Рассчитав коэффициент Джини для отраслей экономики в 2013 году и сравнив эти значения с показателями 2015 года, мы увидим, как повлиял кризис на дифференциацию заработных плат в той или иной сфере. В 2022 году был зафиксирован его минимум, а | Вступай в группу Новости РБК в Одноклассниках. В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25.
Индекс Джини в странах мира
Помимо Коэффициента Джини и Децильного коэффициента, народ постоянно пытается придумать другие коэффициенты и индексы, которые бы, так или иначе, отражали неравенство. Коэффициент Джини – статистический показатель, который используется для характеристики уровня экономического неравенства в стране. Рассмотрим, что из себя представляет кривая Лоренца и причем тут индекс Джини Телеграм-канал Группа Вконтакте: TikTok: #индексджини #доходы #неравенство Привет, в 2015 году я получил высшее экон. Индекс Джини (GTI) или Коэффициент Джини – это статистический показатель неравенства распределения доходов среди различных групп населения. По итогам 2023 года коэффициент Джини в России вырос до 0,403, что говорит об увеличении концентрации доходов в стране по сравнению с предыдущим годом.
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения
Неравенство и бедность | Коэффициент Джини может использоваться для выявления уровня неравенства по накопленному богатству. |
Кривая Лоренца | Коэффициент Джинни показывает степень отклонения фактического объема распределения доходов населения от линии их равномерного распределения. |
Ваш пароль
Эта статистическая модель была предложена и разработана итальянским статистиком и демографом Коррадо Джини 1884—1965 и опубликована в 1912 году в его знаменитом труде «Вариативность и изменчивость признака» «Изменчивость и непостоянство». Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Если в отношении страны в целом такое утверждение верно, хоть и с некоторыми оговорками, то в отношении людей, проживающих в ней, не всегда. Все дело в распределении благ.
Все помнят про «среднюю температура по больнице», и ВВП — это тот статистический показатель, для которого эта аллегория точно подходит. Оценивая ВВП двух стран, когда речь идет о ВВП на душу населения, то есть уровне развития, нельзя не учитывать равномерность распределения доходов в экономике. В противном случае может получиться, что на бумаге страна богаче, а большая часть населения живет в ней беднее, чем в другой, где средняя величина ниже, но распределение более равномерное.
Индекс Джини Коэффициент Джини, из которого проистекает индекс Джини, используемый для оценки равномерности распределения доходов в экономики, частично базируется на другом методе оценки неравенства в распределении доходов — кривой Лоуренса. Пример кривой Лоренца приведен на изображении ниже. В идеальной ситуации, то есть ситуации, когда нет неравенства в распределении доходов, эта линия будет биссектрисой, то есть пройдет под углом 45 градусов от начала координат.
Индекс Джини представляет собой отношение площади фигуры между упомянутой биссектрисой и кривой Лоренца к площади треугольника, образованного биссектрисой и одной из осей.
В экономике существует несколько способов рассчитать этот коэффициент, мы остановимся на формуле Брауна предварительно необходимо создать вариационный ряд — отранжировать население по доходам : где — число жителей, — кумулятивная доля населения, — кумулятивная доля дохода для Давайте разберем вышеописанное на игрушечном примере, чтобы интуитивно понять смысл этой статистики. Предположим, есть три деревни, в каждой из которых проживает 10 жителей. В каждой деревне суммарный годовой доход населения 100 рублей.
В первой деревне все жители зарабатывают одинаково — 10 рублей в год, во второй деревне распределение дохода иное: 3 человека зарабатывают по 5 рублей, 4 человека — по 10 рублей и 3 человека по 15 рублей. И в третьей деревне 7 человек получают 1 рубль в год, 1 человек — 10 рублей, 1 человек — 33 рубля и один человек — 50 рублей. Для каждой деревни рассчитаем коэффициент Джини и построим кривую Лоренца. Представим исходные данные по деревням в виде таблицы и сразу рассчитаем и для наглядности: Мы показали, что наряду с алгебраическими методами, одним из способов вычисления коэффициента Джини является геометрический — вычисление доли площади между кривой Лоренца и линией абсолютного равенства доходов от общей площади под прямой абсолютного равенства доходов.
