Новости фрактал в природе

Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы». Понятие ФРАКТАЛЫ (fractus -состоящий из фрагментов) введено в научный обиход Бенуа Мандельбротом.

Математика в природе: самые красивые закономерности в окружающем мире

Практической ценности теория фракталов не имеет». Были также те, кто вообще считал, что фрактальные узоры — просто побочный результат работы «дьявольских машин», которые в конце семидесятых многим казались чем-то слишком сложным и неизученным, чтобы всецело им доверять. Мандельброт пытался найти очевидное применение теории фракталов, но, по большому счету, ему и не нужно было это делать. Последователи Бенуа Мандельброта в следующие 25 лет доказали огромную пользу от подобного «математического курьеза», и Лорен Карпентер был одним из первых, кто опробовал метод фракталов на практике. Проштудировав книжку, будущий аниматор серьезно изучил принципы фрактальной геометрии и стал искать способ реализовать ее в компьютерной графике. Всего за три дня работы Лорен смог визуализировать реалистичное изображение горной системы на своем компьютере. Иными словами, он с помощью формул нарисовал вполне узнаваемый горный пейзаж. Принцип, который использовал Лорен для достижения цели, был очень прост. Он состоял в том, чтобы разделять более крупную геометрическую фигуру на мелкие элементы, а те, в свою очередь, делить на аналогичные фигуры меньшего размера. Используя более крупные треугольники, Карпентер дробил их на четыре мелких и затем повторял эту процедуру снова и снова, пока у него не получался реалистичный горный ландшафт. Таким образом, ему удалось стать первым художником, применившим в компьютерной графике фрактальный алгоритм для построения изображений.

Как только стало известно о проделанной работе, энтузиасты по всему миру подхватили эту идею и стали использовать фрактальный алгоритм для имитации реалистичных природных форм. Одна из первых визуализаций 3D по фрактальному алгоритму Всего через несколько лет свои наработки Лорен Карпентер смог применить в куда более масштабном проекте. Аниматор создал на их основе двухминутный демонстрационный ролик Vol Libre, который был показан на Siggraph в 1980 году. Это видео потрясло всех, кто его видел, и Лоурен получил приглашение от Lucasfilm. Работая для Lucasfilm Limited, аниматор создавал по той же схеме трехмерные ландшафты для второго полнометражного фильма саги Star Trek. В фильме «Гнев Хана» The Wrath of Khan Карпентер смог создать целую планету, используя тот же самый принцип фрактального моделирования поверхности. В настоящее время все популярные приложения для создания трехмерных ландшафтов используют аналогичный принцип генерирования природных объектов. Terragen, Bryce, Vue и прочие трехмерные редакторы полагаются на фрактальный алгоритм моделирования поверхностей и текстур. Большинство из нас принимает достижения современных технологий как должное. Ко всему, что делает жизнь более комфортной, привыкаешь очень быстро.

Редко кто задается вопросами «Откуда это взялось? Микроволновая печь разогревает завтрак — ну и прекрасно, смартфон дает возможность поговорить с другим человеком — отлично. Это кажется нам очевидной возможностью. Но жизнь могла бы быть совершенно иной, если бы человек не искал объяснения происходящим событиям. Взять, например, сотовые телефоны. Помните выдвижные антенны на первых моделях? Они мешали, увеличивали размеры устройства, в конце концов, часто ломались. Полагаем, они навсегда канули в Лету, и отчасти виной тому… фракталы. Фрактальные рисунки завораживают своими узорами. Они определенно напоминают изображения космических объектов — туманностей, скопления галактик и так далее.

