Автор: формула продукта реакции внутримолекулярной дегидратации этанола.
Какое вещество получается в результате внутримолекулярной дегидратации этанола:
Вопросы для самоконтроля Поясните, какие особые химические свойства спиртов обусловлены наличием гидроксильной группы в составе их молекул. Обоснуйте ответ. Охарактеризуйте важнейшие группы реакций, в которые вступают спирты. Приведите соответствующие примеры.
Составьте уравнения реакций.
При окислении первичных спиртов они последовательно превращаются сначала в альдегиды, а потом в карбоновые кислоты. Глубина окисления зависит от окислителя. При этом медь восстанавливается до простого вещества. Например, этанол окисляется оксидом меди до уксусного альдегида 4. Окисление кислородом в присутствии катализатора Cпирты можно окислить кислородом в присутствии катализатора медь, оксид хрома III и др.
Жесткое окисление При жестком окислении под действием перманганатов или соединений хрома VI первичные спирты окисляются до карбоновых кислот. Например, при взаимодействии этанола с перманганатом калия в серной кислоте образуется уксусная кислота 4. Горение спиртов Образуются углекислый газ и вода и выделяется большое количество теплоты. Например, уравнение сгорания этанола: При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. Например, при дегидрировании этанола образуется этаналь Получение этанола 1. Щелочной гидролиз галогеналканов При взаимодействии галогеналканов с водным раствором щелочей образуются спирты.
Атом галогена в галогеналкане замещается на гидроксогруппу. Например, при нагревании хлорэтана с водным раствором гидроксида натрия образуется этанол 2.
CH3-OH В ходе брожения глюкозы выделяется углекислый газ и образуется этанол. Окисление алкенов KMnO4 в нейтральной водной среде В результате такой реакции у атомов углерода, прилежащих к двойной связи, формируются гидроксогруппы - образуется двухатомный спирт гликоль. Химические свойства спиртов Предельные спирты не содержащие двойных и тройных связей не вступают в реакции присоединения, это насыщенные кислородсодержащие соединения. У спиртов проявляются новые свойства, которых мы раньше не касались в органической химии - кислотные. Кислотные свойства Щелочные металлы Li, Na, K способны вытеснять водород из спиртов с образованием солей: метилатов, этилатов, пропилатов и т. Необходимо особо заметить, что реакция с щелочами NaOH, KOH, LiOH для предельных одноатомных спиртов невозможна, так как образующиеся алкоголяты соли спиртов сразу же подвергаются гидролизу.
Реакция с галогеноводородами Реакция с галогеноводородами протекают как реакции обмена: атом галогена замещает гидроксогруппу, образуется молекула воды. Реакции с кислотами В результате реакций спиртов с кислотами образуются различные эфиры. Дегидратация спиртов Дегидратация спиртов отщепление воды идет при повышенной температуре в присутствии серной кислоты водоотнимающего компонента.
Дегидратация спиртов соединений, которые имеют группу ОН, присоединенную к насыщенному углероду в открытой цепи может происходить двумя способами: внутримолекулярные и межмолекулярные.
В этом случае образующийся органический продукт будет алкеном. Пример: Обратите внимание, что группа ОН ушла, а водород покинул соседний углерод, образуя воду. Кроме того, образовалась двойная связь, которая дала начало алкену.
Уравнения реакций внутримолекулярной и межмолекулярной дегидратации этанола
- Дегидратация спиртов: химические реакции и катализаторы
- Внутримолекулярная дегидратация этанола уравнение реакции
- Несложные способы отличить этил и метил
- Дегидратация спиртов: химические реакции и катализаторы ::
- Содержание
Остались вопросы?
Реакция внутримолекулярной дегидратации бутанола-1 ведет к газообразному бутену-1 (он же бутилен-1, 1-бутен и бут-1-ен) по химическому уравнению: CH3-CH2-CH2-CH-OH --> CH3-CH2-CH=CH2 + H2O Обычный. Механизм реакции внутримолекулярной дегидратации спиртов. формула продукта реакции внутримолекулярной дегидратации 398 просмотров. Дегидратация этилового спирта.
Химические свойства спиртов
Взаимодействие с галогеноводородами При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан. Например, этанол реагирует с бромоводородом. Взаимодействие с аммиаком Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе. Например, при взаимодействии этанола с аммиаком образуется этиламин. Этерификация образование сложных эфиров Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры. Например, этанол реагирует с уксусной кислотой с образованием этилацетата этилового эфира уксусной кислоты : 2.