Давайте остановимся на ещё одном важном моменте: рассчитывая коэффициент Джини, мы никак не классифицируем людей на бедных и богатых, он никак не зависит от того, кого мы сочтем нищим или олигархом. Но предположим, что перед нами встала такая задача, для этого в зависимости от того, что мы хотим получить, какие у нас цели, нам необходимо будет задать порог дохода четко разделяющий людей на бедных и богатых. Если вы увидели в этом аналогию с Threshold из задач бинарной классификации, то нам пора переходить к машинному обучению. Машинное обучение 1.
Общее понимание Сразу стоит заметить, что, придя в машинное обучение, коэффициент Джини сильно изменился: он рассчитывается по-другому и имеет другой смысл. Численно коэффициент равен площади фигуры, образованной линией абсолютного равенства и кривой Лоренца. Остались и общие черты с родственником из экономики, например, нам всё также необходимо построить кривую Лоренца и посчитать площади фигур. И что самое главное — не изменился алгоритм построения кривой.
Кривая Лоренца тоже претерпела изменения, она получила название Lift Curve и является зеркальным отображением кривой Лоренца относительно линии абсолютного равенства за счет того, что ранжирование вероятностей происходит не по возрастанию, а по убыванию. Разберем всё это на очередном игрушечном примере. Для минимизации ошибки при расчете площадей фигур будем использовать функции scipy interp1d интерполяция одномерной функции и quad вычисление определенного интеграла. Предположим, мы решаем задачу бинарной классификации для 15 объектов и у нас следующее распределение классов: Глядя на эти два графика мы можем сделать следующие выводы: Предсказание идеального алгоритма является максимальным коэффициентом Джини для текущего набора данных и зависит только от истинного распределения классов в задаче.
Площадь фигуры для идеального алгоритма равна: 2. Алгебраическое представление. Как рассчитать эту метрику? Она не равна своему родственнику из экономики.
Известно, что коэффициент можно вычислить по следующей формуле: Прекрасно видно, что из графического представления метрик связь уловить невозможно, поэтому докажем равенство алгебраически. У меня получилось сделать это двумя способами — параметрически интегралами и непараметрически через статистику Вилкоксона-Манна-Уитни. Второй способ значительно проще и без многоэтажных дробей с двойными интегралами, поэтому детально остановимся именно на нем. Для дальнейшего рассмотрения доказательств определимся с терминологией: кумулятивная доля истинных классов — это не что иное, как True Positive Rate.
Кумулятивная доля объектов — это в свою очередь количество объектов в отранжированном ряду при масштабировании на интервал — соответственно доля объектов. Введём следующие обозначения: Параметрический метод При построении графика Lift Curve по оси мы откладывали долю объектов их количество предварительно отсортированных по убыванию. Таким образом, параметрическое уравнение для Коэффициента Джини будет выглядеть следующим образом: Подставив выражение 4 в выражение 1 для обеих моделей и преобразовав его, мы увидим, что в одну из частей можно будет подставить выражение 3 , что в итоге даст нам красивую формулу нормализованного Джини 2 Непараметрический метод При доказательстве я опирался на элементарные постулаты Теории Вероятностей. Известно, что численно значение AUC ROC равно статистике Вилкоксона-Манна-Уитни: Доказательство этой формулы можно, например, найти здесь Пусть модель прогнозирует возможных значений из множества , где и — какое-то вероятностное распределение, элементы которого принимают значения на интервале.
Пусть множество значений, которые принимают объекты и. Очевидно, что множества и могут пересекаться.
Values are not computed if more than a third of the observations in the series are missing.
Min: Aggregates are set to the lowest available value for each time period. Sum: Aggregates are calculated as the sum of available data for each time period. Sum 66: Aggregates are calculated as the sum of available data for each time period.
Sums are not shown if more than one third of the observations in the series are missing. Weighted Mean: Aggregates are calculated as weighted averages of available data for each time period. Weighted Mean 66: Aggregates are calculated as weighted averages of available data for each time period.
No aggregate is shown if missing data account for more than one third of the observations in the series. Weighted Mean 66POP: Aggregates are calculated as weighted averages of available data for each time period. No aggregate is shown if countries with missing data represent more than one third of the total population of your custom group.