Поэтому вполне закономерно, что, когда Мандельброт озвучил свою теорию фракталов, его исследования вызвали повышенный интерес у тех, кто занимался изучением астрономии. Один из таких любителей по имени Натан Коэн Nathan Cohen после посещения лекции Бенуа Мандельброта в Будапеште загорелся идеей практического применения полученных знаний. Правда, сделал он это интуитивно, и не последнюю роль в его открытии сыграл случай. Будучи радиолюбителем, Натан стремился создать антенну, обладающую как можно более высокой чувствительностью. Единственный способ улучшить параметры антенны, который был известен на то время, заключался в увеличении ее геометрических размеров. Однако владелец жилья в центре Бостона, которое арендовал Натан, был категорически против установки больших устройств на крыше. Тогда Натан стал экспериментировать с различными формами антенн, стараясь получить максимальный результат при минимальных размерах. Загоревшись идеей фрактальных форм, Коэн, что называется, наобум сделал из проволоки один из самых известных фракталов — «снежинку Коха». Шведский математик Хельге фон Кох Helge von Koch придумал эту кривую еще в 1904 году. Она получается путем деления отрезка на три части и замещения среднего сегмента равносторонним треугольником без стороны, совпадающей с этим сегментом.

Определение немного сложное для восприятия, но на рисунке все ясно и просто. Существуют также другие разновидности «кривой Коха», но примерная форма кривой остается похожей Когда Натан подключил антенну к радиоприемному устройству, он был очень удивлен — чувствительность резко увеличилась. После серии экспериментов будущий профессор Бостонского университета понял, что антенна, сделанная по фрактальному рисунку, имеет высокий КПД и покрывает гораздо более широкий частотный диапазон по сравнению с классическими решениями. Кроме того, форма антенны в виде кривой фрактала позволяет существенно уменьшить геометрические размеры. Натан Коэн даже вывел теорему, доказывающую, что для создания широкополосной антенны достаточно придать ей форму самоподобной фрактальной кривой. Автор запатентовал свое открытие и основал фирму по разработке и проектированию фрактальных антенн Fractal Antenna Systems , справедливо полагая, что в будущем благодаря его открытию сотовые телефоны смогут избавиться от громоздких антенн и станут более компактными. В принципе, так и произошло. Правда, и по сей день Натан ведет судебную тяжбу с крупными корпорациями, которые незаконно используют его открытие для производства компактных устройств связи. Некоторые известные производители мобильных устройств, как, например, Motorola, уже пришли к мирному соглашению с изобретателем фрактальной антенны. Пятая глава книги «Фрактальная геометрия природы» посвящена, на первый взгляд, довольно простому вопросу: «Какова длина береговой линии Британии?

Этот вопрос Бенуа позаимствовал у знаменитого американского ученого Эдварда Каснера.

Они позволяют нам легко представить сложные объекты, похожие на природные, создавать различные модели миров, стереокартинки и многое другое. В своей проектной работе я хотел бы подробнее узнать о фракталах и о возможности их применения в компьютерной графике. Теоретическая часть исследовательской работы Что такое фрактал?

Термин «фрактал» ввел Бенуа Мандельброт от лат. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому». Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Фракталы задаются простым правилом, но позволяют создавать очень сложные структуры.

Это настолько эффективно, что было взято на вооружение природой! Например, снежинка, ветви деревьев, молнии, горы, кровеносные система — всё это представляет собой фракталы. В математике фрактал — математическое множество, обладающее свойством самоподобия, то есть однородности в различных шкалах измерения любая часть фрактала подобна всему множеству целиком. Физическая энциклопедия 1998 определяет фракталы как множества с крайне нерегулярной разветвленной или изрезанной структурой.

Слово «фрактал» употребляется не только в качестве научного термина. В этом отличие фрактала от элементарных геометрических фигур таких как окружность, эллипс или квадрат : если мы рассмотрим небольшой фрагмент такой фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Простым примером фрактала может служить дерево, ствол которого разделен на две ветви, каждая из которых, в свою очередь, разделяется на две более мелкие ветви и т. В результате мы будем иметь древовидный фрактал с бесконечным числом ветвей.

Каждую отдельную ветвь можно, в свою очередь, рассматривать как отдельное дерево. Выделяют несколько разновидностей фракталов: геометрические, алгебраические и стохастические. Примеры фракталов в природе Геометрические фракталы Фракталы этого класса самые наглядные. Некоторые предпочитают называть эти фракталы классическими, детерминированными или линейными.

Эти фракталы являются самыми наглядными. Они обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите все тот же узор. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором.

За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал.

