крупные компании, небольшие стартапы и научные организации со всего мира.
При необходимости они могут быть дообучены и настроены с учётом пожеланий заказчика и требований местного законодательства. Большинство опенсорсных моделей содержат меньшее число параметров, чем известные проприетарные сети. За счёт этого они могут быть запущены на относительно слабом «железе», иногда даже на домашнем компьютере. Сравнение возможностей опенсорсных и проприетарных LLM Инфографика: Майя Мальгина для Skillbox Media Опенсорсные модели, которые можно запустить локально на сервере или компьютере, снижают риски утечки данных и взлома инфраструктуры. Но возрастает опасность, что такие нейросети могут использоваться в противозаконной деятельности.
Например, для воссоздания голоса и внешнего вида реальных людей с их использованием для получения доступа к банковским счетам или социальной инженерии. Стоит быть осторожным при внедрении опенсорсных разработок от малоизвестных коллективов, поскольку они могут быть обучены на неполных или предвзятых данных и иметь недокументированные проблемы в работе. Точность их работы будет низкой. Читайте также: Коварный Open Source: какие опасности кроются в открытом и свободном ПО Основные тренды в развитии опенсорсных моделей Компании работают над опенсорсными моделями, схожими с аналогичными в проприетарными проектами: снижение числа галлюцинаций, увеличение длины контекста, повышение скорости и точности ответов, добавление мультимодальных возможностей и так далее. Разработчики ведут поиск архитектур, способных преодолеть недостатки популярных нейросетей типа «трансформер».
На рынке существуют сотни открытых LLM, которые уже соревнуются между собой на виртуальных тестовых аренах, подобных Chatbot Arena Leaderboard от Hugging Face. Число опенсорсных проектов и их конкуренция продолжит расти. Стоимость внедрения и дообучения LLM снижается. Так, доработка и запуск нейросети Alpaca обошлись в 600 долларов. Один из механизмов снижения стоимости — использование «синтетических» данных, созданных ИИ.
Французский стартап Mistral AI в первый год своего существования привлёк 385 миллионов евро инвестиций. Это может стать прецедентом финансирования опенсорсных моделей за счёт инвесторов.
Компьютерная программа умеет производить только определённую последовательность действий. Да, когда общаешься с искусственным интеллектом, есть ощущение, что ты разговариваешь с другом. Но мы сами его наделяем качествами и эмоциями. Он к нам ничего не испытывает. Другой вопрос, если человек захочет использовать методы и алгоритмы во вред. Злоумышленники могут узнавать наши личные данные: в какие магазины мы ходим, чем расплачиваемся, какими маршрутами передвигаемся.
Искусственный интеллект — это инструмент. Например, как молоток: можно им гвозди забивать, а можно по голове стукнуть. А если мы говорим в целом, то пользоваться высокими технологиями или нет — это дело каждого. Некоторые не принимают такие разработки. Люди, как правило, старшего поколения, до сих пор используют простой кнопочный телефон. Но говорить о том, стоит ли вводить искусственный интеллект в нашу жизнь, поздно. Он уже с нами, мы уже в будущем. Угадать очень сложно, мы не можем предсказать, какое у нас будет «железо» и что мы на нём сможем рассчитать.
Сейчас искусственный интеллект нужно много и трудолюбиво учить. К примеру, мы учим его, как выглядит котик, чтобы отличать котиков от собачек по фотографии. Мы показываем нейронной сети миллион фотографий котиков с различных ракурсов, всех расцветок и размеров, и всё равно точность работы не будет стопроцентной. Информацию в нейронную сеть изначально закладывает человек, и это огромная работа. Такой процесс называется созданием датасета, или набора данных. Если бы мы научились это делать автоматически, произошёл бы большой рывок. Ещё, мне кажется, было бы здорово, если бы технологии помогали при рождении узнать, какие склонности у ребёнка. В чём его сильные стороны, чему ему лучше учиться и т.
Фиксируем прибыль: самарцы чаще других россиян зарабатывают с помощью искусственного интеллекта
Facebook AI Research FAIR FAIR — это отдел ИИ Facebook, разрабатывающий инновационные методы машинного обучения и искусственного интеллекта, которые применяются во всей экосистеме продуктов Facebook, также активно участвуют в научном сообществе, публикуя свои исследования. PaddlePaddle активно используется в большом числе областей, от рекомендательных систем до систем самоуправляемых автомобилей. Einstein способен автоматически анализировать данные и предлагать оптимальные стратегии общения с клиентами. Искусственный интеллект продолжает эволюционировать с каждым годом, предлагая всё новые и новые возможности для улучшения нашей жизни. Список топ-10 ИИ 2023 года демонстрирует удивительный размах отрасли, начиная от ИИ, способных генерировать естественный текст и автоматизировать кодирование, до ИИ, помогающих нам в общении и анализе данных. Исходя из текущих тенденций, можно ожидать, что в следующие годы ИИ станет ещё более мощным, доступным и влиятельным инструментом во многих областях жизни. Единственное условие покупки нужной криптовалюты на биржи Бинанс — это денежные средства на Вашем кошельке ADV. Совсем недавно платежная система AdvCash стала еще более доступна для резидентов России и предлагает возможность получения банковских карт, что будет существенным подспорьем для держателей таких карт.