Коэффициент Джини
Оно замедляет темп экономического развития и формирует «ловушку бедности», при которой общество становится беднее с каждым поколением. Как правило, страны пытаются снизить экономическое неравенство. Так 50 лет назад коэффициент Джини во Франции был почти 0,5, а сейчас — 0,33. В Норвегии был чуть ниже 0,4, сейчас — 0,26. Часто это связано с несовершенством налогообложения. Так в Бразилии в процентном соотношении от дохода бедные платят налогов больше, чем богатые. Динамика индекса Джини. Например, в конце 90-х россияне в опросе «Интерфакс-АИФ» называли такие причины неравенства: 32 Спустя 20 лет изменилось немногое. Часто кажется, что бедность — это трущобы, лохмотья и похлёбка на воде. Но в действительности бедными считаются люди, уровень дохода которых позволяет только поддерживать прожиточный минимум.
Различают прожиточный и минимум физического выживания. Прожиточный минимум — минимальный уровень стандарта жизни, принятый в стране или регионе. Раньше в России прожиточный минимум привязывался к продуктовой потребительской корзине. Теперь в него закладывают ещё товары длительного пользования и услуги. На начало 2019 года прожиточный минимум в России — 10 тысяч рублей. Вот как он изменялся с 2013 года: 32 На душу населения в тыс. И это явственно ощущается многими. Россияне в целом не согласны с расчётами Росстата — люди относят к бедным тех, чей месячный доход на человека меньше 15 500 рублей. Минимальный доход, по их мнению, зависит от размера населенного пункта: 32 На душу населения в тыс.
Это 43 млн человек. В России количество бедных различается по регионам. Оценить уровень жизни человека можно и по расходам на питание.
Обычно они по-разному сочетаются в том или ином виде. Однако, какой бы система распределения ни была, в любом обществе неизбежно неравенство доходов. Проблема неравенства доходов в обществе Рыночная система экономики, существующая на сегодняшний день лишь за малым исключением во всех странах мира, представляет собой механизм, который вознаграждает людей лишь по конечному результату эффективности их деятельности, то есть объективно задает существование неравенства в обществе.
И ведь действительно, все люди очень отличаются друг от друга: трудолюбием, активностью, способностями, образованием, владением собственностью, склонностью к накоплению или, напротив, к потреблению. А это значит, что они не могут одинаково работать, значит, не могут одинаково зарабатывать и одинаково жить. Что и является причинами неравенства доходов. И что же тогда? Оставлять за чертой бедности немалую часть населения? По принципу «пусть выживают, как могут»?
Полезно ли ЭТО для общества? Очевидно, что нет. Также очевидно, что без вмешательства государства здесь не обойтись. Ведь именно государство призвано сглаживать неравенство в доходах населения, чтобы не допустить чрезмерного социального расслоения и напряжённости в обществе. Однако чрезмерное вмешательство государства в перераспределение и выравнивание доходов заметно снижает эффективность производства, поскольку растущие налоги подавляют интерес бизнесменов к предпринимательской активности, а всевозрастающая социальная помощь бедным слоям населения снижает у них тягу к поиску работы и энергичному труду.
Таким образом, это макроэкономический показатель, характеризующий дифференциацию денежных доходов населения в виде степени отклонения фактического распределения доходов от абсолютно равного их распределения между жителями страны.
Обобщая, в случае этой скандинавской страны можно утверждать, что количество бедных здесь снизилось вдвое. И такая картина наблюдается во многих развитых странах. А вот бедные и медленно развивающиеся страны, к сожалению, демонстрируют обратную тенденцию. Естественно, чтобы отслеживать этот параметр, нужно найти это число и контролировать его изменение ежегодно. А для этого нужно точно знать, как рассчитать коэффициент Джини и как использовать кривую Лоренца для формирования этих статистических показателей. Делается это следующим образом: Строится прямая Лоренца на основе собранных статистических данных. Затем рассчитывается коэффициент. Он берется, как отношение площади образованной фигуры к площади треугольника, отображающей прямую равенства.