Математик Бенуа Мандельброт увидел использовал этот пример для изучения концепции фрактальной размерности.

Попутно он доказал, что длина береговой линии напрямую зависит от того, как сильно вы будете приближать ее. Виды фракталов Абстрактное самоподобное множество представить сложно. Наверняка вы задались вопросом: «А какими они вообще бывают, эти фракталы?

Геометрические Здесь все начинается с простой детали — строится такой фрактал от обычной геометрической фигуры. Прямо на этой основе чертится фрагмент, затем снова, и снова... И каждый раз уменьшается масштаб.

На самом деле этот вид бесконечных множеств весьма прост для понимания и воплощения: любой школьник может удивить своего учителя по математике, нарисовав в тетради геометрический фрактал. И даже те, кто далёк от точных наук, смогут найти что-то для себя — в изобразительном искусстве геометрические фракталы использовали Джексон Поллок, Луис Уэйн, Мауриц Корнелис Эшер и другие художники. Весьма простые алгоритмы могут стать почвой для самого причудливого и ветвистого «дерева», которое вы когда-либо видели.

Нужно только начертить график. Типовым примером алгебраического фрактала считается множество Мандельброта. Для его построения используют комплексные числа.

Если в процессе итерации это повторение каких-либо действий, не приводящее к вызовам самих себя случайным образом менять любые параметры, получится такой фрактал. Именно поэтому такой тип множества не визуализируется вручную — только в программе. Пожалуй, это самый «виртуозный» вид фракталов.

Причём это не фракталы в чистом виде: авторы заимствуют понятия и концепты: отсюда название. Концептуальный фрактал и вовсе может состоять из нескольких видов. Фракталы в природе После того, как в 1975 году Мандельброт опубликовал свою основополагающую работу о фракталах, одно из первых практических применений появилось в 1978 году, когда Лорен Карпентер захотел создать несколько сгенерированных компьютером гор.

Используя фракталы, которые начинались с треугольников, он создал удивительно реалистичный горный хребет. В 1990-х годах Натан Коэн, вдохновленный снежинкой Коха, создал более компактную радиоантенну, используя только проволоку и плоскогубцы. Сегодня антенны в сотовых телефонах используют такие фракталы, как губка Менгера, фрактал Вичека и фракталы, заполняющие пространство, как способ максимизировать мощность восприятия при минимальном объеме пространства.

Примеры фракталов в природе Капуста сорта «романеско» Романеско она же романская брокколи — итальянский сорт капусты. Внешний вид этого растения напоминает природный фрактал: каждый бутон вбирает в себя бутоны поменьше.

Сегодня под словом «фрактал» чаще всего принято подразумевать графическое изображение структуры, которая в более крупном масштабе подобна сама себе. Фракталы задаются простым правилом, но позволяют создавать очень сложные структуры.

Это настолько эффективно, что было взято на вооружение природой! Например, снежинка, ветви деревьев, молнии, горы, кровеносные система — всё это представляет собой фракталы. В математике фрактал — математическое множество, обладающее свойством самоподобия, то есть однородности в различных шкалах измерения любая часть фрактала подобна всему множеству целиком. Физическая энциклопедия 1998 определяет фракталы как множества с крайне нерегулярной разветвленной или изрезанной структурой.

Слово «фрактал» употребляется не только в качестве научного термина. В этом отличие фрактала от элементарных геометрических фигур таких как окружность, эллипс или квадрат : если мы рассмотрим небольшой фрагмент такой фигуры в очень крупном масштабе, то он будет похож на фрагмент прямой. Простым примером фрактала может служить дерево, ствол которого разделен на две ветви, каждая из которых, в свою очередь, разделяется на две более мелкие ветви и т. В результате мы будем иметь древовидный фрактал с бесконечным числом ветвей.

Каждую отдельную ветвь можно, в свою очередь, рассматривать как отдельное дерево. Выделяют несколько разновидностей фракталов: геометрические, алгебраические и стохастические. Примеры фракталов в природе Геометрические фракталы Фракталы этого класса самые наглядные. Некоторые предпочитают называть эти фракталы классическими, детерминированными или линейными.

