О том, как искусственный интеллект внедряют в сфере медицины, рассказал директор АИИ Роман Душкин. Применяя когнитивные технологии и искусственный интеллект (ИИ) к этим данным, сектор может перейти от традиционного реактивного лечения к более проактивной медицинской системе, базирующейся на предотвращении заболеваний, укреплении здоровья, ускоренной. Кроме того, искусственный интеллект помогает врачам-терапевтам поликлиник в постановке диагноза и формировании перечня необходимых исследований.
Применение искусственного интеллекта в медицине
Сервис MedClueRx анализирует симптомы и не просто диагностирует болезнь, но и выбирает максимально безопасные и эффективные препараты в зависимости от особенностей пациента. Диагностика Системы с искусственным интеллектом позволяют распознавать заболевания даже на ранней стадии. Например, сервисы Zebra Medical Vision и Arterys помогают врачам-диагностам сосредоточиться на общении с пациентами и избавиться от необходимости вглядываться в мельчайшие детали снимков легких и УЗИ сердца. Создание лекарств Разработка вакцины и последующие клинические исследования — это долгие и дорогостоящие процессы. ИИ может уменьшить время на разработку новых лекарств в несколько раз, анализируя молекулярные структуры существующих препаратов и предлагая новые согласно заданным требованиям. Например, в 2019 году компания Insilico Medicine таким образом создала несколько вариантов лекарств для лечения мышечного фиброза. Для этой задачи алгоритмам понадобился 21 день, после чего ученые отобрали наиболее подходящие варианты препаратов и за 25 дней провели тест на лабораторных животных.
Таким образом, понадобилось 46 дней для выбора подходящего лекарства. Однако традиционный процесс разработки лекарств занимает около 8 лет и стоит фармкомпаниям несколько миллионов долларов. Новые технологии дают надежду на то, что с их помощью мы сможем быстрее получить лекарства от болезней, которые сегодня не поддаются лечению: рассеянный склероз, болезнь Альцгеймера и другие. Автоматизация процессов Дисбаланс и дефицит медицинских кадров высшего и среднего звена был во всем мире еще до вспышки коронавируса. По данным Всемирной Организации Здравоохранения, чтобы люди во всем мире имели доступ к услугам здравоохранения к 2030 году, странам с низким уровнем дохода нужно еще 18 миллионов медицинских работников.
Сейчас платформа умеет: Проводить анализ маммограмм, флюорограмм, КТ органов грудной клетки и других изображений; Заменять помощника врача, выявляя патологии; Автоматически заполнять заключения по исследованию, что экономит время и снижает вероятность ошибок; Привлекать внимание врача к проблемным областям снимка. Библиотека молекул для создания лекарств Как утверждает глава медицинского кластера СНГ Дмитрий Власов, на изобретение нового препарата обычно уходит от 10 до 15 лет и колоссальные суммы денег. Однако искусственный интеллект способен ускорить и удешевить этот процесс.
Например, российская платформа Syntelly умеет анализировать токсикологические и физико-химические свойства соединений, а база данных сервиса хранит информацию о 96 миллионах молекул, позволяя исследовать и сравнивать их. До 2024 года в РФ должна появиться серия стандартов, которые снимут нормативно-технические препятствия к развитию нейросетей. Предполагается, что это упростит работу тысячам разработчиков и даст возможность еще шире использовать ИИ в медицинской сфере. В АНО «Цифровая экономика» Россию уже назвали «одним из мировых лидеров в разработке и внедрении искусственного интеллекта в здравоохранении».
Плохие или неадекватные данные могут привести к неточным или даже опасным выводам.
Юридическая ответственность: определение юридической ответственности в случае ошибок или недочетов, связанных с использованием ИИ, остается сложным вопросом. Это создает правовую неопределенность и потенциальные риски для медицинских учреждений. Сопротивление со стороны медицинского сообщества: некоторые врачи и медицинские работники могут испытывать сопротивление новым технологиям, возможно, из-за опасений относительно замещения человеческого труда или потери профессиональной автономии. Необходимость обучения и адаптации: для эффективного внедрения ИИ необходимо обучение медицинского персонала работе с новыми технологиями, что может занять значительное время и ресурсы. Кибербезопасность: поскольку ИИ, как правило, зависит от сетей передачи данных, системы ИИ подвержены рискам безопасности.
