Новости бнту репозиторий

Репозиторий Полоцкого государственного университета имени Евфросинии Полоцкой. Национальный агрегатор открытых репозиториев российских университетов. Военно-технический факультет в БНТУ.

Rep.bntu.by

Новости по теме: БНТУ Репозиторий Белорусского национального технического университета. ISSN (online): 2310-7405.
Новости по теме: БНТУ Репозиторий ЦНБ НАН Беларуси Научный репозиторий Академии МВД Репозиторий Барановичского государственного университета Репозиторий Белорусского.

МЧС Республики Беларусь

Далее началась работа в секции «Охрана труда и подготовка персонала», модератором которой был назначен Юрий Шмаков. В первый день конференции на секции было представлено 10 докладов от представителей энергетической отрасли. Участие представителей стран СНГ подчеркивает важность координации усилий в рамках межгосударственного сотрудничества для развития культуры охраны труда.

Приоритетные направления деятельности на современном этапе: [1] создание и поддержка ресурсов открытого доступа : институционального репозитория и системы сайтов научных журналов БНТУ; информационно-аналитическая деятельность, связанная с мониторингом и поддержкой публикационной активности исследователей БНТУ библиометрические исследования ; внедрение информационных продуктов и услуг, предоставляемых в результате проведения информационных исследований: определение библиометрических показателей ученых, разработка карты исследователя, анализ и уточнение авторского идентификатора в базах данных научного цитирования, подбор журналов для публикации статьи, консультирование авторов по вопросам регистрации в международных системах идентификации ученых и др. Научная библиотека БНТУ активно сотрудничает с библиотеками и информационными центрами. В 2015 году в Научной библиотеке открылся читальный зал единственного в мире Института Конфуция по науке и технике, который готовит специалистов со знанием технической лексики китайского языка для работы в Белорусско-Китайском индустриальном парке « Великий камень ». В апреле 2015 года за разработку «ProBNTU — система продвижения университета в мировое информационное пространство» в номинации «Лучший инновационный проект в области информационных технологий , образовательных технологий , программ ЭВМ, баз знаний, баз данных» Научная библиотека БНТУ получила награду Петербургской технической ярмарки — Диплом II степени с вручением серебряной медали. Компонентами системы являются институциональный репозиторий, платформа «Журналы БНТУ» и база данных «Политех в прессе».

Библиотека осуществляет информационное обеспечение учебного процесса и научных исследований. Фонд насчитывает свыше 2 млн экземпляров. Количество читателей — более 36 тыс. В систему обслуживания Научной библиотеки БНТУ входит 9 абонементов, 16 читальных залов, Центр электронных ресурсов, 40 кафедральных библиотек. Функционирует служба электронной доставки документов и виртуальная справочная служба, межбиблиотечный абонемент. Для удобства студентов открыты читальные залы в общежитиях и удаленных корпусах. Научная библиотека БНТУ активно сотрудничает с библиотеками и информационными центрами. Синтез традиционных форм обслуживания и современных технологий гарантирует полное информационно-библиотечное обеспечение учебной и научной деятельности.

Справочно-поисковый аппарат библиотеки представлен традиционными каталогами систематический, алфавитный , электронным каталогом, который доступен как во внутривузовской сети, так и в Интернет. Автоматизированы все основные библиотечные процессы. С 2003 года с использованием технологии штрихового кодирования, которая охватывает все типы документов и читательские билеты, в автоматизированном режиме обслуживаются пользователи.

Учебно-методическое пособие по английскому языку для студентов специальности «Упаковочное производство», авторы: Бруй Т. Учебно-методическое пособие по развитию навыков межкультурной коммуникации на французском языке «A larecherchedelaFrance». Часть 1. Начальный курс. Учебное пособие для студентов специальности 1-96 01 01 «Таможенное дело», автор: Боровец О. Учебные материалы для студентов I курса всех специальностей, автор: Королько О. Учебное пособие для студентов архитектурных специальностей, авторы: Гасова О. Учебное пособие по развитию умений делового общения на немецком языке, автор Иваненко Г. БГЭУ, 2005 электронный вариант. Сборник упражнений по грамматике французского языка. Metall — Technologie. Учебно-методическое пособие по немецкому языку для студентов специальностей 1-36 01 02 «Материаловедение в машиностроении», 1-42 01 01 «Металлургическое производство и материалообработка», 1-42 01 02 «Порошковая металлургия, композиционные материалы, покрытия», авторы: Ермолович Л. In der Welt des Computers. Учебное пособие по немецкому языку, авторы: Сосна Т. Методическое пособие по грамматике английского языка. Часть 2, авторы: Точилина А. Business English Language Portfolio. Языковой портфолио делового английского языка, автор: Дерман И.

БНТУ — Факультеты — Репозиторий

В течение пяти дней студенты СибГМУ знакомились с новыми информационными технологиями, применяемыми в робототехнике и медицинском приборостроении. Я проходил практику на кафедре медицинской кибернетики в области аддитивных технологий, и практика соответствовала направлению стажировки, а именно - "IT-технологии в медицине". Мне было интересно посмотреть на проекты, которые реализуют учёные БНТУ, пообщаться с людьми, перенять опыт и лучшие практики коллег технического университета из другой страны. Это определенно был полезный для меня опыт.

Таким образом оценивается степень открытости академических ресурсов и их интеграция в информационное пространство. В марте 2024 года репозиторий Белорусского государственного университета занял 12 место из 4637 в мировом рейтинге. Репозиторий Белорусского национального технического университета оказался на 28 месте.

Студентка 5 курса Екатерина Зайцева представила доклад «Разработка статистических моделей классификации степеней тяжести течения хронической обструктивной болезни легких» в рамках международной конференции молодых ученых. Выступление студента 6 курса Степана Куницина было посвящено сравнению способов моделирования данных, полученных с помощью динамической ОФЭКТ, и коррекции аттенуации на количественные показатели миокардиальной перфузии. На пленарном заседании выступила заведующий кафедрой медицинской и биологической кибернетики Наталия Часовских. В рамках своего выступления Наталия Юрьевна рассказала об особенностях подготовки специалистов в области медицинской кибернетики, а также о внедрении информационных технологий и цифровых компетенций в образовательный процесс.