Эти фракталы являются самыми наглядными. Они обладают так называемой жесткой самоподобностью, не изменяющейся при изменении масштаба. Это значит, что, независимо от того, насколько вы приближаете фрактал, вы видите все тот же узор. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором.

За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Рассмотрим один из таких фрактальных объектов — триадную кривую Коха. Построение кривой начинается с отрезка единичной длины рис.

В результате такой замены получается следующее поколение кривой Коха. Для получения 3-го поколения проделываются те же действия — каждое звено заменяется на уменьшенный образующий элемент. Итак, для получения каждого последующего поколения, все звенья предыдущего поколения необходимо заменить уменьшенным образующим элементом.

Фрактал. 5 вопросов

Автор пина:Katrine. Находите и прикалывайте свои пины в Pinterest! Фрактальные модели в природе и технике Текст научной статьи по специальности «Математика». Фото подборка встречающихся в природе или искусственно созданных фракталов. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует. Посмотрите потрясающие примеры фракталов в природе.

Фракталы в природе

Самый известный фрактальный узор снежинки известен как снежинка Коха, возникающая из одного равностороннего треугольника, образующего другой, третий и так далее. Это один из самых ранних описанных фракталов. По мере их роста от ствола отходят ветви, и каждая из этих ветвей сама по себе похожа на меньшее дерево, развивающее свои собственные ветви и свои собственные ответвления. Если вы посмотрите на сложное дерево, то заметите повторение Y-образной формы на всем его протяжении. Такой фрактальный дизайн, подобно спирали суккулентов, помогает деревьям оптимизировать воздействие солнечного света и не позволяет верхним ветвям затенять нижние. Это явление мастерски продемонстрировано на примере кристаллов меди, которые разветвляются во всех направлениях, как ветви дерева.

Каждая «веточка» является новой точкой роста — по мере разветвления она превращается в твердую металлическую медь. Из-за своей древовидной природы и уникального красновато-коричневого цвета кристаллы меди часто выращивают для искусства. Хотя иногда ручьи могут быть расположены по прямой линии, они быстро становятся извилистыми, поскольку приспосабливаются к помехам, таким как норы диких животных. Всего одна помеха может изменить течение реки и заставить ее изгибаться на всем протяжении.

Одним из таких исследований является изучение фракталов в природе. Благодаря спутниковым снимкам мы также можем полюбоваться красотой нашей планеты и необычными рисунками, сделанными природой в разных странах.

Для ученых это, конечно, больше, чем просто красивая картинка, но сейчас не об этом.

Фракталы, впервые названные математиком Бенуа Мандельбротом в 1975 году, представляют собой специальные математические наборы чисел, которые демонстрируют сходство во всем диапазоне масштабов, то есть они выглядят одинаково независимо от того, насколько они велики или малы. Еще одна характеристика фракталов заключается в том, что они демонстрируют большую сложность, обусловленную простотой - некоторые из самых сложных и красивых фракталов можно создать с помощью уравнения, состоящего всего из нескольких членов. Подробнее об этом позже. В природе Множество Мандельброта Одна из вещей, которые привлекли меня к фракталам, это их повсеместное распространение в природе.

Еще один отталкивающий объект — фрактальный продукт кристаллических структур с размерностью 1,8, сфотографированный через микроскоп. Hartverdrahtet — достойный победитель конкурса демосцены 2012 года по 4-килобайтным файлам.

Автор, Demoscene Passivist, говорит, что для создания демо с процедурно генерируемыми фрактальными ландшафтами потребовалось около двух месяцев. А вот один из лучших проектов с фрактальными эффектами в демосцене. К сожалению, качество демонстрационного видео крайне плохое из-за давности лет , но демо можно скачать и запустить на компьютере. Для создания подобных или других фрактальных миров особых ухищрений не требуется. Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной.

Фракталы в природе

Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона Richardson effect. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла. Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими.

В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала.