Более того, ИИ может активно использоваться для атаки на многочисленные компании. Перспективы применения ИИ в медицине будущего Уже сейчас понятно, что интенсивное внедрение ИИ в медицинскую практику будет только нарастать. Возможно появление новых методов диагностики и лечения заболеваний с использованием ИИ, а также расширение областей применения роботизированной хирургии. Кроме того, ИИ может внести значительный вклад в исследования в области медицины, ускоряя процесс разработки новых лекарств и терапий. Все это в совокупности будет способствовать эволюции медицинской отрасли: Сокращение времени и затрат на исследования: ИИ может значительно сократить время и затраты на разработку новых лекарств, предсказывая потенциальную эффективность отдельных компонентов и помогая в оптимизации процессов клинических испытаний.
Расширение доступа к медицинской помощи: ИИ может значительно расширить доступ к медицинской помощи, особенно в отдаленных регионах с плохой транспортной доступностью - через развитие телемедицины и дистанционного слежения за состоянием пациентов. Развитие превентивной медицины: ИИ может способствовать переходу от реактивной к превентивной модели здравоохранения, помогая в раннем выявлении рисков и предложении стратегий для предотвращения болезней, а не только их лечения.
Подробнее о результатах исследования мы расскажем подробнее в отдельной статье в ближайшие недели! В условиях быстро меняющейся ситуации в сфере цифровизации сектор здравоохранения переживает глубокую трансформацию, характеризующуюся растущей интеграцией технологий цифрового здравоохранения, телемедицины, единых реестров и ИИ. Этот сдвиг не только предлагает множество преимуществ, но и меняет динамику отношений между пациентами и поставщиками медицинских услуг в рамках системы здравоохранения.
Отчет представляет из себя большой обзор всех стран - участников региона по основным показателям. В профилях указаны важнейшие компоненты цифрового здравоохранения на национальном уровне, включая цифровое управление здравоохранением, электронные медицинские карты, порталы пациентов, телемедицину, мобильное здравоохранение, а также большие данные и аналитику. Всего в рамках награды было подано более 100 заявок. Также победителями номинаций стали: Русагро, Авито, Росатом и Роскосмос. Премия Data Fusion Awards присуждается за достижения в области развития тренда Data Fusion, реализацию успешных кросс-отраслевых проектов по анализу больших данных с использованием алгоритмов машинного обучения и искусственного интеллекта, развитие образовательных инициатив для подготовки специалистов.
ИИ в медицине: тренды и примеры применения
Использование искусственного интеллекта в медицине во всем мире вызывает активный интерес и надежду на успехи в лечении. “применение искусственного интеллекта в здравоохранении на примере анализа рентгенограмм грудной клетки”. Кроме того, многим развивающимся странам для внедрения искусственного интеллекта в медицину не хватает оборудования и средств. "Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами. Искусственный интеллект (ИИ) в медицине — использует алгоритмы и программное обеспечение для аппроксимации человеческих знаний при анализе сложных медицинских данных. Искусственный интеллект в медицине: применение, технологии, вызовы, нормативное обеспечение и регулирование, программы практического внедрения.
Искусственный интеллект в клинической медицине
Однако внедрение искусственного интеллекта в медицину сопряжено с некоторыми рисками и ограничениями. В частности, Всемирная организация здравоохранения указала на негативные последствия применения искусственного интеллекта в медицине, если в основе его разработки и использования не будут заложены этические принципы и защита прав человека. Практически все основные технологии искусственного интеллекта сегодня находят применение в реальной практике организаций здравоохранения, повышая качество медицинских услуг и тем самым увеличивая продолжительность и качество жизни граждан. Непропорциональное использование искусственного интеллекта у «имущих», в отличие от «неимущих», может увеличить существующий разрыв в состоянии здоровья. Применение искусственного интеллекта в медицине позволит повысить удовлетворенность пациентов работой медицинского персонала, снизить нагрузку на врачей, уменьшить стоимость услуг и повысить качество медицинской помощи. В 2023 году искусственный интеллект произвел фурор в качестве полезной технологии во многих отраслях, особенно в медицине.
Искусственный интеллект в медицине: перспективы диагностики, лечения и исследований
Средство массовой информации сетевое издание «Городской информационный канал m24. Учредитель и редакция - АО «Москва Медиа». Главный редактор сетевого издания И. Адрес редакции: 125124, РФ, г.