Взаимодействие с кислотами-гидроксидами Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной. Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат : Видео:Спирты и фенолы. Тема 21. Химические свойства, получение и применение спиртов Скачать Видео:Все химические свойства спиртов за 45 минут Химия 10 класс Умскул Скачать 3. Реакции замещения группы ОН В присутствии концентрированной серной кислоты от спиртов отщепляется вода.
Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация. Внутримолекулярная дегидратация При высокой температуре больше 140 о С происходит внутримолекулярная дегидратация и образуется соответствующий алкен. Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен: Видео:Вся теория по спиртам для ЕГЭ Химия ЕГЭ для 10 класса Умскул Скачать В качестве катализатора этой реакции также используют оксид алюминия. Межмолекулярная дегидратация При низкой температуре меньше 140 о С происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы.
Горение полное окисление Спирты горят на воздухе с выделением большого количества тепла. С увеличением массы углеводородного радикала — пламя становится всё более коптящим. Видеоопыт «Горение спиртов» При сгорании спиртов выделяется большое количество тепла: Благодаря высокой экзотермичности реакции горения этанола, он считается перспективным и экологически чистым заменителем бензинового топлива в двигателях внутреннего сгорания.
В этом случае энергия химических связей переходит в тепловую энергию, а затем в механическую, что позволяет двигаться автомобилям. В лабораторной практике этанол применяется как горючее для «спиртовок». Неполное окисление 1. В присутствии окислителей [O] — K2Cr2O7 или KMnO4 спирты окисляются до карбонильных соединений: Первичные спирты при окислении образуют альдегиды, которые затем легко окисляются до карбоновых кислот. При окислении вторичных спиртов образуются кетоны. Например: Видеоопыт «Окисление этилового спирта раствором перманганата калия» Видеоопыт «Окисление этилового спирта кристаллическим перманганатом калия» Видеоопыт «Каталитическое окисление этанола» Видеоопыт «Окисление этанола тест на алкоголь » Третичные спирты более устойчивы к действию окислителей. Они окисляются только в жестких условиях кислая среда, повышенная температура , что приводит к разрушению углеродного скелета молекулы и образованию смеси продуктов карбоновых кислот и кетонов с меньшей молекулярной массой.
Качественные реакции на спирты 1. В кислой среде Окисление Na2Cr2O7 Для первичных и вторичных одноатомных спиртов качественной реакцией является взаимодействие их с раствором дихромата натрия. Для повышения скорости реакции ее проводят при нагревании, для создания кислой среды добавляют серную кислоту. Первичные спирты окисляются дихроматом натрия до альдегидов.
Химические свойства альдегидов окисление.
Структурные изомеры с3н6о. Межклассовые изомеры альдегидов. Межклассовый изомер ацетона. Изомеры альдегидов кетонов c5h10. Реакция восстановление альдегидов уравнение.
Реакция восстановления альдегидов. Восстановление уксусного альдегида водородом. Уравнение реакции восстановления уксусного альдегида. Уксусный альдегид ag2o. Уксусный альдегид ag2o реакция.
Пропионовая кислота е280. Пропановая кислота электронная формула. Пропионовая кислота структурная формула. Структурная форма пропионовой кислоты. Дегидратация спиртов условия.
Этиловый спирт h2so4 t 140. Дегидратация спиртов с образованием простых эфиров. Этанол h2so4. Межмолекулярная дегидратация бутанола-2. Внутримолекулярная дегидратация бутанола-2.
Дегидратация бутанола 2 реакция. Межмолекулярная дегидратация бутанола-1. Окисление альдегидов гидроксидом меди 2 реакция. Вещества которые вступают в реакцию с гидроксидом меди 2. Качественная реакция на альдегиды уравнение реакции.
Качественная реакция на альдегиды с гидроксидом меди 2. Этанол и гидроксид. Этанол и гидроксид натрия. Межклассовая изомерия алкенов c5h10. Изомерия углеродного скелета алкенов.
Алкены структурная изомерия. Структурная изомерия алкенов. Ch3 Ch ch2 c o Oh. Реакции нуклеофильного замещения спиртов. Ch2oh-ch2oh реакции.
Ch2o ch3oh. C3h7oh структурная формула. Пропанол 1 строение. Пропанол молекулярная формула. Электронные и структурные формулы.