Условия образования отложений легкорастворимых соединений. Образование отложений на внутренних поверхностях прямоточных парогенераторов. Предотвращение отложений на парообразующих поверхностях нагрева. Удаление отложений с теплообменных поверхностей нагрева парогенераторов. Способы проведения химических промывок оборудования. Предпусковые химочистки парогенераторов и тракта питательной воды. Эксплуатационные очистки парогенераторов и тракта питательной воды. Загрязнение пара, образование отложений по паровому тракту и способы их удаления. Причины загрязнения пара. Распределение и способы удаления примесей в проточной части турбины. Способы контроля за чистотой поверхностей основного теплоэнергетического оборудования. Коррозия металла паросилового оборудования и методы борьбы с ней Ре по з ит о Основы теории коррозии металлов. Природа коррозии и формы ее проявления. Влияние внутренних и внешних факторов на скорость протекания коррозии. Коррозия основного теплоэнергетического оборудования ТЭС. Коррозия тракта питательной воды и конденсата. Причины и виды коррозионного повреждения металла парогенераторов. Характеристика основных видов коррозии металла котлов и мероприятия по ее предотвращению. Коррозия труб пароперегревателей. Коррозия паровых турбин и способы ее предотвращения. Основные причины и виды коррозии конденсаторов и способы ее предотвращения. Способы консервации теплоэнергетического оборудования. Консервация турбин и энергетических котлов горячим воздухом. Ингибиторы коррозии. Безотходная консервация турбин ингибиторами. Парокислородная очистка и пассивация поверхностей энергетического оборудования. Анализ существующих методов консервации теплоэнергетического оборудования. Причины загрязнения и методы повышения чистоты насыщенного пара. Организация ступенчатого испарения достоинства и недостатки. Промывка насыщенного пара питательной водой и способы реализации. Паропромывочные и сепарационные устройства. Назначение и организация непрерывной продувки, расчет ее величины, способы утилизации продувочной воды. Назначение и организация периодической продувки. Коррекционная обработка котловой и питательной воды барабанных котлов. Назначение и способы реализации фосфатной обработки котловой воды, амминирования и гидразинной обработки питательной воды. Применение комплексонов для обработки питательной воды. Особенности ведения водных режимов барабанных котлов среднего, высокого и сверхвысокого давлений. Бесфосфатный водный режим барабанного котла. Опыт применения нейтрально-окислительного водного режима для барабанного котла. Основные пути совершенствования ВХР барабанных котлов. Тема 2. Обзор водных режимов прямоточных парогенераторов, используемых в мировой энергетике. Гидразинно-аммиачный водный режим достоинства и недостатки. Водный режим повышенного амминирования. Особенности восстановительного и комплексонного водных режимов. Нейтральноокислительные водные режимы. Особенности применения кислородных режимов на ТЭС ведущих западных стран. Анализ и условия использования окислителей. Комбинированный водный режим. ВХР тепловых сетей Основные положения и требования к тепловым сетям в целях повышения надежности их эксплуатации. Нормирование качества подпиточной и сетевой воды. Образование и характер отложений в 41 ТУ водогрейном оборудовании. Коррозия оборудования теплосетей природа и формы проявления коррозии, основные коррозионные агенты. Коррозия теплообменных аппаратов и способы ее снижения. Особенности коррозии трубопроводов и основные меры, направленные на обеспечение надежной и экономичной их эксплуатации. Стояночная коррозия оборудования систем теплоснабжения и способы ее предотвращения. Пути повышения надежности ВХР и организация химконтроля в теплосетях. БН Тема 2. Характеристика загрязнений турбинного конденсата. Очистка турбинного конденсата. Блочная обессоливающая установка БОУ. Основное оборудование БОУ. Характеристика загрязнений внешнего конденсата и схемы его очистки, очистка конденсатов от нефтепродуктов. Схемы обезжелезивания и обессоливания конденсатов. Оборудование для очистки конденсатов насыпные и намывные фильтры, электромагнитные фильтры, фильтры смешанного действия ФСД с выносной регенерацией. Основные потребители технической воды на ТЭС. Расчет расхода технической воды на ТЭС. Прямоточная и оборотная системы охлаждения ТЭС. Требования, предъявляемые к охлаждающей воде. Методика расчета оборотной системы с водохранилищем-охладителем, с градирнями. Требования к прямоточной системе охлаждения. Удаление из воды минеральных и биологических примесей для обеспечения чистоты поверхности охлаждения конденсаторов турбин физические и химические методы. Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей циркуляционной воды. Расход воды на охлаждение конденсатора турбины измеряется десятками тысяч тонн в час. Наиболее ответственной частью конденсатора являются конденсаторные трубки. Одним из основных требований, предъявляемых к ним, является коррозионная стойкость. Поэтому их изготавливают из сплавов цветных металлов на основе меди, а также из хромникелевой нержавеющей стали. Конденсаторные трубки а их в конденсаторе порядка нескольких десятков тысяч крепятся в трубных досках и методы их крепления должны обеспечивать плотность и долговечность. Гидравлическая плотность конденсатора обеспечивается правильным выбором материала трубок и конструкционными мероприятиями, исключающими возможность попадания циркуляционной воды в паровое пространство конденсатора в местах разъемных соединений, вальцовочных креплений трубок в трубных досках и в самих трубках, подверженных различным механическим, эрозионным и коррозионным повреждениям. Наиболее опасны с точки зрения ухудшения гидравлической плотности механические повреждения трубок, так как обрыв даже одной трубки приводит к серьезному загрязнению турбинного конденсата, являющегося основной составляющей питательной воды котлов. Причинами механических повреждений могут быть: а вибрационная усталость металла; б эрозия трубок; 43 ит о ри й БН ТУ в некачественная вальцовка и стирание стенок трубок в местах перехода их через промежуточные перегородки и т. Наиболее частой причиной повреждения трубок являются следующие виды коррозии: общее и пробочное обесцинкование, коррозионное растрескивание, ударная коррозия и коррозионная усталость. Основные мероприятия для предотвращения попадания в конденсат охлаждающей воды через неплотности в местах вальцовочных соединений рис. Схема трубной доски с покрытием из жидкого наирита а , где 1 — латунная теплообменная трубка; 2 — стальная трубная доска; 3 — жидкий наирит; 4 — грунтовка; схема конденсатора с солевыми отсеками б , где 1 — охлаждающая вода; 2 — основные трубные доски; 3 — дополнительные трубные доски; 4 — трубная теплообменная поверхность; 5 — пар из турбины; 6 — конденсат солевых отсеков; 7. В целях контроля гидравлической плотности конденсатора его оснащают пробоотборными устройствами в точках 1 — 3 рис. Схема контроля гидравлической плотности конденсатора: 1 — пробоотборник пара, отработавшего в турбине; 2 — пробоотборник охлаждающей воды; 3 — пробоотборник турбинного конденсата В точке 1, находящейся на входе в конденсатор, производят отбор пробы пара, отработавшего в турбине. В точке 3 производят отбор пробы на выходе из конденсатора — турбинный конденсат. Для выполнения работы в качестве пробы точки 1 условно примем дистиллят, пробы точки 2 — водопроводную воду. Определим общую жесткость этих потоков. Пробу точки 3 — турбинный конденсат — получаем следующим образом: в четыре колбы наливаем по 100 мл дистиллированной воды и в каждую добавляем из бюретки соответственно 0,5, 1, 2, 3 мл водопроводной воды, имитируя тем самым разную величину присоса охлаждающей воды в конденсат. Определим последовательно общую жесткость пробы 3 в каждой колбе при различной величине присоса. Для этого в коническую колбу с соответствующей пробой добавляем 5 мл аммиачного буферного раствора и 5 — 6 капель индикатора кислотный темносиний хром. Затем титруем пробу 0,1 н или 0,01 н раствором трилона Б, интенсивно перемешивая до момента перехода окраски в сине-голубую. Результаты всех опытов заносим в табл. Она препятствует образованию на поверхности металла пассивирующего защитного слоя, вследствие чего скорость коррозии с течением времени не уменьшается. Ре Степень диссоциации увеличивается с ростом температуры, а это в свою очередь приводит к повышению кислотности воды и резкому возрастанию ее коррозионной агрессивности. Так, вода, содержащая СО2, при комнатной температуре растворяет медь и латунь очень медленно. В присутствии кислорода процесс коррозии активизируется. При температуре воды 40 — 50 оС и выше обесцинкование латуни происходит и при отсутствии кислорода. Окраска не должна исчезать при выдерживании раствора в колбе с притертой пробкой в течение 1 — 2 мин. Выполнение работы Ре по з ит о ри й Собирают прибор рис. Присоединив его резиновой трубкой 1 к водопроводному крану, заполняют колбу 6 анализируемой водой, давая ей выливаться через трубку 2 до тех пор, пока через прибор не пройдет 6 — 7 объемов воды. После этого резиновую трубку 2 перекрывают зажимом 3, снимают трубку 2, заменяя ее хлоркальциевой трубкой, содержащей влагопоглощающее вещество. Зажим 3 на трубке 1 ослабляют и дают воде вытекать из колбы до уровня, соответствующего отметке 200 мл. Затем снимают хлоркальциевую трубку и отверстие закрывают резиновой пробкой. После отбора пробы колбу переносят на лабораторный стол для титрования. Открыв резиновую пробку, в воду добавляют 2 — 3 капли фенолфталеина и титруют 0,1 н раствором щелочи из бюретки. Прибавление щелочи производят по каплям с перерывом для перемешивания при закрытой пробке, затем выжидают несколько секунд и снова добавляют щелочь и так до тех пор, пока не появится устойчивая слабо-розовая окраска от одной капли раствора. Прибор для определения концентрации СО2: 1 — резиновая трубка для поступления воды; 2 — резиновая трубка для спуска воды; 3 — зажим; 4 — колба по з Результаты опытов заносим в табл. Эти отложения различны по химическому составу, структуре, плотности сцепления с металлом оборудования. Все виды отложений вызывают ухудшение теплопередачи и увеличение расхода топлива в котлоагрегатах, приводят к перегреву металла и, как следствие, к появлению отдулин, свищей, разрыву труб. Наиболее эффективным контролем за состоянием внутренней поверхности экранных труб котлов является наблюдение за температурой труб. Возможно применение менее объективного метода — выборочная вырезка контрольных образцов. Вырезанные образцы труб маркируют и передают в химический цех для выполнения необходимых анализов. Количественную оценку загрязненности поверхностей нагрева отложениями производят путем снятия отложений механическим способом, т. Методика определения Ре по з Отмерить на поверхности вырезанного отрезка трубы определенную площадь и тщательно снять с нее отложения. Оценить плотность отложений, слоистость, сцепляемость с металлом. Полученные отложения поместить на чистый лист бумаги и взвесить. После этого приступить к расчетам. Загрязненность поверхности трубы оценивается удельной загрязненностью, т. Теплонапряженность поверхности нагрева, тыс. Катастрофически загрязненная 400 и более Ре Т а б л и ц а 2. Поверхность труб считается чистой, если толщина отложений не превышает 0,2 мм для барабанных котлов и 0,1 мм — для прямоточных. По полученным результатам расчета и табл. Для определения скорости коррозии конструкционных материалов в конденсатно-питательном тракте КПТ устанавливают индикаторы коррозии, изготовленные из того же материала, что и контролируемое оборудование. При вскрытиях контролируемых участков КПТ образцы извлекают и подвергают анализу, по результатам которого оценивают скорость и характер коррозии металла за время нахождения образцов в тракте энергоблока. Индикатор коррозии и схема его установки в трубопроводе приведены на рис. Контрольные пластины 1 представляют собой круглые диски диаметром 60 и толщиной 3 мм с отверстием в центре. Поверхность пластин шлифуется и промывается раствором щелочи, спиртом и эфиром. Перед установкой в трубопровод высушенные образцы взвешивают с точностью до 0,0001 г. Пластины надевают на стержень 2 и отделяют друг от друга дистанционирующими патрубками 3. Стержень с набором пластин устанавливают по оси трубопровода 4 и фиксируют в нем с помощью бобышки 5 и фланца 6. Рекомендуется ставить их в начале и конце конденсатного тракта, а также на трубопроводе греющего пара ПНД. Длительность испытания индикаторов должна быть не менее 1 года. В целях изучения кинетики процесса коррозии рекомендуется устанавливать по 15 — 20 индикаторных пластин для возможности извлечения по 3 — 4 пластины через различные промежутки времени. Скорость и формы проявления коррозии конструкционных материалов определяют по состоянию индикаторных пластин, простоявших максимальное время. После извлечения пластин из трубопровода производят их осмотр и записывают в специальный журнал состояние, отмечая цвет образцов, равномерность отложений, наличие локальной язвины, бугорки или щелевой коррозии. Описание внешнего вида поверхности пластин производят и после удаления продуктов коррозии, обращая особое внимание на наличие язв и локализацию коррозии. В табл. Слабая коррозия 2. Допустимая коррозия 3. Сильная коррозия 4. Измерением и расчетом находим поверхность пластины в см2. Считаем, что индикатор был установлен во входном коллекторе водяного экономайзера и простоял там в течение года. Содержание пояснительной записки к курсовому проекту Ре по з Введение краткая характеристика ТЭС, значение водоподготовки и водно-химического режима. Выбор источника водоснабжения ТЭС, анализ показателей качества исходной воды. Обоснование метода и выбора схемы подготовки подпиточной воды котлов ТЭС. Эскиз выбранной схемы ВПУ и пересчет изменения показателей качества воды по отдельным стадиям обработки. Полное описание технологических процессов по стадиям обработки воды. Определение производительности водоподготовительных установок для подпитки котлов и тепловых сетей. Расчет водоподготовительной установки ТЭС: 6. Расчет обессоливающей части водоподготовительной установки ВПУ. Расчет схемы подпитки теплосети. Расчет схемы предочистки. Анализ результатов расчета. Компоновка оборудования ВПУ. Нормы качества питательной воды и перегретого пара на ТЭС.