Кроме того, ИИ позволяет эффективно контролировать ход заболеваний, например, онкологических, или выявлять его первые симптомы и признаки, свидетельствующие о скором развитии болезни. Дебютной разработкой в этой области стала система Webiomed компания «К-Скай» — резидент «Сколково». Как медицинское изделие платформу прогнозной аналитики и управления рисками в здравоохранении зарегистрировали 3 апреля 2020 года. Это первая система ИИ в России, которая способна обработать большой объем информации о пациенте, выявить на основе данных подозрения на заболевания и спрогнозировать возможное ухудшение здоровья.
При этом ИИ изучает не только медицинские показатели, но и социальные данные. Платформа формирует цифровой паспорт пациента. Можно сказать, что система заменяет целый консилиум врачей, что позволяет работать быстрее и точнее. В России этой сфере уделяется особое внимание. Несколько проектов уже достигли весомых результатов в использовании ИИ в радиологии. В их число вошли Botkin. Качество работы подтверждает статистика.
Например, заммэра Москвы по вопросам социального развития Анастасия Ракова сообщила , что за два года сервисы ИИ обработали более 6 млн лучевых снимков. По ее словам, технологии помогли быстрее описать снимки и заметили мельчайшие отклонения. ИИ хорошо показал себя в медицине, поэтому ученые уже пишут алгоритм, по которому можно будет обнаружить ранние проявления болезни Альцгеймера по результатам МРТ. Еще одним направлением, где применяется искусственный интеллект, стала область семантического анализа. ИИ анализирует и систематизирует данные, содержащиеся в электронной медицинской карте пациента. Ее заполняют сразу несколько врачей: кардиолог, невролог, терапевт и другие. Алгоритм собирает анамнезы воедино, и так специалист может обнаружить определенные паттерны.
ИИ обладает способностью обрабатывать огромные объемы данных и находить скрытые закономерности. Теоретически это позволит врачам лучше исследовать болезни, быстрее и точнее ставить диагнозы и эффективнее лечить пациентов. То есть прогноз эффективности ИИ в медицине в российском и американском обществе находится примерно на одном уровне. В целом российскому обществу присущ умеренный энтузиазм по вопросу использования ИИ в здравоохранении. По-видимому, ИИ еще не успел заработать себе «антирейтинг» в этой сфере, в том числе потому, что значимая часть россиян еще не сформировала своей позиции на этот счет. Тогда как в американском обществе вопрос применения ИИ в медицине стоит более остро: здесь есть противоборство мнений, доли оптимистов и скептиков близки. Врачебные ошибки и безопасность данных Внедрение ИИ в систему здравоохранения сопряжено с рядом этических, технологических сложностей, рисков врачебных ошибок и конфиденциальности. Опрос показал, что по одним аспектам применения ИИ в здравоохранении россияне и американцы совпадают, по другим — расходятся во мнениях. Врачи и пациенты Россияне и американцы по-разному оценивают влияние ИИ на взаимоотношения между пациентом и врачом.
Такие нестандартные вопросы сегодня все чаще поднимают в медицинском сообществе, обсуждая высокотехнологичное развитие отрасли. Подробнее о плюсах и минусах использования ИИ в медицине в авторской колонке для «Реального времени» рассказывает заместитель директора по стратегическому развитию решений регионального здравоохранения АО «БАРС Груп» Дина Филюшина. Интеллект естественный и врач выгорающий В условиях нынешней системы здравоохранения рядовой российский врач хронически перегружен.
Что он должен успеть? Собрать клинический анамнез, выявить риски заболеваний, назначить правильное лечение, успеть принять всех пациентов, уделив внимание каждому, подписать документы электронной подписью, следовать клиническим рекомендациям, учитывать стандарты и порядок оказания медицинской помощи. Ему надо быть подобным шестирукому божеству, и все это — в условиях крайне сжатого времени, отведенного на прием.
А перегруженность, как известно, ведет к профессиональному выгоранию. Естественный, то есть человеческий интеллект способен на многое: синтезировать новые знания, принимать решения, основанные на ценностях и смыслах, неся социальную и профессиональную ответственность, постоянно расширять профессиональный кругозор. Человек может мыслить креативно, создавая качественно новые решения.
Не только на базе предыдущего опыта, но и на основе абстракций строить модели будущего, создавать концепции, рассматривать теории и предположения. Он видит профессиональную проблему с разных сторон и применяет кросс-дисциплинарный подход. Например, врач при постановке диагноза учитывает не только данные по своему профилю, но и по смежным дисциплинам.