Метилпропанол 1 структурная формула. Раствор сульфата меди 2 и раствор аммиака. Аммиачный раствор гидраксидамеди. Соли меди голубого цвета. Аммиачный раствор меди.
Цепочка превращений по химии 10 класс органическая химия. Ch4 цепочка превращений. Цепочка реакции с7н16. Окисление третичных спиртов Cuo. Химические свойства одноатомных спиртов окисление.
Химические свойства предельных одноатомных спиртов. Одноатомные спирты тема по химии 10 класс. Этанол и вода. Этиловый спирт и вода. Ethanol presentation.
Синтез этанола. Двухстадийный Синтез этанола. Бисульфид Синтез этанола. Синтез ГАЗ этанол. Изопропиловый спирт Kontakt IPA.
Изопропиловый спирт Kontakt. Изопропиловый спирт Kontakt IPA ll5. IPA Plus. Качественная реакция на группу альдегидов. Качественная реакция на альдегиды реакция серебряного зеркала.
C o2 so2 ОВР. Реакции с k2cr2o7.
При окислении первичных спиртов образуются альдегиды, в случае вторичных — кетоны: Третичные спирты не вступают в такую реакцию, у них нет атома водорода при третичном углеродном атоме, поэтому они не способны к реакциям с отщеплением водорода и образованием H2O. Кроме оксида меди II в качестве окислителей можно использовать растворы дихромата или перманганата калия, кислород воздуха в присутствии катализатора. Каталитическое окисление этанола Окисление этилового спирта кислородом воздуха происходит очень легко в присутствии оксида хрома III. В фарфоровую чашку поместим кусочек ваты, смоченный спиртом.
Подожжем вату. Осторожно насыпаем на горящую вату оксид хрома. Пламя гаснет. Но оксид хрома начинает раскаляться. Реакция окисления спирта протекает с выделением энергии. Продукт реакции окисления спирта - уксусный альдегид.
Приготовим трубку для определения алкоголя. Для этого разотрем в ступке хромовый ангидрид оксид хрома VI с небольшим количеством серной кислоты. Получается паста красного цвета. Нанесем пастой полосу на стенках трубки. Трубку соединим с прибором, подающим смесь воздуха с парами этилового спирта. Через некоторое время красная полоса в трубке зеленеет.
Спирт окисляется в уксусный альдегид, а окислитель оксид хрома превращается в сульфат хрома III , имеющий зеленую окраску. В пробирку с этиловым спиртом прильем немного подкисленного раствора перманганата калия. Осторожно подогреем пробирку. Раствор постепенно обесцвечивается. В данных условиях этиловый спирт окисляется, превращаясь в уксусный альдегид. Этиловый спирт широко используют в различных областях промышленности и прежде всего в химической.
Из него получают синтетический каучук, уксусную кислоту, красители, эссенции, фотопленку, порох, пластмассы. Спирт является хорошим растворителем и антисептиком. Поэтому он находит применение в медицине, парфюмерии. В больших количествах этиловый спирт идет для получения ликёроводочных изделий. Этиловый спирт — сильный наркотик. Попадая в организм, он быстро всасывается в кровь и приводит организм в возбужденное состояние, при котором человеку трудно контролировать свое поведение.
Как составить реакции дегидратации этанола
Дегидратация органических веществ | 1 моль, значит, Y (C2H4) = 0,75 моль; Получи верный ответ на вопрос«Из 34,5 г этанола получили 11,2 л (н. у.) этилена. |
Формула продукта реакции внутримолекулярной дегидратации этанола? . 1.C2H4 2.… | Пользователь Саня Ширяев задал вопрос в категории Естественные науки и получил на него 1 ответ. |
Химия. 10 класс | 585 ответов - 11279 раз оказано помощи. Продукта реакции внутримолекулярной дегидратации этанола. |
формула продукта реакции внутримолекулярной дегидратации - Химия » | Реакция внутримолекулярной дегидратации. |
Внутримолекулярная дегидратация этанола уравнение реакции — Решение уравнений | Формула продукта реакции внутримолекулярной дегидратации этанола. |
Как составить реакции дегидратации этанола
- Нагревание этанола
- В результате дегидратации из этанола может образоваться
- Информация
- Несложные способы отличить этил и метил
- Формула продукта реакции внутримолекулярной дегидратации... -
- Конспект урока: Одноатомные спирты
Внутримолекулярная дегидратация спиртов. Реакция обезвоживания
Внутримолекулярная дегидратация 1,2-диолов может привести к образованию неустойчивого енола, превращающегося затем в карбонильное соединение. Напишите уравнения реакций дегидратации: а) этанола; б) пропанола-1; в) бутанола-2. При нагревании спиртов в присутствии серной кислоты проходят реакции дегидратации, причем в зависимости от температуры преимущественно протекает одна из двух конкурирующих реакций – внутримолекулярная или межмолекулярная дегидратация спирта. В результате внутримолекулярной дегидратации спиртов образуются алкены; продуктом межмолекулярной дегидратации являются простые эфиры. 588 ответов - 11279 раз оказано помощи. Продукта реакции внутримолекулярной дегидратации этанола.