Классический пример картинки вы сможете найти, например, в книге Фракталы Е. Федер - осаждение кристаллов, например, коллоидного золота. Суть процесса в том, что в стакане осаждаются частички коллоидного золота, причем они могут "приклеиваться" как ко дну, так и к уже осадившимся частичкам. Первые частички на дно стакана падают практически произвольно - любая пылинка или неровность стакана может стать точкой, где начнется осаждение. Однако как только первая частичка подклеилась в какое-то место, площадь поверхности в этой области сразу увеличивается - а значит, шанс, что следующая частичка приклеиться к этой поверхности, значительно выше.

Когда следующая частица садиться здесь, площадь поверхности увеличивается еще сильнее - еще больше увеличивая вероятность осаждения частиц именно в этой области.

В ходе исследований ученые столкнулись с проблемой больших потерь, возникающих из-за шумовых помех. Перед Бенуа стояла сложная и очень важная задача — понять, как предсказать возникновение шумовых помех в электронных схемах, когда статистический метод оказывается неэффективным. Просматривая результаты измерений шума, Мандельброт обратил внимание на одну странную закономерность — графики шумов в разном масштабе выглядели одинаково. Идентичная картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час.

Стоило изменить масштаб графика, и картина каждый раз повторялась. При жизни Бенуа Мандельброт неоднократно говорил, что он не занимается формулами, а просто играет с картинками. Этот человек мыслил очень образно, а любую алгебраическую задачу переводил в область геометрии, где, по его словам, правильный ответ всегда очевиден. Неудивительно, что именно человек с таким богатым пространственным воображением стал отцом фрактальной геометрии. Ведь осознание сути фракталов приходит именно тогда, когда начинаешь изучать рисунки и вдумываться в смысл странных узоров — завихрений.

Фрактальный рисунок не имеет идентичных элементов, но обладает подобностью в любом масштабе. Построить такое изображение с высокой степенью детализации вручную ранее было просто невозможно, на это требовалось огромное количество вычислений. Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа Gaston Maurice Julia приложение 6. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных. Классификация фракталов Фракталы делятся на группы.

Самые большие группы это: - геометрические фракталы; - стохастические фракталы. Геометрические фракталы Фракталы этого класса самые наглядные. Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. В двухмерном случае их получают с помощью некоторой ломаной или поверхности в трехмерном случае , называемой генератором.

За один шаг алгоритма каждый из отрезков, составляющих ломаную, заменяется на ломаную - генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить: 1 Кривая Коха — фрактальная кривая , описанная в 1904 году шведским математиком Хельге фон Кохом. Три копии кривой Коха, построенные остриями наружу на сторонах правильного треугольника , образуют замкнутую кривую бесконечной длины, называемую снежинкой Коха приложение 7. Предложен французским математиком П.

Есть несколько отличных программ, с помощью которых вы сможете самостоятельно изучать особенности фрактальной вселенной. XaoS Open Source Project. Бесплатный, открытый, кроссплатформенный инструмент для масштабирования и изучения множества Мандельброта и десятков других фракталов. Еще одна кроссплатформенная в том числе с мобильной версией программа, основанная на Java с открытым исходным кодом, для обработки изображений. Она известна в основном своим сложным генератором пламенных фракталов. Mandelbulber Mandelbulb3D. Превосходные бесплатные инструменты для создания трехмерных фракталов, таких как устрашающая Оболочка Мандельброта , загадочная «коробка» Мандельбокс и др.

Фракталы. Чудеса природы. Поиски новых размерностей

В ней он впервые заговорил о фрактальной природе нашего многомерного мира. Международная группа ученых обнаружила впервые нашла в природе молекулу, обладающую свойствами регулярного фрактала. Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. На рубеже 19-20 веков изучение природы фракталов носило эпизодический характер. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения.

ХАОС, ФРАКТАЛЫ И ИНФОРМАЦИЯ

Фрактал – это геометрическая фигура, в которой один и тот же мотив повторяется в последовательно уменьшающемся масштабе. Деревья – один из самых квинтэссенциальных фракталов в природе. Фрактальную природу имеют многие структуры в природе, они нашли применение в науке и технике. Фрактал — термин, означающий геометрическую ф Смотрите видео онлайн «Фракталы.