А еще берет во внимание эмоциональное состояние пациента, его образ жизни, помнит, что пациент может симулировать или что симптоматику могут искажать сопутствующие заболевания. С учетом всего этого диагностика будет намного качественнее. Наверное, у многих так бывало, что все данные и цифры говорят об одном, но есть четкое внутреннее ощущение, что сейчас нужно сделать другой выбор.
И в итоге такие решения оказываются верными. Это неосознаваемый процесс, основанный на предыдущем опыте и анализе более широкой совокупности факторов, скрытых от сознания. Интуиция — это пока чисто человеческая черта и навык.
Искусственный интеллект в медицине: главные тренды в мире
Помощь с регистрацией медицинского ИИ Применение систем искусственного интеллекта в клинической медицине открывает новые горизонты в диагностике, лечении и управлении здоровьем пациентов. В России наблюдается развитие и внедрение подобных технологий, что имеет большое значение для улучшения качества и доступности медицинской помощи. В данной статье рассмотрим развитие и применение систем искусственного интеллекта в клинической медицине в России, а также обсудим технологические тренды в этой области. Применение ИИ в клинической медицине ИИ может работать непрерывно, что позволяет обеспечить более эффективное использование медицинского персонала и ресурсов. Системы искусственного интеллекта могут учиться на основе накопленного опыта и становиться все более точными и эффективными с течением времени. Регулярно расширяемые базы данных для обучения моделей ИИ позволяют повышать точность подобных систем.
Роботизированные технологии позволяют врачам с минимальным опытом или практикующим врачам, плохо знакомым с той или иной операционной процедурой, проводить лечение на уровне, которого они не смогли бы достичь даже в результате многолетней практики. Помощь робота во время операции уменьшает последствия тремора рук оперирующего врача, а также устраняет случайные движения. Робот Da Vinci, который считается одним из самых передовых в мире хирургических роботов, предоставляет врачу набор хирургических инструментов, которые можно использовать при проведении минимально инвазивной хирургии, и обеспечивает лучший контроль над обычными процедурами. Приобрел большую популярность и миниатюрный мобильный робот Heartlander. Он минимизирует повреждения, которые необходимо причинить пациенту для доступа к сердцу во время операции.
Робот входит в грудную клетку через небольшой разрез ниже грудины. Используя это устройство, хирурги теперь могут выполнять стабильное и локализованное картирование, зондирование и лечение всей поверхности сердца. Возможности нейронных сетей помогают трансформировать сферу радиологии, экономя время и деньги медицинских организаций. После того, как медицинское изображение получено с помощью МРТ, компьютерной томографии, ультразвукового или рентгенологического исследования, врач должен проанализировать его на наличие каких-либо отклонений или признаков заболеваний. Для выявления сколько-нибудь серьезного состояния требуется интерпретация нескольких визуализационных исследований. После обучения с использованием больших наборов данных исследований системы на основе ИИ способны анализировать медицинские изображения и сообщать об обнаруженных особенностях, например, небольших опухолях, которые человеческий глаз может упустить. Такие системы выявляют закономерности и предоставляют информацию о характеристиках любых отклонений от нормы, экономя время врача. В тех случаях, когда у пациента есть несколько снимков, сделанных на протяжении некоторого времени, искусственный интеллект также может анализировать динамику заболевания. Так, для проверки работы своей системы на основе ИИ в корпорации Google провели эксперимент: снимки предложили изучить шестерым сертифицированным радиологам. В тех случаях, когда диагноз ставился по единственному снимку, искусственный интеллект справился так же или даже лучше людей.
Сегодня рядом с живыми медсестрами в госпиталях США уже работают компьютерные помощники, от которых можно получать советы, подсказки и другую информацию. Например, цифровой ассистент Салли, улыбающаяся женщина в белом халате, или медбрат Уолт.
Также ИИ-решения упрощают работу врачей при профилактических обследованиях, помогают в подборе оптимальных дозировок лекарств и увеличивают точность хирургических вмешательств. В перспективе, как считают специалисты, решения на основе ИИ позволят создать средства и методы лечения, персонализированные под каждого отдельного пациента. Наиболее активно в медучреждениях внедряется технология компьютерного зрения, позволяющая находить закономерности и аномалии в изображениях, получаемых с помощью рентгена, КТ и МРТ. Другая технология на основе ИИ - предиктивная аналитика, дающая возможность путем изучения больших массивов данных обнаружить скрытые связи, повысить точность диагностики и подобрать индивидуальный план лечения. Еще одно направление — создание цифрового двойника пациента: на котором можно проверить различные методы лечения без риска навредить реальному больному. Также двойники используются при тестировании новых лекарств.