Химия. 10 класс
При внутримолекулярной дегидратации из спиртов образуются алкены. В результате внутримолекулярной дегидратации из спиртов образуются алкены в следующих условиях. Реакция внутримолекулярной дегидратации бутанола-1 ведет к газообразному бутену-1 (он же бутилен-1, 1-бутен и бут-1-ен) по химическому уравнению: CH3-CH2-CH2-CH-OH --> CH3-CH2-CH=CH2 + H2O Обычный. Внутримолекулярная дегидратация спиртов принадлежит к реакциям элиминирования (отщепления) ($E$). Установите молекулярную формулу вещества, изобразите его структурную формулу и напишите уравнение внутримолекулярной дегидратации под действием серной кислоты. 11 классы. формула продукта реакции внутримолекулярной дегидратации этанола.
3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.
Одноатомные спирты | Химия 10 класс | Данная реакция сопровождается внутримолекулярной дегидратацией спирта, приводящей к образованию алкена, поэтому важно подобрать условия реакции. |
Дегидратация спиртов | Спирты — органические вещества, содержащие группу -OH Делятся на 3 группы: При комнатной температуре метанол, этанол, этиленгликоль и глицерин — жидкости. С увеличением количества углеродов спирты становятся твердыми веществами. |
Дегидратация спиртов | внутримолекулярная дегидратация. |
Уравнение реакции дегидратации этанола
Во вторичных спиртах гидроксильная группа присоединяется к углероду, связанному с двумя атомами углерода. В третичных, соответственно, с тремя. Изомерия предельных одноатомных спиртов Для спиртов характерна изомерия углеродного скелета , как у алканов; а также изомерия положения функциональных групп и межклассовая изомерия. В качестве изомеров углеродного скелета можно привести примеры бутанола-1 и 2-метилпропанола-1. Изомеры положения функциональных групп представлены в таблице таблица 1 : пропанол-1, пропанол-2. Они отличаются расположением функциональной группы OH.
Первичные и вторичные спирты реагируют с галогенводородами по механизму SN2 общая схема : Для третичных спиртов характерен механизм SN1 : В ходе такого замещения образуется промежуточный карбокатион , поэтому SN1 реакции могут сопровождаться перегруппировками и элиминированием. Таким образом, практический интерес представляют только те третичные спирты, которые дают карбокатион, не способный к перегруппировкам. Взаимодействие спиртов с галогенидами фосфора[ править править код ] Распространённым способом превращения спиртов в алкилгалогениды является их взаимодействие с галогенидами фосфора: РВr3 , РСl5 , РОСl3 или РI3 образуется непосредственно в ходе реакции.
Реакция протекает по нуклеофильному механизму с образованием галогенфосфита в качестве интермедиата [10] :[стр. В соответствии с особенностями механизма реакции SN2 , замещение гидроксильной группы на галоген происходит с обращением конфигурации у асимметрического атома углерода. При этом следует учитывать, что замещение часто осложняется изомеризацией и перегруппировками, поэтому подобная реакция, обычно, применяется для относительно спиртов простого строения [10] :[стр.
При этом, под действием высокой температуры или катализаторов, молекула этанола теряет гидроксильную группу —OH и одну из водородных атомов Н , которые образуют молекулу воды Н2О. Таким образом, ответ на задачу - 1 C2H4 этилен. Почему другие варианты не являются продуктами реакции?