БНТУ | Белорусский национальный технический университет

Конгресс-центры диплом. Проект Слава на белорусской. РГР 1 Инженерная Графика чертежи. Инженерная и компьютерная Графика.

Компьютерная Графика черчение. Компьютерная Графика чертежи. Минский государственный машиностроительный колледж.

Филиал БНТУ машиностроительный колледж. Дизайн концепция маршрута. Дизайн концепция фестиваля.

Белорусский национальный технический университет БНТУ. Девиз белорусский национальный технический университет БНТУ. Диплом БНТУ фото.

Инженерная Графика практикум. В зеленый е. Леонова Инженерная Графика практикум.

Минский государственный политехнический колледж. Минский политехнический колледж печать. М С Нестеренок Инженерная геодезия.

Инженерная геодезия м. Нестеренок в.

Meshtastic — это проект, использующий готовое недорогое аппаратное обеспечение на базе ESP32 с возможностью подключения GPS и LoRa для создания mesh-сетей, помогающих туристам, лыжникам, парапланеристам или людям, занимающимся другими видами активного отдыха, передавать короткие сообщения, такие как местоположение GPS. Это позволяет каждому члену частной mesh-сети видеть местоположение и расстояние всех остальных участников и читать любые текстовые сообщения, отправляемые в групповой чат. Телефон также необходим для отправки сообщения.

Фонд библиотеки насчитывал 200 тыс. В годы Великой отечественной войны библиотека была разрушена и разграблена. Десятки тысяч ценных учебных и научных книг были уничтожены.

Часть литературы вывезена в Германию. В делах Нюрнбергского процесса имеется доклад немецкого ефрейтора Абеля «О библиотеках Минска », в котором сообщается, что « библиотека политехнического института свалена в подвальном этаже левого флигеля, разгромлена и приведена в беспорядок, как и большинство лабораторий института». Нюрнбергский процесс. Сборник материалов. IV, стр. С 1920 по 1941 гг. Горбунов, М. Дубовик, М.

Особенности конструкции фильтров смешанного действия ФСД и область их применения. Основы проектирования водоподготовительных установок ВПУ. Выбор методов и схем подготовки добавочной воды. Способы компоновки ионитных фильтров в схемы коллекторная и блочная. Основы автоматизации ВПУ.

Физические методы обработки воды по з ит о ри й Классификация безреагентных способов очистки воды. Магнитная обработка воды. Условия эффективной обработки воды магнитным методом. Аппараты магнитной обработки воды. Области применения магнитного метода в теплоэнергетике.

Обработка воды ультразвуком. Применение данного метода в теплоэнергетике. Мембранные методы обессоливания воды и их достоинства. Электродиализ, схема его процесса. Конструкции и характеристики электродиализных мембран.

Области применения электродиализа в теплоэнергетике. Обратный осмос. Конструкции и характеристики обратноосмотических мембран. Обратноосмотические элементы и модули. Аппараты и установки обратного осмоса.

Комбинированные ВПУ. Области применения установок обратного осмоса. Метод электродеионизации. Термическое обессоливание воды Ре Типы испарительных установок испарители кипящего типа, с вынесенной зоной кипения, испарители мгновенного вскипания. Требования к питательной воде для испарителей различного типа и схемы ее подготовки.

Одно- и многоступенчатые установки. Области применения испарительных установок. Основы расчета испарительных установок. Удаление растворенных в воде газов ТУ Краткая характеристика газов, растворенных в воде. Растворимость газов в воде.

Закон Генри — Дальтона. Способы удаления растворенных газов. Кинетика десорбции газов. Конструкции декарбонизаторов. Термическая деаэрация.

Классификация деаэраторов и их конструкции. Условия обеспечения эффективности термической деаэрации. Химическое обескислороживание и декарбонизация воды. Перечень контрольных вопросов по водоподготовке БН Ответить на 10 контрольных вопросов по варианту в соответствии с табл. Например, для варианта 1 выполнить задания 1, 11, 21, 31, 41, 51, 61, 71, 81, 91.

Потери пара и конденсата в технологической схеме ТЭС, восполнение этих потерь. Источники загрязнения теплоносителя в пароводяных трактах оборудования ТЭС. Классификация примесей в природных водах по степени дисперсности, химическому и ионному составу. Контактная и объемная коагуляция. Реагенты, применяемые для коагуляции воды.

Флокулянты и их назначение. Выбор оптимальной дозы коагулянта. Осветлители конструкции и принцип действия. Схема установки по предварительной обработке воды. Изменение показателей качества воды после проведения коагуляции Al2 SO4 3.

Изменение показателей качества воды после известкования и коагуляции FeSO4. Полный цикл работы осветлительного фильтра. Типы и устройство осветлительных фильтров. Требования к фильтрующим материалам осветлительных фильтров. Содоизвестковый метод умягчения воды.

Едконатровый метод умягчения воды. Магнезиальное обескремнивание воды. Порядок эксплуатации осветлительных фильтров. Физико-химические основы ионного обмена. Ионообменные материалы и их характеристики.

Эквивалентность и обратимость процесса ионного обмена. Обменная емкость ионитов статическая, полная, рабочая. Натрий-катионирование, характерные особенности качества натрий-катионированной воды. Водород-катионирование, характерные особенности качества водород-катионированной воды. Аммоний-катионирование, характерные особенности качества аммоний-катионированной воды.