Также в медицине начинают активно использоваться чат-боты, голосовые ассистенты, интеллектуальные помощники, работающие на основе таких технологий ИИ, как обработка естественного языка, распознавание и синтез речи, интеллектуальная поддержка принятия решений. Цифровые помощники освобождают квалифицированных медиков от выполнения рутинных задач и позволяют им полностью сосредоточиться на более сложных диагностических вопросах и лечении. Так, при поддержке Фонда содействия инновациям российская компания «Диджитал вижн солюшнс» разработала облачную офтальмологическую платформу на базе искусственного интеллекта. Медицинский директор компании-разработчика Евгения Каталевская рассказала РИА Новости, что в проекте используются сверточные нейронные сети, которые обучаются на размеченных специалистами данных и решают задачу сегментации признаков патологий на медицинских изображениях сетчатки глаза. ИИ выявляет заболевания на ранней стадии, когда пациент еще не имеет жалоб, а также пациентов, имеющих высокий риск потери зрения, которым срочно требуется сложное специализированное лечение», - говорит Каталевская.
Хирург о чём-то говорит с человеком и при этом удаляет какие-то участки. И так несколько часов. Желательно локализацию этих зон хотя бы примерно знать до операции, когда череп еще не вскрыт. Здесь и выручает ФМРТ, которая при наложении на структурную МРТ позволяет получить карту функциональных зон, которые для наглядности можно раскрасить в разные цвета. Если нейрохирург увидит такую трехмерную модель до операции, он сможет спланировать ее ход. А если мы загрузим эту модель в нейронавигационную систему, то хирург в реальном времени будет видеть на экране, где находится его скальпель относительно конкретных зон. Лаборатория изучает мозг человека, больше половины проектов связаны с нейровизуализацией Источник: Анастасия Пешкова — Недавно вы начали совместный проект с Университетом Шарджи ОАЭ. Это ваше первое сотрудничество с арабскими коллегами? Российскую часть возглавляю я, а арабскую — Рифат Хамуди, профессор и директор Научно-инновационного центра точной медицины в Университете Шарджи. Они в большей степени отвечают за медицину и биологию, сбор данных, мы как центр ИИ — за анализ данных, обработку и построение моделей. Стартовым проектом совместной лаборатории стало создание методов и моделей исследования гетерогенности раковых опухолей. Но проблема в том, что в этом образце присутствует много разных типов клеток, которые содержат разную информацию. Если мы берем полностью часть ткани и проводим генетический или транскриптомный анализ, то мы смотрим «среднюю температуру». Мы считаем, что всё гомогенно и однообразно, но это не так. Часть клеток могут откликаться на какую-то одну терапию, а другие — только на другую. Чтобы не терять информацию об отдельных структурах, правильнее делать одноклеточный анализ. Из каждой однородной подгруппы клеток выделять «представителя» и анализировать его. Таким образом получаются генетические и транскриптомные профили каждого отдельного участка. Имея профили большого числа участков в этом кусочке ткани, можно строить биологические модели о генетических путях, механизмах регулирования клеток. Например, модель эволюции этой ткани во времени: что будет происходить с разными типами клеток через определенный период. И тогда мы сможем моделировать на компьютере взаимодействие каких-то веществ и тканей. Что будет, если мы добавим какое-то одно лекарство?
Роман Душкин: «Медицина — это область доверия»
"Искусственный интеллект для психического здоровья" Искусственный интеллект находит свое применение в психиатрии, помогая диагностировать и лечить пациентов с психическими расстройствами. Искусственный интеллект в здравоохранении, который когда-то был областью научной фантастики, теперь стал реальностью. Применение искусственного интеллекта в медицине сегодня становится естественным для многих стран. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. В столице провели комплексный анализ качества работы сервисов искусственного интеллекта (ИИ) в медицине. Рассказываем, как искусственный интеллект уже применяется в медицине и на какие вызовы и задачи отечественного здравоохранения он отвечает.