Спирты также называют алкоголи. Первый член гомологического ряда - метанол - CH3OH. Одноатомные спирты также подразделяются в зависимости от положения OH-группы: первичные OH-группа у первичного атома углерода , вторичные OH-группа у вторичного атома углерода и третичные OH-группа у третичного атома углерода. Номенклатура и изомерия спиртов Названия спиртов формируются путем добавления суффикса "ол" к названию алкана с соответствующим числом атомов углерода: метанол, этанол, пропанол, бутанол, пентанол и т. Для спиртов характерна изомерия углеродного скелета начиная с бутанола , положения функциональной группы и межклассовая изомерия с простыми эфирами, которых мы также коснемся в данной статье. Атом водорода направляется к наиболее гидрированному атому углерода, а гидроксогруппа идет к соседнему, наименее гидрированному, атому углерода. Восстановление карбонильных соединений В результате восстановления альдегидов и кетонов получаются соответственно первичные и вторичные спирты. Получение метанола из синтез-газа Синтез газом в промышленности называют смесь угарного газа и водорода, которая используется для синтеза различных химических соединений, в том числе и метанола. CH3-OH В ходе брожения глюкозы выделяется углекислый газ и образуется этанол.
Уравнения реакций внутримолекулярной и межмолекулярной дегидратации этанола
Таким образом, ответ на задачу - 1 C2H4 этилен. Почему другие варианты не являются продуктами реакции? Таким образом, продуктом реакции внутримолекулярной дегидратации этанола является только 1 C2H4 этилен.
Спирты — более слабые кислоты, чем вода, поэтому невозможна реакция с водными растворами щелочей. Взаимодействие с твердыми щелочами возможно, реакция обратима. Равновесие сильно смещено влево. Основность кислот увеличивается по мере увеличения углеродного скелета.
Замещение гидроксогруппы Гидроксогруппа является плохо уходящей. Энергия разрыва связи С—О довольно высока, поэтому непосредственное замещение группы ОН на другую группу невозможно. Для того, чтобы замещение было возможно, группу ОН превращают в хорошо уходящую, т.
Также они используются в качестве растворителей в органических реакциях. Некоторые эфиры применяют как анестетики, топливные присадки для повышения октанового числа и смазочные масла. Анестетики — лекарственные средства, обладающие способностью вызывать уменьшения чувствительности тела или его части вплоть до полного прекращения восприятия информации об окружающей среде и собственном состоянии - анестезию. Некоторые простые эфиры являются инсектицидами и фумигантами, поскольку их пары токсичны для насекомых.
Ароматические простые эфиры находят применение в качестве антиоксидантов и консервантов.
Дегидратация лабораторный способ получения этилена. Лабораторный способ получения этилена c2h4. Лабораторный способ получения c2h4.
Простые эфиры образуются при. Взаимодействие спиртов с серной кислотой. Простые эфиры при нагревании. Образование диэтилового Спириа. Образование этилового спирта.
Получение этилена из этилового спирта. Этиловый спирт получить Этилен. Перегонка спирта от воды. Прибор для разделения смеси спирта и воды. Горение метилового спирта.
Сгорание метилового спирта. Цвет горения метилового и этилового спиртов. Горение этанола. Сравните цвет пламени эфира и спирта. Пламя этанола.
Цвет пламени разных спиртов. Определить спирт по цвету пламени. Гидрирование ароматического ядра фенола. Циклогексанол в бензол. Реагент фенолов и циклогексанол.
Никелевый катализатор гидрирования. Реакция межмолекулярной дегидратации. Уравнение реакции межмолекулярной дегидратации пентанола 2. Реакция внутримолекулярная дегидратация пентанол 2. Дегидратация пентанола 2 реакция.
Опыт 2. Спирты с оксидом меди 2 при нагревании. Этиловый спирт и оксид меди 2. Этанол и оксид меди 2 реакция. Формулы агрегатного состояния.
Метанол агрегатное состояние. Агрегатное состояние спиртов. Формулы изменения агрегатного состояния. Окисление этанола оксидом меди. Окисление этанола оксидом меди 2.
Окисление этилового спирта оксидом меди II. Окисление первичных спиртов оксидом меди 2. Взаимодействие спиртов с концентрированной серной кислотой. Реакция этанола с концентрированной серной кислотой при нагревании. Спирт и концентрированная серная кислота.
Перегонка жидкостей. Процесс дистилляции. Процесс перегонки. Вода и этанол дистилляция. Испарение конденсация кипение 8 класс физика.
Кипение жидкости физика 8 класс. Кипение процесс парообразования происходящий. Парообразование физика 8 класс кипение. Реакция дегидратации этанола.
3.5. Характерные химические свойства предельных одноатомных и многоатомных спиртов, фенола.