Обессоливание воды методом ионного обмена. OH-ионирование воды. Cl -онирование воды. Способы регенерации ионитов. Регенерация Na-катионитных фильтов.

Регенерация H-катионитных фильтров. Регенерация OH-ионитных фильтров. Особенности эксплуатации ионитных фильтров. Основные технологические схемы умягчения воды. Схема параллельного H-Na-катионирования.

Схема последовательного H-Na-катионирования. Схема двухступенчатого Na-катионирования. Область применения схем умягчения воды. Технологические схемы обессоливания воды. Схема упрощенного обессоливания и условия ее применения.

Схема двухступенчатого обессоливания и условия ее применения. Схема трехступенчатого обессоливания и условия ее применения. Выбор схемы обессоливания воды методами ионного обмена. Типы и конструкции фильтров смешанного действия. Пути повышения эффективности метода ионного обмена.

Области применения омагниченной воды в теплоэнергетике. Мембранные методы обработки воды и области их применения. Достоинства мембранных методов обработки воды. Электродиализные мембраны и установки. Обратноосмотические мембраны и элементы.

Антикоррозионные покрытия оборудования водоподготовительных установок. Термическое обессоливание воды. Типы испарительных установок и требования к питательной воде испарителя. Испарители кипящего типа. Испарители мгновенного вскипания.

Основные факторы, влияющие на унос влаги с паром. Устройства, применяемые для очистки вторичного пара испарителей. Подготовка питательной воды для испарителей. Способы удаления из воды растворенных газов. Конструкции и назначение декарбонизаторов.

Термическая деаэрация воды. Классификация деаэраторов и их конструкций. Условия эффективной деаэрации воды. Химическая дегазация воды. Амминирование питательной воды.

Обработка питательной воды гидразином. Правила техники безопасности при обращении с кислотами. Правила техники безопасности при обращении со щелочами. Правила техники безопасности при работе с ядовитыми веществами. Правила техники безопасности при обращении с легковоспламеняющимися веществами.

Доставка, слив и хранение кислот и щелочей. Общие указания по технике безопасности при работе с оборудованием водоподготовительных установок. Выбор источника водоснабжения ТЭС. Определение производительности водоподготовительной установки ВПУ. Способы выражения концентраций растворов.

Коллекторная и блочная цепочки схемы компоновки ВПУ. Классификация растворов по з ит о ри й БН ТУ Концентрацию приблизительных растворов большей частью выражают в массовых или объемных процентах; точных — в молях, в грамм-эквивалентах, содержащихся в одном литре раствора, или в титрах. При выражении концентрации в массовых процентах указывают содержание растворенного вещества в граммах в 100 г раствора но не в 100 мл раствора! Раствор, содержащий в 1 литре один моль растворенного вещества называется молярным, а концентрация этого раствора — молярностью. Молем грамм-молекулой вещества называют его молекулярную массу молекулярный вес , выраженную в граммах.

Если концентрация выражена числом грамм-эквивалентов, содержащихся в 1 литре раствора, то такую концентрацию называют нормальностью, а раствор — нормальным. Грамм-эквивалентом вещества является такое его количество выраженное в граммах , которое в данной реакции соединяется, вытесняет или эквивалентно 1,008 г водорода. Грамм-эквивалент одного и того же вещества может иметь различную величину в зависимости от химической реакции, в которой это вещество участвует, и равен молекулярной массе вещества, деленной на его валентность. Это значит, что в 100 г раствора содержится 10 г поваренной соли и 90 г воды. Пример 2.

Если известна плотность раствора, то для решения этой задачи раствор удобнее брать по объему, а не по массе. Следовательно, необходимо определить, сколько ее потребуется для приготовления 1500 г раствора. Пример 4. Далее решение как в примере 3. Пример 5.

Пример 6. Необходимо приготовить 1 л молярного раствора азотно-кислого серебра. Пример 7. Следует приготовить 0,1 н раствора H2SO4. ТУ Данное количество кислоты должно содержаться в 1 л 0,1 н раствора.

Для быстрого приготовления точных растворов кислот, щелочей и солей удобно применять фиксоналы. Это заранее приготовленные, содержащиеся в запаянных стеклянных или пластиковых ампулах, точно отмеренные количества реактива, необходимые для приготовления 1 л 0,1 н или 0,001 н раствора. Сколько миллилитров данного раствора необходимо взять, чтобы в этом объеме содержалось b г вещества? Варианты выбираются из табл. Варианты представлены в табл.

Варианты заданы в табл. Мягкие воды конденсат, дистиллят и др. Пример 1. Анализ недостоверен. Определить виды жесткостей в данном растворе.

ТУ Задачи Задача 1. Задача 2. Определить достоверность полученного анализа сырой воды. Различают щелочность по метилоранжу Щмо, называемую также общей щелочностью, и щелочность по фенолфталеину Щфф. Между этими величинами имеются различные соотношения в зависимости от характера щелочности.

БН Решение. Используя данные табл. Так как жесткость раствора равна нулю, то единственным соединением, определяющим карбонатную щелочность, будет Na2CO3. Задача 1. Найти соединения, присутствующие в растворе, щелочность и жесткость которого определяется значениями, приведенными в табл.

В сухой остаток не входят взвешенные вещества, растворенные в воде газы и летучие вещества например, Н2СО3, NH3 и др. Уменьшение массы получается вследствие сгорания органических веществ, разложения карбонатов и удаления остатков влаги.

Минский бнту

Научно-практическая конференция «Высокий уровень культуры безопасности – главный фактор достижения нулевого травматизма» проходит в БНТУ. Белорусский национальный технический. Белорусский национальный технический университет. Telegram. Instagram. В репозитории БрГТУ представлены документы научного, образовательного и нормативного назначения, изданные в БрГТУ либо созданные сотрудниками БрГТУ. Методическое пособие для студентов заочного отделения технических специальностей», авторы: Рыжкина Р.В., Шульгина И.Г., Минск: БНТУ, 2009 (печатный вариант). Белорусский национальный технический университет с 1 сентября поднимает стоимость обучения на 10 %.

БНТУ | Белорусский национальный технический университет

Повысить свой профессиональный уровень можно, получив второе образование, окончив курсы переподготовки или повышения квалификации. Второе высшее образование подходит далеко не всем — не у каждого работающего человека есть время не только на посещение занятий, даже на сессию может не хватить времени. А длительность обучения - не менее 4 лет. Поэтому второе университетское образование как вариант улучшения профессионализма не рассматривается как приемлемый для большинства.

В наименьшей степени магистранты желают обсуждать переживания. Выявлен средний уровень общей психологической разумности. The article is dedicated to the study of psychological mindedness of undergraduates of the Technical University.

The average values of five scales of psychological reasonableness were determined.

Контрольные пластины 1 представляют собой круглые диски диаметром 60 и толщиной 3 мм с отверстием в центре. Поверхность пластин шлифуется и промывается раствором щелочи, спиртом и эфиром. Перед установкой в трубопровод высушенные образцы взвешивают с точностью до 0,0001 г. Пластины надевают на стержень 2 и отделяют друг от друга дистанционирующими патрубками 3.

Стержень с набором пластин устанавливают по оси трубопровода 4 и фиксируют в нем с помощью бобышки 5 и фланца 6. Рекомендуется ставить их в начале и конце конденсатного тракта, а также на трубопроводе греющего пара ПНД. Длительность испытания индикаторов должна быть не менее 1 года. В целях изучения кинетики процесса коррозии рекомендуется устанавливать по 15 — 20 индикаторных пластин для возможности извлечения по 3 — 4 пластины через различные промежутки времени. Скорость и формы проявления коррозии конструкционных материалов определяют по состоянию индикаторных пластин, простоявших максимальное время.

После извлечения пластин из трубопровода производят их осмотр и записывают в специальный журнал состояние, отмечая цвет образцов, равномерность отложений, наличие локальной язвины, бугорки или щелевой коррозии. Описание внешнего вида поверхности пластин производят и после удаления продуктов коррозии, обращая особое внимание на наличие язв и локализацию коррозии. В табл. Слабая коррозия 2. Допустимая коррозия 3.

Сильная коррозия 4. Измерением и расчетом находим поверхность пластины в см2. Считаем, что индикатор был установлен во входном коллекторе водяного экономайзера и простоял там в течение года. Содержание пояснительной записки к курсовому проекту Ре по з Введение краткая характеристика ТЭС, значение водоподготовки и водно-химического режима. Выбор источника водоснабжения ТЭС, анализ показателей качества исходной воды.