За последние несколько лет наблюдается увеличение количества жалоб от активных любителей азартных развлечений на недобросовестное поведение операторов, например, задержки выплат или блокировки профилей.
Робототехника и автоматизация также приводят к изменениям в сфере транспорта. С развитием беспилотных автомобилей уже можно предвидеть, что в будущем водительские права станут необязательными. Это приведет к снижению аварий и сократит время путешествия.
Сфера медицины также не останется в стороне от прогресса робототехники и автоматизации. Уже сейчас роботы успешно выполняют сложные операции, но в будущем они смогут выйти на новый уровень. С развитием искусственного интеллекта, роботы станут способными анализировать большие объемы данных и предлагать индивидуальные планы лечения, что значительно повысит эффективность и точность медицинской помощи. Однако, с ростом робототехники и автоматизации возникают и новые проблемы и вызовы.
Возникает вопрос о потере рабочих мест, что требует поиска решений и создания новых предложений для обеспечения жизни людей. Также существуют этические вопросы, связанные с искусственным интеллектом и роботами, которые нуждаются в ответах и регулировании. В целом, будущее робототехники и автоматизации представляет собой огромные возможности для прогресса и развития. Но также необходимо учесть и все нюансы и проблемы, чтобы обеспечить устойчивое и гармоничное влияние этих технологий на общество и нашу жизнь.
Искусственный интеллект в медицине и здравоохранении Искусственный интеллект находит все большее применение в медицине и здравоохранении, привнося в эту сферу множество инноваций и улучшений. Одной из главных областей применения искусственного интеллекта в медицине является диагностика заболеваний. Компьютерные алгоритмы и анализ больших объемов данных позволяют выявить патологические изменения на ранних стадиях, что способствует более точному и своевременному назначению лечения. Искусственный интеллект также применяется в прогнозировании развития определенных заболеваний и состояний пациента.
Компьютерные модели, основанные на алгоритмах машинного обучения, способны предсказать не только вероятность возникновения болезни, но и течение ее развития, что позволяет принимать соответствующие меры предосторожности и своевременно корректировать лечение. Важной задачей искусственного интеллекта в медицине является персонализация лечения. Благодаря анализу генетических, клинических и окружающих данных пациента, компьютерные системы могут определить оптимальный способ лечения, учитывая индивидуальные особенности каждого пациента. Искусственный интеллект также применяется в создании новых лекарственных препаратов и исследовании их воздействия на организм.
Компьютерные модели и алгоритмы позволяют более эффективно отбирать потенциальные препараты и предсказывать их воздействие на организм до проведения реальных клинических испытаний. Кроме того, искусственный интеллект применяется в различных аспектах организации и управления здравоохранением. Автоматизация процессов позволяет повысить эффективность работы медицинских учреждений, сократить время оказания медицинской помощи и улучшить общее качество здравоохранения. Искусственный интеллект в медицине и здравоохранении — это новые возможности для точной диагностики, персонализированного лечения и улучшения организации здравоохранения.
Потенциальные угрозы и проблемы искусственного интеллекта Взглянем на потенциальные угрозы и проблемы, которые может представлять развитие и использование искусственного интеллекта. Безработица: Одним из основных вопросов, связанных с искусственным интеллектом, является его влияние на рынок труда. Автоматизация и замена человека машинами могут привести к массовому увольнению людей из-за высокой производительности и эффективности искусственного интеллекта. Это может создать социальные напряжения и увеличить неравенство в обществе.
Этические вопросы: С развитием искусственного интеллекта возникают сложные этические дилеммы, например, вопросы о приватности, дискриминации и решениях, принимаемых автоматизированными системами. Как определить ответственность за ошибки искусственного интеллекта, если они произойдут? Как быть уверенным в безопасности и конфиденциальности данных, обрабатываемых искусственными интеллектами? Эти и другие этические вопросы вызывают серьезную озабоченность.