Комплексный анализ работы сервисов ИИ в медицине провели в Москве
Читайте также: Нейросети скоростного плетения: Россия даст свободу искусственному интеллекту В частности, только в этом году был предложен целый ряд инновационных продуктов, которые будут использованы в сфере диагностики. Так, ученые из химико—биологического кластера Санкт—Петербургского ИТМО разработали ИИ—платформу для поиска наночастиц, которые можно будет использовать в терапии онкологических заболеваний. Прорывом в области диагностики можно считать и один из первых в мире видеокапилляроскопов для обнаружения самых ранних стадий всех видов карцином, который был представлен сотрудниками МГМУ им. Также российскими разработчиками были анонсированы появления уникального прибора идиокапилляроскопа, офтальмологического анализатора, сфокусированного ультразвука и т. Почти полувековой опыт применения роботизированных систем в сегменте лабораторной диагностики подтверждает слова эксперта. С помощью лабораторных анализов, сделанных посредством искусственного интеллекта, можно выявить широкий спектр заболеваний, включая инфекционные, воспалительные, онкологические и наследственные. Первые автоматические анализаторы, которые могли проводить измерения одновременно нескольких биохимических параметров и оперативно выполнять комплекс исследований в одном образце биоматериала, появились ещё в 70—х годах прошлого века. При этом необходимо нивелировать риск ошибок по причине человеческого фактора, а также защитить сотрудников от контакта с потенциально опасным биологическим материалом.
Современное оборудование может также исключить из исследования некачественный биоматериал на основе тестирования пробы в процессе постановки, а также выполнять дополнительные исследования по предустановленным правилам и назначениям", — поясняет Ирина Скибо. В соответствии с идентификатором он получает из лабораторной информационной системы ЛИС задание, включающее перечень аналитов, которые нужно в этой пробе определить.
Разработка и синтез лекарственных препаратов Создание нового лекарственного препарата от идеи до запуска массового производства занимает до десяти лет. Также дополнительно требует миллиардов долларов инвестиций на работу исследовательских команд и запуска многоэтапного тестирования. Именно поэтому машинное обучение и нейросети стали использовать, чтобы упростить процесс создания лекарственных препаратов.
На сегодня в мире существует примерно 30 масштабных проектов с использованием искусственного интеллекта, которые работают в этом направлении. Американское управление по санитарному надзору за качеством пищевых продуктов и медикаментов запустило собственный проект, цель которого — на порядки сократить траты на клинические исследования с помощью машинного обучения. ИИ проекта обучен на основе 20 последних лет клинических исследований американских препаратов. По предварительным оценкам, использование искусственного интеллекта и нейросетей поможет сократить инвестиции в создание лекарственных препаратов в четыре раза, а время разработки — в два раза. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет Пока что концерны используют ИИ только как вспомогательный инструмент для синтеза лекарств, проводя все стадии клинических исследований как обычно.
Но проекты уже показывают хорошие результаты. ИИ на службе нутрициологии Успехи искусственного интеллекта в создании вакцин от коронавируса известны всему миру. Компьютерные технологии сократили время разработки результативной вакцины буквально до нескольких месяцев, когда для классических методов исследований требуется минимум год-два. Но на самом деле исследования куда глубже, чем можно представить. И касаются они не только вирусологии, но также профилактической медицины и нутрициологии, для которых анализируют натуральные органические соединения.
Их существует десятки миллиардов, поэтому исследования вручную не слишком эффективны. Клинические испытания требуют крупных инвестиций и могут длиться несколько лет. Для разработки нового препарата нужно протестировать на клеточных культурах десятки и сотни химических соединений, которые в дальнейшем нужно будет проверить и на живых организмах. Из-за этого все фазы клинических испытаний могут занять несколько лет. Компьютерные мощности способны помочь исследователям, значительно ускорив процесс создания новых лекарственных препаратов, а также ощутимо сократить расходы на проведение дорогостоящих клинических испытаний.