При нагревании спиртов в присутствии минеральных кислот, спирты терпят отщепление воды, то есть происходит дегидратация. В зависимости от условий возможна внутримолекулярная дегидратация и межмолекулярная дегидратация. формула продукта реакции внутримолекулярной дегидратации 273 просмотров. Реакция внутримолекулярной дегидратации бутанола-1 ведет к газообразному бутену-1 (он же бутилен-1, 1-бутен и бут-1-ен) по химическому уравнению: CH3-CH2-CH2-CH-OH --> CH3-CH2-CH=CH2 + H2O Обычный.
§ 24. Химические свойства, получение и применение спиртов
- Смотрите также
- Вывод формулы вещества (по продуктам дегидратации спирта с выходом реакции) - YouTube
- Ответ преподавателя
- Уравнение реакции дегидратации этанола
- Сущность дегидратации спиртов
Химические свойства спиртов
Взаимодействие с галогеноводородами При взаимодействии спиртов с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан. Например, этанол реагирует с бромоводородом. Взаимодействие с аммиаком Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе. Например, при взаимодействии этанола с аммиаком образуется этиламин. Этерификация образование сложных эфиров Одноатомные и многоатомные спирты вступают в реакции с карбоновыми кислотами, образуя сложные эфиры. Например, этанол реагирует с уксусной кислотой с образованием этилацетата этилового эфира уксусной кислоты : 2. Взаимодействие с кислотами-гидроксидами Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной. Например, при взаимодействии этанола с азотной кислотой образуется сложный эфир этилнитрат : 3. Реакции замещения группы ОН В присутствии концентрированной серной кислоты от спиртов отщепляется вода.
Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация. Внутримолекулярная дегидратация При высокой температуре больше 140 о С происходит внутримолекулярная дегидратация и образуется соответствующий алкен. Например, из этанола под действием концентрированной серной кислоты при температуре выше 140 градусов образуется этилен: В качестве катализатора этой реакции также используют оксид алюминия. Межмолекулярная дегидратация При низкой температуре меньше 140 о С происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы.
Дегидратацию с образованием простого эфира проводят при более низкой температуре, более высоких концентрации и парциальном давлении спирта например, под некоторым давлением и при неполной конверсии спирта в реакторе. Протонные кислоты не катализируют эту реакцию, но она становится возможной при использовании некоторых носителей или оксидных катализаторов. Из последних наиболее избирательны к дегидратации по сравнению с дегидрированием ThO2 и Al2O3, в то время как многие оксиды обладают смешанным, а другие — преимущественно дегидрирующим действием. Термодинамика реакций Рассмотрим равновесие основной реакции: гидратации — внутримолекулярной гидратации. Она протекает с выделением тепла, следовательно её равновесие смещается вправо при понижении температуры. Дегидратации, наоборот, способствует нагревание. Изменение энергии Гиббса при гидратации этилена, пропилена и изобутилена в зависимости от температуры представлено графически на рис. При этом для олефинов разного строения различия в термодинамике рассматриваемых реакций незначительны.
Давайте разберемся в механизмах этой реакции и ее практическом применении. Сущность дегидратации спиртов Дегидратация спиртов - это реакция отщепления молекулы воды от спирта. Различают два основных типа этой реакции: Внутримолекулярная дегидратация - отщепление воды внутри одной молекулы с образованием алкена Межмолекулярная дегидратация - отщепление воды от двух молекул спирта с образованием простого или сложного эфира Механизм реакции в обоих случаях заключается в разрыве связи О-Н и отщеплении протона. На направление реакции влияют такие факторы, как температура, кислотность среды и строение спирта. Для ускорения процесса используются катализаторы - серная кислота, оксид алюминия, цеолиты и др.
Полученный алкилхлорид имеет обращенную конфигурацию. Этот факт можно объяснить следующим механизмом SN2 [4] : Взаимодействие спиртов с хлорангидридами сульфокислот и последующим замещением[ править править код ] Спирты способны реагировать с хлорангидридами сульфокислот в присутствии основания с образованием соответствующих сложных эфиров. Первичные спирты реагируют быстрее вторичных и значительно быстрее третичных [4]. Возможно селективное образование первичного сложного эфира сульфокислоты в присутствии вторичных и третичных спиртовых групп. В роли основания чаще всего используется пиридин , который одновременно выступает и как нуклеофильный катализатор [4]. Сульфонаты являются прекрасными уходящими группами и легко замещаются на атом галогена по механизму SN2: Источником галогенид-иона обычно является соответствующая неорганическая соль NaBr , LiCl , CsF , KF и т.