Зависимость от технологии: Появление искусственного интеллекта может создать зависимость общества и отдельных людей от технологии. В случае сбоя или отказа искусственного интеллекта может произойти коллапс различных систем, например, транспортных или банковских. Растущая зависимость от искусственного интеллекта вызывает обеспокоенность о стабильности и надежности различных инфраструктурных систем. Угроза для безопасности: Искусственный интеллект может быть использован не только для благих целей, но и для враждебных действий.
Злоумышленники могут использовать искусственный интеллект для создания программного обеспечения, способного распознавать и анализировать уязвимости в системах безопасности. Это представляет угрозу для конфиденциальности данных и может привести к кибератакам и хищению личной информации. Отсутствие контроля: Другой проблемой является отсутствие контроля и масштабируемость искусственного интеллекта. При возрастании мощности и скорости вычислений, искусственный интеллект может превзойти способность человека контролировать его.
Это может привести к непредсказуемым результатам и потенциальным опасностям для общества. Мы не можем игнорировать потенциальные угрозы и проблемы, связанные с искусственным интеллектом.
Другие специалисты полагают: даже если сокращение и произойдет, то это пойдет на пользу человечеству. Машины возьмут на себя рутинный труд, освободив создавшим их людям время для творчества и развития. Экономист Рустем Шайахметов рассказал, что в некоторых странах практикуется уменьшение рабочих часов во многом благодаря применению новых технологий. Во-первых, развивается искусственный интеллект. Эксперты банка Goldman Sachs предполагают, что с учетом развития искусственного интеллекта будет сокращение порядка 300 миллионов человек, — сказал Шайахметов. Аналитики портала SuperJob выяснили, что переводчики, менеджеры по туризму и официанты больше других специалистов боятся, что их работу в ближайшие 10 лет могут отнять роботы.
В то же время врачи, строители и учителя почти за это не переживают, свидетельствуют данные опроса, который проводили в феврале и марте 2023 года. Журналист Ян Налимов также назвал профессии, которые скоро успешно освоит искусственный интеллект. В группе риска в том числе и сами создатели «цифрового разума». Всё ли так мрачно? Эксперты полагают, что опасаться за свои рабочие места россиянам пока рано. Во-первых, государство не допустит массовой безработицы.
Искусственный интеллект - это способ сделать компьютер, контролируемый робота или программу, способную также разумно мыслить как человек. В 2000-е годы вновь появился интерес к робототехнике В 2000-е годы вновь появился интерес к робототехнике. ИИ активно внедряется в космическую отрасль, а также осваивается в бытовой сфере. Появляются системы умного дома, «продвинутые» бытовые устройства. Роботы Кисмет и Номад исследуют районы Антарктиды. Значение термина «искусственный интеллект» Значение термина «искусственный интеллект» Искусственный интеллект является наукой о создании интеллектуальных машин и компьютерных программ. Направления развития искусственного интеллекта Решение задач, позволяющих приблизить возможности ИИ к человеческим и найти способы их интеграции в повседневность. Разработка полноценного разума, посредством которого будут решаться задачи, стоящие перед человечеством. Сферы применения искусственного интеллекта в современном мире Сферы применения искусственного интеллекта в современном мире Искусственный интеллект в машинном творчестве Современные компьютеры создают музыкальные, литературные, живописные произведения… Прогнозирующие системы Системы предназначены для предсказания событий или результатов событий на основе имеющихся данных, характеризующих текущую ситуацию или состояние объекта Прогнозирующие системы Системы предназначены для предсказания событий или результатов событий на основе имеющихся данных, характеризующих текущую ситуацию или состояние объекта. Планирование Системы планирования предназначены для решения задач с большим количество переменных с целью достижения конкретных результатов Интеллектуальные системы контроля и управления Интеллектуальные системы контроля и управления Экспертные системы успешно применяются для контроля и управления.
Рейтинг искусственного интеллекта 2022. Его составила нейросеть
Актуальность работы: изучение и применение Искусственного интеллекта является важной частью стратегии развития цифровой экономики национального проекта «Искусственный интеллект» Российской Федерации. Актуальность данной статьи состоит в том, что в современном мире искусственный интеллект (ИИ) имеет довольно серьезную роль в выполнении множества процессов. Искусственный интеллект становится неотъемлемой частью повседневной продуктивности для потребителей — 48,1% важно наличие ИИ-функций в смартфоне.
Будущее искусственного интеллекта: перспективы и выгоды
Как методы искусственного интеллекта помогают сегодня распознавать, выявлять объекты, персоны, ситуации высокой сложности и с высокой точностью. Вспоминаем всё, что случилось в мире нейросетей и искусственного интеллекта за 2023 год, и пытаемся понять, чего от них ждать в ближайшем будущем. Неужели искусственный интеллект оказался таким же бестолковым хайпом, как NFT? на помощь психологам придут инструменты, связанные с методами искусственного интеллекта, – машинное обучение, искусственные нейронные сети, когнитивные архитектуры, большие языковые модели.