Активно развивается применение искусственного интеллекта и в хирургии. По словам Андрея Наташкина, основателя и СЕО Mirey Robotics, сегодня в рамках общей хирургии уже выделилось отдельное направление — телехирургия. Технология позволяет хирургу управлять роботизированным манипулятором, который способен совершать сверхточные движения. Но здесь есть две опасности. Первая — разрыв интернет—соединения, вторая — это кибератаки. А во время операционного вмешательства эти факторы, которые ведут к потере управления процессом, могут стать фатальными для пациента". По словам эксперта, в связи с этим сейчас на первый план выходит вопрос обеспечения безопасных условий во время операций с использованием роботов, и недавно российские учёные представили своё решение данной проблемы: в условиях возникновения чрезвычайной ситуации манипулятор сможет автономно завершить оперативное вмешательство, без контроля со стороны хирурга. Сейчас большинство хирургических операций проводятся с помощью американских робот—ассистированных хирургических систем Da Vinci — самых известных роботов—хирургов во всём мире. По данным сайта Da Vinci, с 2007 по 2022 год в России американскими роботами—хирургами было выполнено около 28 тыс. Однако в ближайшее время в больницах страны появятся первые роботы—хирурги отечественного производства, разработанные учёными Института конструкторско—технологической информатики РАН.
Эти BCI обеспечивают прямую связь между мозгом и внешними устройствами, предлагая новый уровень независимости тем, кто ранее зависел от опекунов даже в выполнении простейших задач. Кроме того, нейропротезирование достигло значительных успехов, позволив людям с потерей конечностей восстановить не только движение, но и осязание. Имплантируя электроды непосредственно в периферические нервы, нейропротезы теперь могут обеспечить пользователям реалистичные и интуитивные ощущения, позволяя им держать предметы, ощущать текстуру и даже испытывать колебания температуры. Влияние этих прорывов в области нейротехнологий невозможно переоценить. Они дают пациентам с травмами спинного мозга новое чувство надежды, позволяя им вновь обрести подвижность и независимость. Применение ИМК и нейропротезирования выходит за рамки физической реабилитации; они также многообещающи для людей с неврологическими расстройствами, такими как эпилепсия, болезнь Альцгеймера и Паркинсона. Непосредственно взаимодействуя с мозгом, эти технологии позволяют проводить более целенаправленные и эффективные методы лечения, потенциально повышая качество жизни бесчисленного множества пациентов. В то время как 3D-печать используется в различных отраслях промышленности, ее применение в области медицинских технологий особенно перспективно. Возможность 3D-печати органов обладает огромным потенциалом в решении глобального кризиса нехватки органов.
Используя собственные клетки пациента, ученые могут создавать функциональные органы, которые являются биосовместимыми и не требуют иммуносупрессии. Представьте себе мир, в котором люди, нуждающиеся в пересадке почки, могут просто напечатать новую почку в 3D-формате, избавив от необходимости в длинных очередях ожидания и риска отторжения органа. CRISPR, сокращение от сгруппированных коротких палиндромных повторов с регулярными промежутками, является мощным инструментом редактирования генов, который позволяет ученым вносить точные изменения в ДНК организма. Эта разработка способна излечивать генетические заболевания, модифицировать сельскохозяйственные культуры для повышения урожайности и устойчивости и даже уничтожать переносчиков болезней, таких как комары. Попав в цель, Cas9 разрезает ДНК в нужном месте, позволяя ученым вставлять, удалять или модифицировать гены с поразительной точностью. В области генетических заболеваний у него есть потенциал для коррекции генетических мутаций, ответственных за такие заболевания, как муковисцидоз, серповидноклеточная анемия и болезнь Хантингтона. Фактически, в 2020 году было проведено первое в истории клиническое испытание с использованием CRISPR на людях для лечения генетической формы слепоты, продемонстрировавшее его потенциал для применения в реальных условиях.
Врачам и пациентам: как искусственный интеллект помогает в медицине
Преимущества искусственного интеллекта. Благодаря использованию технологий ИИ в медицине, сможет повысится эффективность оказания медицинских услуг, практически единогласно говорят участники рынка. Компания «Интеллектуальная аналитика» проанализировала практики внедрения искусственного интеллекта в российском здравоохранении. В данной статье рассмотрены перспективные направления искусственного интеллекта в медицине, реализованные на базе нейронных сетей. Искусственный интеллект оцифровывает данные. ИИ в медицине: за какими стартапами следить. Провалы искусственного интеллекта в медицине происходят потому, что это вовсе не интеллект, а схожий с системой распознавания лиц алгоритм, сказал газете ВЗГЛЯД руководитель экспертного совета ЭИСИ (Экспертный институт социальных исследований) Глеб. Медицинские продукты с применением искусственного интеллекта активно разрабатывают известные компании: Microsoft, Apple, Google, IBM.