Как рассчитывать коэффициент Джини
Задача №77. Расчёт коэффициента Джини | Коэффициент Джини Всемирного банка - CIA World Factbook. |
Вы точно человек? | Кроме того, коэффициент Джини используется для анализа распределения богатства в стране, но не показывает ее общий доход. |
Telegram: Contact @newsturkru | Значение коэффициента Джини для этих стран стабильно удерживается в диапазоне 0,25-0,3. |
Статистика:Коэффициент Джини в России — Русский эксперт | Коэффициент концентрации Джини (G) используется для характеристики степени неравномерности распределения значений признака вариационного ряда и рассчитывается по следующей формуле [5, с 89]. |
Коэффициент джини в России
Коэффициент Джини показывает, насколько фактическое распределение доходов населения отклоняется от показателя их равномерного распределения. Коэффициент Джини позволяет выявить высокие уровни неравенства доходов, которые могут стать причиной нежелательных политических и экономических последствий. Для исчисления коэффициента Джини необходимо рассчитать величины pi и qi. «Коэффициент Джини – это показатель степени неравенства в доходах, который принимает значения от 0 до 1, где 0 – абсолютное равенство и 1 – абсолютное неравенство».
РБК: Росстат зафиксировал рост концентрации доходов в 2023 году
Экономика. 10 класс | В России, Китае и США коэффициент Джини средний и примерно равен 0,4. В Бразилии и ЮАР самый высокий — 0,6. В Японии, Швеции и Словении низкий — 0,25. |
Неравенство доходов и коэффициент Джини в России: причины, последствия и пути решения | Что показывает коэффициент Джини. Какие значения может принимать данный показатель и что они означают. |
В России выросла разница в доходах самых богатых и самых бедных. И еще 10 главных новостей ночи
Статистические органы регулярно публикуют коэффициент Джини вместе с основными экономическими показателями, такими как ВВП и среднедушевой доход. Этот индекс выполняет функцию своеобразной коррекции для указанных показателей, предоставляя более точное представление о благосостоянии людей с учетом социальных групп. Преимущества и недостатки коэффициента Джини Вот основные преимущества: позволяет сравнивать страны и регионы с разной численностью населения; отображает не только неравенство внутри одного государства, но и дает картину распределения богатства по всему миру: видно, где оседает добавленная стоимость и какие страны выступают донорами ресурсов; можно сравнивать распределение дохода в разных частях страны — например, вот коэффициент Джини по регионам России с 1992 по 2017 годы ; можно рассчитывать коэффициент по разным отраслям экономики и группам населения, например для селян, горожан, жителей Крайнего Севера и прочих; можно отслеживать динамику показателя на разных исторических этапах развития экономики и общества; все анонимно — нет необходимости раскрывать персональные данные о доходах. У него есть определенные ограничения: при определении неравенства в обществе коэффициент не отражает в полной мере уровень достатка людей. Богатые и бедные страны могут иметь одинаковые или близкие коэффициенты Джини. Например, в 2018 году в Гвинее индекс был 29,6, а в развитой Германии — 31,7; джини рассматривает распределение денежных доходов, в то время как иногда работникам могут выдавать зарплату продуктами, опционами на акции компании и так далее. Не говоря о том, что серая зарплата тоже остается за рамками расчета; статистические организации опираются на разные данные и используют разные подходы, в результате индекс Джини для одной страны может отличаться.
Например, по данным Росстата, в 2017 году в России индекс был 41,3, а по расчетам Всемирного банка — 37,7; коэффициент Джини может работать некорректно для нерыночных экономик, где доходы концентрируются не у предпринимателей, а у государства, и могут возвращаться народу в виде социальных благ. Коэффициент Джини, который учитывает именно доходы граждан, в этом случае будет завышен. Индекс Джини обнажает проблемы неравенства. Из-за этого его иногда ошибочно трактуют как индикатор справедливости распределения богатства. Но равномерно не значит справедливо. В условиях рыночной экономики, когда доходы распределяются конкурентным путем, эталонного уровня индекса не существует.
Джини и прочие методики лишь помогают отслеживать социальные диспропорции и оценивать эффективность действий властей в борьбе с неравенством. А вопрос справедливости лежит вне области статистики. Среди преимуществ коэффициента Джини выделяют: Простота интерпретации. Коэффициент Джини - простой и легко интерпретируемый показатель. Он предоставляет наглядное представление о степени неравенства в распределении доходов. Возможность сравнения.