Будущее сейчас. Как технологии искусственного интеллекта влияют на экономику и бизнес
ИИ с теорией разума Текущее поле для исследований больших умов во всяких лабораториях. Этот ИИ будет обладать не полноценным сознанием, а лишь подобием человеческого мозга. Такой ИИ будет понимать человеческие эмоции и даже будет способен поддерживать нормальную беседу, быть частью социума, а не просто отвечать на вопросы, как Алиса, Маруся и другие виртуальные помощники. Ученые рассчитывают использовать ИИ с теорией разума в психологических исследованиях, но такого ИИ пока не существует. ИИ, осознающий себя Это, возможно, не такое далекое будущее. Недавно инженер Google сказал, что ИИ, созданный в компании, «выдал себя», отметив, что не хочет «умирать», то есть быть отключенным.
Возможно, мы, простые люди, ничего не знаем и такие ИИ уже существуют — они полностью осознают, что они, где они находятся и чего хотят. Первые принципы ИИ были заложены американским информатиком Джоном Маккарти, придумавшим термин «искусственный интеллект». Он мог рассуждать о своих действиях, анализировать команды, разбивая задачу на простые части. Первый робот в истории человечества, который совмещал логику с физическими действиями. Например, его просили «сбросить блок с платформы».
Шейки осматривался, находил платформу, проверял, есть ли на ней блок, находил пандус, чтобы забраться на платформу, заезжал на нее и сталкивал блок, отчитываясь о выполнении задачи. Звание первого проигравшего ИИ в шахматы заслужил Гарри Каспаров. Создание этого большого компьютера стало важной вехой для IBM. Это был Roomba от компании iRobot. Фирма, как и модели пылесосов Roomba, существуют и по сей день.
Дебютируют распознавание речи, роботизированная автоматизация процессов RPA , танцующий робот, умные дома, голосовые помощники, автопилоты в машинах и так далее. Алгоритм может предсказать последовательность РНК вируса всего за 27 секунд, что в 120 раз быстрее, чем другие методы. Ранее мы рассказывали: 7 невероятных историй, когда гаджеты спасли жизнь Чем ИИ отличается от работы человеческого мозга Основная задача искусственного интеллекта — симулировать человеческий мозг, но лишить его недостатков. Грубо говоря, ИИ — это сверхчеловек, который никогда не спит, способен легко впитывать любую информацию, не прокрастинирует и анализирует события, не полагаясь на собственные эмоции. Люди могут решать множество проблем и учиться решать те, с которыми мы раньше не сталкивались.
Текущее состояние ИИ не позволяет ему действовать в таком же духе. Но как это может выглядеть, можно посмотреть в фильме «2001 год: Космическая одиссея». В 1968 году Стэнли Кубрик показал ИИ HAL 9000, который мог решать обычные человеческие проблемы и постоянно преодолевать новые сложности на основе полученной информации, как это делают люди. Делал он это, скажем так, по-особенному. Сегодня ИИ все еще отличается от человеческого мозга.
Например, ему недоступно осознание таких вещей, как: Физические объекты существуют в трехмерной реальности и сохраняются, даже если вы их не видите. Объекты обладают многочисленными свойствами и подчиняются физическим законам, таким как гравитация. Время идет и накладывает определенный порядок на действия в окружающей среде. Объекты в движении следуют обычно предсказуемым траекториям, таким как падение, перекатывание и так далее.
Нашумевшая нейросеть ChatGPT была обучена на миллионах единиц данных из интернета и знает буквально все, что знал интернет до 2021 года уже до 2022 года. И она продолжает обучаться на новых данных. Помните, как в фильме Люка Бессона «Пятый элемент» Лилу смотрела в компьютер и за секунды загружала в себя тонны информации о Земле и людях?
Примерно так же обучается и ИИ. Первые наработки в ИИ были сделаны еще в середине 20-го века, но хайп вокруг нейросетей начался только сейчас, когда на сцену вышли ChatGPT, Midjourney и другие нейросети. Их популярность объясняется тем, что доступ к ИИ наконец-то получили обычные люди. Здесь можно вспомнить кривую Гартнера — график с поэтапным процессом, через который проходит любая инновационная технология: от стадии хайпа до продуктивного использования. ИИ сейчас переходит от стадии хайпа когда доступ к технологии получили все люди к стадии, когда только часть из этих людей потихоньку учится внедрять нейросети в решение своих ежедневных задач. В том числе, в онлайн-образовании. Сначала его хотели лишить диплома, а проверяющих преподавателей — уволить.