Обоснование метода и выбора схемы подготовки подпиточной воды котлов ТЭС. Эскиз выбранной схемы ВПУ и пересчет изменения показателей качества воды по отдельным стадиям обработки. Полное описание технологических процессов по стадиям обработки воды. Определение производительности водоподготовительных установок для подпитки котлов и тепловых сетей. Расчет водоподготовительной установки ТЭС: 6.

Расчет обессоливающей части водоподготовительной установки ВПУ. Расчет схемы подпитки теплосети. Расчет схемы предочистки. Анализ результатов расчета. Компоновка оборудования ВПУ.

Нормы качества питательной воды и перегретого пара на ТЭС. Нормы качества подпиточной воды теплосетей и сетевой воды. Методы коррекции котловой и питательной воды. Характеристика потоков конденсатов на ТЭС и схемы их очистки. Методические указания к выполнению курсового проекта Ре по з При выборе источника водоснабжения необходимо учитывать, что в качестве исходных вод для электростанций используют: — воды поверхностных источников; — воды артезианских скважин не питьевого качества, если по основным показателям они не хуже вод открытых водоемов; — воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин; — очищенные промышленные сточные воды, очищенные сточные воды электростанций, хозяйственно-бытовые сточные воды после их биологической очистки и проверки возможности использования.

Аналогично производится пересчет всех содержащихся в воде катионов и анионов. Обоснование метода и выбор схемы ВПУ по з Выбор способов обработки добавочной воды котлов ТЭС производится в зависимости от качества исходной воды и типа установленного оборудования. Применение испарителей допускается при технико-экономическом обосновании и при наличии в исходной воде упомянутых органических загрязнений. На ТЭС при восполнении потерь дистиллятом испарителей последние дополняются общестанционной испарительной или обессоливающей установкой. Для ТЭС с барабанными котлами в зависимости от параметров пара, способа регулирования температуры перегретого пара и качества исходной воды применяют одно- или двухступенчатое обессоливание, при необходимости совмещаемое с мембранными методами.

На ТЭС с прямоточными котлами применяют трехступенчатое обессоливание. Для подготовки подпиточной воды тепловых сетей с закрытой системой горячего водоснабжения могут применяться следующие схемы: при наличии на ТЭЦ водогрейных котлов — известкование с коагуляцией и Na-катионирование; при подогреве сетевой воды только в сетевых подогревателях — известкование с коагуляцией. Водоподготовительные установки ТЭС, работающие на воде поверхностных источников, как правило, имеют стадию предварительной очистки воды, состоящую из осветлителей и осветлительных механических фильтров. Дальнейшая обработка воды проводится на ионитных фильтрах выбранной схемы обессоливания. На рис.

Пересчет показателей качества воды по отдельным стадиям обработки Предочистка — коагуляция Al2 SO4 3. Концентрация ионов хлора не изменяется. Первая ступень анионирования АI слабоосновное анионирование. Ре Декарбонизатор. Вторая ступень H-катионирования H2.

Фильтр смешанного действия ФСД. В схеме трехступенчатого химического обессоливания ФСД глубоко удаляет из воды катионы и анионы. Полное описание технологических процессов должно включать подробное изложение каждого этапа обработки исходной воды, начиная с предочистки применяемые реагенты, материалы загрузки фильтров, реакции, протекающие при работе и регенерации и т. Определение производительности ВПУ Ре Как известно, водоподготовительная установка ВПУ предназначена для восполнения потерь пара, конденсата, питательной воды в основном цикле ТЭС и сетевой воды в теплосетях. При использовании пара на разогрев мазута без возврата конденсата расчетное значение потерь для газомазутных станций принимается равным 0,15 т на 1 т сжигаемого мазута.

В расчете производительности ВПУ учитываются также потери с непрерывной продувкой барабанных котлов. ВПУ Qобес. ТУ где Gс. Подпитка тепловых сетей составит: 2. Методика расчета ВПУ по з ит о ри й При проектировании ВПУ необходимо принимать минимальное количество оборудования за счет его высокой единичной производительности.

Расчет схемы водоподготовительной установки начинают с конца технологического процесса. Например, если необходимо рассчитать схему двухступенчатого химического обессоливания воды, то расчет начинают с анионитных фильтров второй ступени. Для определения числа и размеров фильтров необходимо знать количество и качество воды, поступающей на данную группу фильтров. Количество воды определяется суммой производительности установки и расхода воды на собственные нужды последующих групп фильтров. Расчет выполняется в следующей последовательности.

Расчет ионитных фильтров. П1 принимается ближайший больший стандартный фильтр. Продолжительность фильтроцикла должна быть не менее 8 ч. Если данное условие не соблюдается, то перезадаются количеством фильтров. После расчета всех групп ионитных фильтров, включая Naкатионитовые фильтры подпитки теплосети, приступают к расчету осветлительных фильтров.

Число устанавливаемых фильтров mо рекомендуется принимать не менее трех. Необходимая площадь фильтрования каждого фильтра: Fо , м2. ТУ где mо — число осветлительных фильтров; nо — число промывок каждого фильтра в сутки 1 — 3. Расчет осветлителей. По Vосв выбирается ближайший по емкости серийный осветлитель табл.

Необходимое количество реагентов при проведении коагуляции и известкования подсчитывается следующим образом. Расчет и выбор декарбонизатора ри й Исходными данными при расчете декарбонизатора являются производительность, определяемая местом включения декарбонизатора в схему ВПУ, концентрация СО2 на входе и выходе из декарбонизатора, температура обрабатываемой воды. Концентрация СО2 на входе в декарбонизатор в схемах предочистки известкования с коагуляцией рассчитывается с учетом удаления СО2 исходной воды при известковании и остаточных бикарбонатной и карбонатной щелочностей и соответствующих мольных масс и эквивалентов. ТУ вых делят на количество цепочек; значение ССО принимается с уче2 том п. ТУ Выбор конкретного типа декарбонизатора производят по табл.

Анализ результатов расчета ВПУ. Анализ результатов расчета включает следующие таблицы: 1. Состав выбранного оборудования — табл. Суточный расход технического реагента — табл. Расход фильтрующих материалов — табл.

Расход воды на собственные нужды фильтров — табл. Компоновка оборудования ВПУ Ре по з При проектировании комплекса ВПУ предусматривается максимальная его блокировка со складскими помещениями и очистными сооружениями, а также возможность дальнейшего расширения с учетом подвода реагентов без промежуточной перегрузки. На крупных ТЭС водоподготовительные установки обычно выносятся в отдельное здание либо размещаются в здании объединенного вспомогательного корпуса. Торцовая нерасширяемая часть здания водоподготовки выполняется обычно в виде трех- или четырехэтажной башни, предназначенной для установки промывочных баков, химической лаборатории, служебных и бытовых помещений. Для хранения кислот и щелочей устанавливается не менее чем по две емкости для каждого реагента с учетом месячного запаса.

Из складских баков реагенты поступают в баки-мерники, оттуда насосами-дозаторами или эжекторами подаются на регенерацию фильтров. Сточные воды ВПУ поступают либо в баки-нейтрализаторы, либо в схемы их утилизации. Компоновка оборудования должна учитывать возможность дальнейшего расширения установки. При компоновке основного оборудования ВПУ должны быть обеспечены: удобное расположение аппарата, облегчающее работу обслуживающего персонала; полное использование помещения, вентиляция, возможность хорошего естественного освещения. Осветлители, декарбонизаторы, громоздкие баки располагаются, как правило, на открытом воздухе с применением в необходимых случаях обогрева и теплоизоляции.

По способу подключения ионитных фильтров в схемах обессоливания различают коллекторный параллельный и блочный цепочки принципы их соединения рис. При коллекторном способе включения ионитных фильтров исходная вода из общего коллектора параллельными потоками подается к каждому фильтру данной ступени. Фильтрат после фильтров также собирается в общий коллектор и поступает на группу фильтров следующей ступени. Таким образом, ионитные фильтры в схеме соединены параллельно, а ступени обессоливания — последовательно. В коллекторных схемах отдельный фильтр автономен, то есть его состояние работа — резерв — регенерация не определяет состояние группы однородных фильтров.

Группа фильтров ступени обрабатывает воду непрерывно, а отдельный фильтр — периодически. Число работающих фильтров в ступени можно изменять в зависимости от требуемой производительности. Частота регенераций отдельных фильтров непосредственно не связана с частотой регенерации в разных ступенях и определяется ионным составом обрабатываемой воды. Схема универсальна, хорошо адаптируется к изменениям состава воды и производительности, надежность ее достаточно высо- 74 ит о ри й БН ТУ кая, экономична по количеству оборудования и расходу ионита, имеет более простые алгоритмы управления, но расход химических реагентов на регенерацию значительно выше, чем в блочной схеме, и при автоматизации требует большого количества датчиков химического контроля. Схема коллекторного параллельного подключения ионитных фильтров Ре При блочном способе включения в состав каждого блока цепочки входит по одному фильтру соответствующей ступени ионирования, что обеспечивает полный цикл обработки воды по выбранной схеме.