Существует два основных способа расчёта коэффициента Джини. Оба приводят к одним и тем же значениям, но дают нам два представления о том, что именно измеряет коэффициент Метод 1: Расчёт разницы между доходами двух человек по отношению к среднему значению Первый метод можно проиллюстрировать следующим мысленным экспериментом Представьте двух людей, случайно столкнувшихся на улице. Они сравнивают свои доходы и выясняют, насколько один из них богаче другого. Насколько большую разницу можно ожидать? Этот ожидаемый разрыв между двумя случайно выбранными людьми и измеряется коэффициентом Джини. Он рассчитывается как среднее значение разрыва между всеми парами людей в населении Если доходы распределены равномерно, то можно ожидать небольшой разрыв между доходами двух случайно выбранных людей. Там, где высокий уровень неравенства, мы можем ожидать большой разрыв Однако, если измерять этот показатель в абсолютном выражении, он также будет зависеть от богатства населения в целом. Если даже самые обеспеченные представители населения имеют низкий доход, то абсолютный разрыв между доходами людей будет маленьким. Для простоты представим, что всё население состоит из тех двух человек, встретившихся на улице.
Независимость от шкалы доходов. Мера неравенства является инвариантной к равномерным пропорциональным изменениям: если доход каждого человека изменяется в той же пропорции как, например, происходит при смене валютной единицы , то неравенство не должно меняться[4]. Преимущества применения Коэффициента Джини[6]: Основным преимуществом коэффициента Джини является то, что он является показателем неравенства, рассчитанного посредством анализа коэффициентов, а не переменной. Его можно использовать для сравнения распределения доходов по разным секторам населения, а также по странам, однако следует учитывать, что значение коэффициента Джини для городских районов отличается от значения коэффициента Джини для сельских районов во многих странах. Коэффициент Джини обладает достаточной простотой, чтобы его можно было сравнивать между странами и легко интерпретировать. Статистика ВВП часто подвергается критике, поскольку она не отражает изменений для всего населения, коэффициент Джини же показывает, как изменился доход бедных и богатых слоев населения. Если наблюдается одновременный рост коэффициента Джини и ВВП, уровень бедности может не изменяться в положительную сторону для большинства населения. Коэффициент Джини может использоваться для отображения того, как распределение дохода изменилось в стране за определенный период времени, таким образом, можно увидеть, увеличивается или уменьшается неравенство.
Не смотря на наличие преимуществ применения коэффициента Джини, он также обладает и рядом недостатков[5]: Коэффициент Джини, измеренный для большой экономически разнородной страны, обычно приводит к гораздо более высокому коэффициенту, чем каждый из ее регионов в отдельности. Сравнение распределения доходов между странами может быть затруднено, поскольку системы пособий могут различаться. Например, некоторые страны предоставляют пособия в виде денег, в то время как другие в форме талонов на питание, которые могут не учитываться в качестве дохода на кривой Лоренца и, следовательно, не учитываться в коэффициенте Джини. В связи с расчетным характером коэффициента Джини, в данных могут присутствовать как систематические, так и случайные ошибки. Со временем значение коэффициента Джини уменьшается, поскольку данные становятся менее точными. Кроме того, страны могут собирать данные по-разному, что затрудняет сравнение статистических данных между странами. Экономики с одинаковыми доходами и одинаковыми значениями коэффициентов Джини могут иметь различное распределение доходов.
Это произошло после его интервью Катерине Гордеевой признана Минюстом иностранным агентом. На Coinbase резко выросло количество пользователей на фоне курса биткоина выше 60 тыс. Некоторым из них сервис « обнулил » кошельки.
В компании обещают устранить ошибку. Минздрав России зарегистрировал двухкомпонентную вакцину от коронавируса «Спутник V» с обновленным составом. В 16 российских регионах зафиксировали нехватку вакцин от кори. Препараты производит компания «Нацимбио». Ее представители сообщили, что в январе 2024 года все регионы получили почти 200 тыс. В Волгограде произошел пожар на складе пиломатериалов.
Как сравнить результаты моделей с использованием индекса Джини и кривой Лоренца
Коэффициент Джини — это статистический показатель, характеризующий степень неравномерности распределения доходов между разными социальными группами. Коэффициент Джини – это количественный показатель, показывающий степень неравенства различных вариантов распределения доходов, разработанный итальянским экономистом, статистиком и демографом Коррадо Джини. Работа Бургиньона и Морриссона показывает устойчивый рост неравенства с 1820 года, когда глобальный коэффициент Джини составлял 0,500. Значение площади фигуры между синей прямой и красной параболой и есть коэффициент неравенства Джини.