Но история растиражировалась и закончилась тем, что Жадан получил красный диплом и все остались на своих местах. Причина — отсутствует регулирование нейросетей в правилах учебных заведений. ИИ и не разрешается использовать для написания диплома, но и официально не запрещается. Но здесь речь о привычных общественных институтах. Онлайн-образование, большая часть которого принадлежит частным компаниям, начало внедрять ИИ раньше госучреждений. Там ИИ активно применяется в онлайн-образовании, инновационные решения улучшают обучение и оптимизируют процессы. Вот несколько ярких кейсов.
Крупный поставщик открытых онлайн-курсов в США Coursera использует ИИ для предложения персонализированных рекомендаций курсов учащимся на основе анализа их предпочтений, предыдущих курсов и успехов. Китайская образовательная компания Squirrel AI использует алгоритмы машинного обучения для создания уникальных обучающих планов для каждого ученика, учитывая его индивидуальные потребности и способности. Американская компания Knewton разработала платформу, использующую адаптивные алгоритмы машинного обучения для персонализации учебного контента и методов обучения. Английская компания Century Tech предлагает платформу, основанную на ИИ, для индивидуального обучения, анализа прогресса и формирования персонализированных рекомендаций. Американская Cognii разработала ИИ-платформу для проверки эссе и предоставления обратной связи студентам, что упрощает процесс проверки больших объемов работ. Что может ИИ в онлайн-образовании Как выглядел упрощенный процесс создания онлайн-курса до появления ИИ: Методист составлял учебную программу так, чтобы ученики получили достаточный объем знаний для освоения профессии или точечного навыка.
Что может ИИ в онлайн-образовании Как выглядел упрощенный процесс создания онлайн-курса до появления ИИ: Методист составлял учебную программу так, чтобы ученики получили достаточный объем знаний для освоения профессии или точечного навыка. Продюсер искал релевантных спикеров для курса. Спикеры записывали обучающие ролики со съемочной командой. Копирайтеры или авторы-редакторы писали текст к курсу на основе контента от спикера.
Дизайнеры отрисовывали картинки, графики и прочее. Когда курс выпускался, к ученикам прикрепляли службу поддержки учащихся — людей, которые проверяли домашние задания, давали обратную связь и поддерживали учеников на всем пути обучения. Получался долгий и дорогой процесс, который влиял и на конечную стоимость курса, и порой на качество обучения: онлайн-школы могли записать курс в спешке и дать себе обещание внести правки позже. А внесли эти правки потом или нет, кто проверит. Если вы спросите меня, какой из этих шагов может полностью забрать на себя ИИ, то я отвечу, что все. Методиста может заменить GPT — нейросеть напишет программу и сам контент для любого курса за секунды. Видео с виртуальным спикером может сделать нейросеть наподобие HeyGen — можно создать как несуществующего спикера, так и загрузить примеры видео с реальным человеком и воссоздать его голос и движения. Картинки нарисует Midjourney. А виртуальный ассистент в формате чат-бота на основе GPT в любом привычном мессенджере проверит домашние работы, поставит оценки и узнает, все ли ок у ученика с прохождением курса и общим состоянием. И даже даст рекомендации по улучшению его образовательного опыта.
Так скорость и стоимость создания онлайн-курса или целой программы снижается в десятки раз, а качество обучения только растет. ИИ может забрать на себя и другие процессы, которые происходят вне курса — создание маркетингового плана и креативов для продажи курса, подсчет рынка онлайн-образования и анализ результативности обучения. Преимущества генеративных сетей перед учителями Персонализация В мире нет двух одинаковых учеников, все мы разные. И ни один, даже самый хороший учитель, не может уделять каждому ученику то внимание, которое ему нужно. А Gen AI может. Он проанализиурет стиль обучения каждого студента и подстроит под него материалы и задания. Представьте себе мир, где отстающие и бегущие вперед ученики получают разные материалы и задания. Такой мир уже близко. Сценарии для каждого Представьте, что вы учите итальянский язык.
Как изменилась ситуация сегодня? Как методы искусственного интеллекта помогают сегодня распознавать, выявлять объекты, персоны, ситуации высокой сложности и с высокой точностью. По экспертным оценкам, весной 2020 г. А нынешняя весна еще добавила активности киберпреступникам, организующим мощные DDoS-атаки и целевые APT-атаки против российских веб-ресурсов и значимых предприятий. Российские компании учатся в реальном масштабе времени искусству борьбы с угрозами в новых условиях.