В данном случае каждый отдельный фильтр не является самостоятельным и блок работает периодически, имея три основных состояния: работа — резерв — регенерация все фильтры действуют одновременно. ФСД в цепочку не включают. Количество цепочек согласно расчету ВПУ увеличивают на одну резервную. Схемы подключения ионитных фильтров БН ТУ Схема не может адаптироваться к значительному изменению показателей качества воды. Надежность цепочки определяется наименее надежным узлом, общее число оборудования значительно большее, чем в коллекторной схеме ВПУ.

При разработке систем автоматизированного управления имеет место сложный алгоритм управления работой фильтров. К достоинствам блочных схем можно отнести упрощение контроля за качеством воды, снижение расхода реагентов на регенерацию и воды на собственные нужды за счет проведения совместных регенераций одноименных фильтров первой и второй ступени. Обе схемы имеют области оптимального применения, и вопрос о выборе способа подключения фильтров в каждом конкретном случае решается отдельно. Водно-химический режим ТЭС ри й 2. Задачи организации ВХР ТЭС Ре по з ит о Основной задачей вводно-химического режима ВХР каждой ТЭС является обеспечение работы теплосилового оборудования основного и вспомогательного без повреждений и снижения экономичности, которые могут быть вызваны следующими причинами: — образованием отложений на поверхностях нагрева котлов, в проточной части турбин, на поверхностях трубок конденсаторов и т.

Внедрению конкретного водно-химического режима то есть комплексу технических мероприятий на ТЭС предшествует проведение экспериментальных и наладочных работ, цель которых — определить оптимальные условия для его осуществления. Правильно выбранный и грамотно реализованный ВХР позволяет строго соблюдать установленные нормы качества питательной и котловой воды, перегретого пара, что в свою очередь гарантирует обеспечение безаварийной работы теплоэнергетического оборудования по крайней мере в период между капитальными ремонтами. Для эксплуатационного персонала электростанций они являются законом. Согласно ПТЭ нормирование водного режима котлов барабанного типа включает в себя нормы качества перегретого пара табл. На других видах топлива по з ит о ри й На жидком топливе.

На остальных видах топлива - ТУ без ступенчатого испарения Схема со ступенчатым испарением чистый соленый отсек отсек БН Показатель качества котловой воды ри й Нормирование водного режима котлов прямоточного типа производится по нормам качества перегретого пара табл. Нормы качества воды для подпитки тепловых сетей и сетевой воды приведены в табл. Присадка гидразина и других токсичных веществ в подпитывающую и сетевую воду строго запрещена. Методы коррекции котловой и питательной воды Ре К основным методам коррекции водного режима ТЭС с котлами барабанного типа относят: фосфатирование совместно с подщелачиванием едким натром котловой воды, амминирование и гидразинную обработку питательной воды. Каждый метод коррекции теплоносителя решает свою конкретную задачу.

Фосфатирование с подщелачиванием необходимо для того, чтобы создавать такие условия, при которых процессы кристаллизации и образования отложений в экранной системе котла имели бы минимальные скорости. Эта задача решается за счет перевода накипе- 85 ит о ри й БН ТУ образующих солей в шламовую форму с последующим их выводом из контура циркуляции с продувкой. Амминирование питательной воды проводится для связывания свободной углекислоты в целях предупреждения углекислотной коррозии и коррекции величины pH. Гидразинная обработка питательной воды в сочетании с термической деаэрацией является радикальной мерой предупреждения кислородной коррозии металла питательного тракта, пассивации латуни трубной системы подогревателей, снижения содержания продуктов коррозии в пароводяном тракте ТЭС. В настоящее время достаточно широкое применение для коррекции теплоносителя находит хеламин.

Его использование позволяет одновременно решать проблемы коррозии включая стояночную и отложений в конденсатно-питательном и водопаровом трактах. Использование хеламина позволяет исключить дозирование аммиака, гидразина, фосфатов, едкого натра. По вопросу оптимального ВХР ТЭС с прямоточными котлами в мировой энергетике разногласий нет — это окислительный кислородный режим. Кроме кислорода используют воздух, перекись водорода. Ввод окислителя допускается в конденсатный или питательный тракт.

Для реализации окислительного водного режима необходимо выполнение ряда требований: — глубокая очистка турбинного конденсата? По вопросу оптимального ВХР барабанных котлов не только в мире, но и в отдельных энергосистемах нет единого мнения. Так, в зарубежных странах котлы барабанного типа эксплуатируются в самых различных водных режимах: — модифицированный фосфатный с малыми концентрациями фосфатов и избыточной гидратной щелочностью; — бесфосфатные режимы: с дозированием и без дозирования в котловую воду NaOH; — в США прошли испытания по применению кислородного окислительного режима. Характеристика потоков конденсатов на ТЭС и схемы их очистки Ре по з ит о ри й БН ТУ Конденсаты являются основной и наиболее ценной составляющей частью питательной воды котлов любых давлений и производительности. Конденсаты ТЭС можно подразделить на следующие основные группы: — турбинные конденсаты — наиболее чистые, содержат лишь газы NH3, CO2, следы O2, незначительные количества продуктов коррозии оксиды железа, меди, цинка.

Температура турбинного конденсата — 25? Кроме того, на ТЭС имеют место конденсаты подогревателей сырой и химочищенной воды, дренажные конденсаты и т. Сокращение потерь конденсата, предотвращение загрязнения, сбор, возврат на ТЭС и в случае необходимости очистка являются основными задачами персонала турбинного и химического цехов ТЭС. Для этой цели на всех тепловых станциях проектируются специальные конденсатоочистки. На мощных блоках с прямоточными котлами очистка всего потока турбинного конденсата является обязательным мероприятием по поддержанию оптимального водного режима.

За каждой турбиной такого блока устанавливают блочную обессоливающую установку БОУ. Фильтры компонуются в два яруса, что позволяет более полно использовать объем помещения. Характеристики оборудования БОУ представлены в табл. Очистка конденсатов от нефтепродуктов осуществляется методом отстоя в специальных емкостях и сорбцией в фильтрах, загруженных антрацитом, коксом, полукоксом, активированным углем. Выбор и описание системы технического водоснабжения ТЭС БН В данном специальном задании, используя источник [5] и данные табл.

Рассчитать площадь водохранилища — охладителя или выбрать градирни. Оценить потребности станции в технической воде по табл. Стерман Л. Физические и химические методы обработки воды на ТЭС. Кострикин Ю.

Водоподготовка и водный режим энергообъектов низкого и среднего давления: Справочник. Вихрев В. Рыжкин В.

Телефон также необходим для отправки сообщения. Вы найдете прошивку и исходный код на Github , и вы можете установить его, используя обычный Esptool, как на любой плате ESP32. Дополнительное приложение Meshtastic для Android доступно в Google Play , а исходный код находится в отдельном репозитории.

БНТУ — Факультеты — Репозиторий

В рейтинге институциональных репозиториев (Institutional Repositories) репозиторий БНТУ расположился на 23-м месте среди 4508 других ресурсов. Репозитории БГУ и БНТУ попали в топ-30 мирового рейтинга репозиториев Transparent Ranking of Repositories от 16-й редакции за март 2024 года. Белорусский национальный технический университет Приборостроительный факультет - Помощь студентам, лабы, курсовые, форум БНТУ Самый Большой Файловый Архив. Государственное учреждение образования Университет Национальной академии наук Беларуси. Белорусский национальный технический университет с 1 сентября поднимает стоимость обучения на 10 %.

Индексируются

Репозиторий бнту. Белорусский политехнический институт. Репозиторий Белорусского национального технического университета (БНТУ). Репозиторий Минского государственного лингвистического университета. Белорусский национальный технический университет (БНТУ) – одно из ведущих высших учебных заведений в Беларуси. в списке институциональных репозиториев (Institutional Repositories), включающем 4224 других ресурсов. Репозиторий Белорусского национального технического университета улучшил позиции в мировом рейтинге репозиториев Transparent Ranking of Repositories от 15-й редакции. В Репозитории #БНТУ создана новая коллекция – «Графические работы» Она содержит проекты студентов университета.