Онлайн-курсы

  • 2 из 9: Сосновые шишки
  • ФРАКТАЛ • Большая российская энциклопедия - электронная версия
  • Прибыльная торговля с помощью фрактальности существует?
  • Предварительный просмотр:
  • Содержание
  • Впервые в природе обнаружена микроскопическая фрактальная структура |

Что такое фрактал? Фракталы в природе

нечто невероятное – Самые лучшие и интересные новости по теме: Геометрия, идеально, красота на развлекательном портале Да, в физической Природе не существуют ни идеальный газ, ни континуальная материя, ни фрактальные объекты с «действительно бесконечной» лестницей иерархических этажей. Для фрактальной бесконечной Вселенной с ее нулевой средней плотностью такой проблемы не существует. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского.

Фракталы вокруг нас

Оно выглядит так: уравнение Множества Мандельброта, где С — комплексное число Для математика выглядит достаточно просто, но есть нюансы. Не будем вдаваться в подробности, попробуем пошагово раскрыть суть построения множества: Чтобы определить, входит ли число в множество Мандельброта, нужно принять Z за ноль О возвести в квадрат и сложить с нашим числом. Полученное число Z — заново подставляем в уравнение и складываем с числом, которое тестируем. Уравнение решается и полученное решение снова подставляется в уравнение. Уравнение заново решается. Множественное повторение решений одного и того же уравнения. Если при решении мы видим, что значение Z сильно увеличивается стремится к бесконечности , значит изначальное число не подходит. Если же Z колеблется в пределах одного значения, значит выбранное число входит в множество. Далее полученные значения отмечают на плоскости. Уравнение решается огромное количество раз и в итоге получается графическое изображение множества Мандельброта его мы видели выше.

И здесь нам приходят на помощь фракталы. Фрактал — это сложная геометрическая фигура, обладающая свойством самоподобия. То есть она составлена из нескольких частей, каждая из которых повторяет всю фигуру целиком. По определению Википедии фрактал — это бесконечно самоподобная геометрическая фигура, каждый фрагмент которой повторяется при уменьшении масштаба.

Это происходит из-за того, что при большем увеличении становится возможным учитывать всё новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона Richardson effect. В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо фрактальной живописи фракталы используются в теории информации для сжатия графических данных здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла. Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими.

В частности, изрезанные береговые линии можно описать с помощью этих фигур, а кочан цветной капусты сорта Романеско, контуры облаков и ветвящаяся форма молний обладают свойством самоподбия. В новой работе физики обнаружили фракталы в лазерах. Как отмечают авторы, лазеры являются практически полной противоположностью природе, так как создаются в максимально приближенных к идеальным условиях: для возникновения когерентного излучения необходим резонатор из безупречно отшлифованных сферических зеркал и усиливающая колебания среда. В 1998 году было предсказано существование фрактальных распределений в поперечных срезах интенсивности некоторых лазеров, однако экспериментальных подтверждений эффекту не было. В результате эта фигура многократно усиливается при отражениях волн внутри резонатора и проявляется на разных масштабах в получающемся лазерном луче.

Фракталы. Чудеса природы. Поиски новых размерностей

Деревья – один из самых квинтэссенциальных фракталов в природе. Поскольку в природе мы часто наблюдаем фрактальные узоры, то искусственно созданный фрактальный трехмерный объект кажется невероятно реалистичным и даже «живым». Международная команда исследователей под руководством ученых из Германии обнаружила молекулярный фрактал в цитрат-синтазе цианобактерии, ферменте микроорганизма, который спонтанно собирается в фигуру, известную в математике как «треугольник Серпинского». Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что можно замереть от восхищения. Молекулярным фракталом оказался микробный фермент — цитратсинтазу цианобактерии, которая спонтанно собирается в структуру, известную как треугольник Серпинского.

Сейчас на главной

  • Фрактал. 5 вопросов
  • Что такое фрактал, если говорить по-простому
  • Самостоятельная сборка треугольников Серпинского
  • Фракталы в природе презентация - 97 фото
  • Подписка на дайджест
  • Прибыльная торговля с помощью фрактальности существует?

Похожие новости:

Оцените статью
Добавить комментарий