Репозиторий

Руководитель программ обучения и сертификации «Базальт СПО» Мария Олеговна Петрова познакомила участников фестиваля с проектом создания технологически независимого репозитория программ «Сизиф» и семейством операционных систем «Альт». После торжественного открытия команды получили задания. Команды должны были выбрать любые 3 из 5 предложенных операционных систем и оценить их по 11 критериям, отражающим удобство использования и наличие программного обеспечения для выполнения различных задач — от инженерных и математических расчетов до моделирования и программирования роботов. Кроме того, участникам предлагалось решить кейсы от партнеров. Я давно хотел разобраться в этой теме, и фестиваль дал мне возможность прикоснуться к миру свободного программного обеспечения». От них требовалось оценить сильные и слабые стороны рассмотренного программного обеспечения и определить, какие операционные системы больше подходят для использования на работе, а какие — для использования в домашних условиях.

К лету 1946 г. Черной страницей вписан в историю февраль 1947 г. Уцелело лишь около 4 тыс. Сушили по страницам каждую спасенную книгу, но восстановить фонд было невозможно.

В соответствии с распоряжением Министерства высшего образования СССР, ряд учебных заведений и организаций выделили в порядке помощи значительное количество учебников и учебных пособий для восстановления библиотеки. Довоенный уровень фонд превысил только к 1953 г. Трудности послевоенного становления вместе со своим немногочисленным коллективом переживали руководители библиотеки: В. Пепик, Я. Вильнер, Ф. Рабинович, Н. Прокофьева, Г. Развитие библиотеки С 1948 г. Расширялись площади, открывались читальные залы, росло количество читателей, увеличивался объем фонда, внедрялись новые формы работы.

К 1962 г. Успешная деятельность библиотеки неоднократно отмечалась различными наградами: в 1964-1965 гг. В 1981 г. В 1989 г. Трудовым коллективом на эту должность была избрана Я. К началу 1991 г. Услугами библиотеки пользовались более 25 тыс. С середины 1990-х гг.

Гидравлическая плотность конденсатора обеспечивается правильным выбором материала трубок и конструкционными мероприятиями, исключающими возможность попадания циркуляционной воды в паровое пространство конденсатора в местах разъемных соединений, вальцовочных креплений трубок в трубных досках и в самих трубках, подверженных различным механическим, эрозионным и коррозионным повреждениям. Наиболее опасны с точки зрения ухудшения гидравлической плотности механические повреждения трубок, так как обрыв даже одной трубки приводит к серьезному загрязнению турбинного конденсата, являющегося основной составляющей питательной воды котлов.

Причинами механических повреждений могут быть: а вибрационная усталость металла; б эрозия трубок; 43 ит о ри й БН ТУ в некачественная вальцовка и стирание стенок трубок в местах перехода их через промежуточные перегородки и т. Наиболее частой причиной повреждения трубок являются следующие виды коррозии: общее и пробочное обесцинкование, коррозионное растрескивание, ударная коррозия и коррозионная усталость. Основные мероприятия для предотвращения попадания в конденсат охлаждающей воды через неплотности в местах вальцовочных соединений рис. Схема трубной доски с покрытием из жидкого наирита а , где 1 — латунная теплообменная трубка; 2 — стальная трубная доска; 3 — жидкий наирит; 4 — грунтовка; схема конденсатора с солевыми отсеками б , где 1 — охлаждающая вода; 2 — основные трубные доски; 3 — дополнительные трубные доски; 4 — трубная теплообменная поверхность; 5 — пар из турбины; 6 — конденсат солевых отсеков; 7. В целях контроля гидравлической плотности конденсатора его оснащают пробоотборными устройствами в точках 1 — 3 рис. Схема контроля гидравлической плотности конденсатора: 1 — пробоотборник пара, отработавшего в турбине; 2 — пробоотборник охлаждающей воды; 3 — пробоотборник турбинного конденсата В точке 1, находящейся на входе в конденсатор, производят отбор пробы пара, отработавшего в турбине. В точке 3 производят отбор пробы на выходе из конденсатора — турбинный конденсат. Для выполнения работы в качестве пробы точки 1 условно примем дистиллят, пробы точки 2 — водопроводную воду. Определим общую жесткость этих потоков. Пробу точки 3 — турбинный конденсат — получаем следующим образом: в четыре колбы наливаем по 100 мл дистиллированной воды и в каждую добавляем из бюретки соответственно 0,5, 1, 2, 3 мл водопроводной воды, имитируя тем самым разную величину присоса охлаждающей воды в конденсат.

Определим последовательно общую жесткость пробы 3 в каждой колбе при различной величине присоса. Для этого в коническую колбу с соответствующей пробой добавляем 5 мл аммиачного буферного раствора и 5 — 6 капель индикатора кислотный темносиний хром. Затем титруем пробу 0,1 н или 0,01 н раствором трилона Б, интенсивно перемешивая до момента перехода окраски в сине-голубую. Результаты всех опытов заносим в табл. Она препятствует образованию на поверхности металла пассивирующего защитного слоя, вследствие чего скорость коррозии с течением времени не уменьшается. Ре Степень диссоциации увеличивается с ростом температуры, а это в свою очередь приводит к повышению кислотности воды и резкому возрастанию ее коррозионной агрессивности. Так, вода, содержащая СО2, при комнатной температуре растворяет медь и латунь очень медленно. В присутствии кислорода процесс коррозии активизируется. При температуре воды 40 — 50 оС и выше обесцинкование латуни происходит и при отсутствии кислорода. Окраска не должна исчезать при выдерживании раствора в колбе с притертой пробкой в течение 1 — 2 мин.

Выполнение работы Ре по з ит о ри й Собирают прибор рис. Присоединив его резиновой трубкой 1 к водопроводному крану, заполняют колбу 6 анализируемой водой, давая ей выливаться через трубку 2 до тех пор, пока через прибор не пройдет 6 — 7 объемов воды. После этого резиновую трубку 2 перекрывают зажимом 3, снимают трубку 2, заменяя ее хлоркальциевой трубкой, содержащей влагопоглощающее вещество. Зажим 3 на трубке 1 ослабляют и дают воде вытекать из колбы до уровня, соответствующего отметке 200 мл. Затем снимают хлоркальциевую трубку и отверстие закрывают резиновой пробкой. После отбора пробы колбу переносят на лабораторный стол для титрования. Открыв резиновую пробку, в воду добавляют 2 — 3 капли фенолфталеина и титруют 0,1 н раствором щелочи из бюретки. Прибавление щелочи производят по каплям с перерывом для перемешивания при закрытой пробке, затем выжидают несколько секунд и снова добавляют щелочь и так до тех пор, пока не появится устойчивая слабо-розовая окраска от одной капли раствора. Прибор для определения концентрации СО2: 1 — резиновая трубка для поступления воды; 2 — резиновая трубка для спуска воды; 3 — зажим; 4 — колба по з Результаты опытов заносим в табл. Эти отложения различны по химическому составу, структуре, плотности сцепления с металлом оборудования.

Все виды отложений вызывают ухудшение теплопередачи и увеличение расхода топлива в котлоагрегатах, приводят к перегреву металла и, как следствие, к появлению отдулин, свищей, разрыву труб. Наиболее эффективным контролем за состоянием внутренней поверхности экранных труб котлов является наблюдение за температурой труб. Возможно применение менее объективного метода — выборочная вырезка контрольных образцов. Вырезанные образцы труб маркируют и передают в химический цех для выполнения необходимых анализов. Количественную оценку загрязненности поверхностей нагрева отложениями производят путем снятия отложений механическим способом, т. Методика определения Ре по з Отмерить на поверхности вырезанного отрезка трубы определенную площадь и тщательно снять с нее отложения. Оценить плотность отложений, слоистость, сцепляемость с металлом. Полученные отложения поместить на чистый лист бумаги и взвесить. После этого приступить к расчетам. Загрязненность поверхности трубы оценивается удельной загрязненностью, т.

Теплонапряженность поверхности нагрева, тыс. Катастрофически загрязненная 400 и более Ре Т а б л и ц а 2. Поверхность труб считается чистой, если толщина отложений не превышает 0,2 мм для барабанных котлов и 0,1 мм — для прямоточных. По полученным результатам расчета и табл. Для определения скорости коррозии конструкционных материалов в конденсатно-питательном тракте КПТ устанавливают индикаторы коррозии, изготовленные из того же материала, что и контролируемое оборудование. При вскрытиях контролируемых участков КПТ образцы извлекают и подвергают анализу, по результатам которого оценивают скорость и характер коррозии металла за время нахождения образцов в тракте энергоблока. Индикатор коррозии и схема его установки в трубопроводе приведены на рис. Контрольные пластины 1 представляют собой круглые диски диаметром 60 и толщиной 3 мм с отверстием в центре. Поверхность пластин шлифуется и промывается раствором щелочи, спиртом и эфиром. Перед установкой в трубопровод высушенные образцы взвешивают с точностью до 0,0001 г.

Пластины надевают на стержень 2 и отделяют друг от друга дистанционирующими патрубками 3. Стержень с набором пластин устанавливают по оси трубопровода 4 и фиксируют в нем с помощью бобышки 5 и фланца 6. Рекомендуется ставить их в начале и конце конденсатного тракта, а также на трубопроводе греющего пара ПНД. Длительность испытания индикаторов должна быть не менее 1 года. В целях изучения кинетики процесса коррозии рекомендуется устанавливать по 15 — 20 индикаторных пластин для возможности извлечения по 3 — 4 пластины через различные промежутки времени. Скорость и формы проявления коррозии конструкционных материалов определяют по состоянию индикаторных пластин, простоявших максимальное время. После извлечения пластин из трубопровода производят их осмотр и записывают в специальный журнал состояние, отмечая цвет образцов, равномерность отложений, наличие локальной язвины, бугорки или щелевой коррозии. Описание внешнего вида поверхности пластин производят и после удаления продуктов коррозии, обращая особое внимание на наличие язв и локализацию коррозии. В табл. Слабая коррозия 2.

Допустимая коррозия 3. Сильная коррозия 4. Измерением и расчетом находим поверхность пластины в см2. Считаем, что индикатор был установлен во входном коллекторе водяного экономайзера и простоял там в течение года. Содержание пояснительной записки к курсовому проекту Ре по з Введение краткая характеристика ТЭС, значение водоподготовки и водно-химического режима. Выбор источника водоснабжения ТЭС, анализ показателей качества исходной воды. Обоснование метода и выбора схемы подготовки подпиточной воды котлов ТЭС. Эскиз выбранной схемы ВПУ и пересчет изменения показателей качества воды по отдельным стадиям обработки. Полное описание технологических процессов по стадиям обработки воды. Определение производительности водоподготовительных установок для подпитки котлов и тепловых сетей.

Расчет водоподготовительной установки ТЭС: 6. Расчет обессоливающей части водоподготовительной установки ВПУ. Расчет схемы подпитки теплосети. Расчет схемы предочистки. Анализ результатов расчета. Компоновка оборудования ВПУ. Нормы качества питательной воды и перегретого пара на ТЭС. Нормы качества подпиточной воды теплосетей и сетевой воды. Методы коррекции котловой и питательной воды. Характеристика потоков конденсатов на ТЭС и схемы их очистки.

Методические указания к выполнению курсового проекта Ре по з При выборе источника водоснабжения необходимо учитывать, что в качестве исходных вод для электростанций используют: — воды поверхностных источников; — воды артезианских скважин не питьевого качества, если по основным показателям они не хуже вод открытых водоемов; — воды прямоточных и циркуляционных систем охлаждения конденсаторов турбин; — очищенные промышленные сточные воды, очищенные сточные воды электростанций, хозяйственно-бытовые сточные воды после их биологической очистки и проверки возможности использования. Аналогично производится пересчет всех содержащихся в воде катионов и анионов. Обоснование метода и выбор схемы ВПУ по з Выбор способов обработки добавочной воды котлов ТЭС производится в зависимости от качества исходной воды и типа установленного оборудования. Применение испарителей допускается при технико-экономическом обосновании и при наличии в исходной воде упомянутых органических загрязнений. На ТЭС при восполнении потерь дистиллятом испарителей последние дополняются общестанционной испарительной или обессоливающей установкой. Для ТЭС с барабанными котлами в зависимости от параметров пара, способа регулирования температуры перегретого пара и качества исходной воды применяют одно- или двухступенчатое обессоливание, при необходимости совмещаемое с мембранными методами. На ТЭС с прямоточными котлами применяют трехступенчатое обессоливание. Для подготовки подпиточной воды тепловых сетей с закрытой системой горячего водоснабжения могут применяться следующие схемы: при наличии на ТЭЦ водогрейных котлов — известкование с коагуляцией и Na-катионирование; при подогреве сетевой воды только в сетевых подогревателях — известкование с коагуляцией. Водоподготовительные установки ТЭС, работающие на воде поверхностных источников, как правило, имеют стадию предварительной очистки воды, состоящую из осветлителей и осветлительных механических фильтров. Дальнейшая обработка воды проводится на ионитных фильтрах выбранной схемы обессоливания.

На рис. Пересчет показателей качества воды по отдельным стадиям обработки Предочистка — коагуляция Al2 SO4 3. Концентрация ионов хлора не изменяется. Первая ступень анионирования АI слабоосновное анионирование. Ре Декарбонизатор. Вторая ступень H-катионирования H2. Фильтр смешанного действия ФСД. В схеме трехступенчатого химического обессоливания ФСД глубоко удаляет из воды катионы и анионы. Полное описание технологических процессов должно включать подробное изложение каждого этапа обработки исходной воды, начиная с предочистки применяемые реагенты, материалы загрузки фильтров, реакции, протекающие при работе и регенерации и т. Определение производительности ВПУ Ре Как известно, водоподготовительная установка ВПУ предназначена для восполнения потерь пара, конденсата, питательной воды в основном цикле ТЭС и сетевой воды в теплосетях.

При использовании пара на разогрев мазута без возврата конденсата расчетное значение потерь для газомазутных станций принимается равным 0,15 т на 1 т сжигаемого мазута. В расчете производительности ВПУ учитываются также потери с непрерывной продувкой барабанных котлов. ВПУ Qобес. ТУ где Gс. Подпитка тепловых сетей составит: 2. Методика расчета ВПУ по з ит о ри й При проектировании ВПУ необходимо принимать минимальное количество оборудования за счет его высокой единичной производительности. Расчет схемы водоподготовительной установки начинают с конца технологического процесса. Например, если необходимо рассчитать схему двухступенчатого химического обессоливания воды, то расчет начинают с анионитных фильтров второй ступени. Для определения числа и размеров фильтров необходимо знать количество и качество воды, поступающей на данную группу фильтров. Количество воды определяется суммой производительности установки и расхода воды на собственные нужды последующих групп фильтров.

Расчет выполняется в следующей последовательности. Расчет ионитных фильтров. П1 принимается ближайший больший стандартный фильтр. Продолжительность фильтроцикла должна быть не менее 8 ч. Если данное условие не соблюдается, то перезадаются количеством фильтров. После расчета всех групп ионитных фильтров, включая Naкатионитовые фильтры подпитки теплосети, приступают к расчету осветлительных фильтров. Число устанавливаемых фильтров mо рекомендуется принимать не менее трех. Необходимая площадь фильтрования каждого фильтра: Fо , м2. ТУ где mо — число осветлительных фильтров; nо — число промывок каждого фильтра в сутки 1 — 3. Расчет осветлителей.

По Vосв выбирается ближайший по емкости серийный осветлитель табл. Необходимое количество реагентов при проведении коагуляции и известкования подсчитывается следующим образом. Расчет и выбор декарбонизатора ри й Исходными данными при расчете декарбонизатора являются производительность, определяемая местом включения декарбонизатора в схему ВПУ, концентрация СО2 на входе и выходе из декарбонизатора, температура обрабатываемой воды. Концентрация СО2 на входе в декарбонизатор в схемах предочистки известкования с коагуляцией рассчитывается с учетом удаления СО2 исходной воды при известковании и остаточных бикарбонатной и карбонатной щелочностей и соответствующих мольных масс и эквивалентов. ТУ вых делят на количество цепочек; значение ССО принимается с уче2 том п. ТУ Выбор конкретного типа декарбонизатора производят по табл. Анализ результатов расчета ВПУ. Анализ результатов расчета включает следующие таблицы: 1. Состав выбранного оборудования — табл. Суточный расход технического реагента — табл.

Расход фильтрующих материалов — табл. Расход воды на собственные нужды фильтров — табл. Компоновка оборудования ВПУ Ре по з При проектировании комплекса ВПУ предусматривается максимальная его блокировка со складскими помещениями и очистными сооружениями, а также возможность дальнейшего расширения с учетом подвода реагентов без промежуточной перегрузки. На крупных ТЭС водоподготовительные установки обычно выносятся в отдельное здание либо размещаются в здании объединенного вспомогательного корпуса. Торцовая нерасширяемая часть здания водоподготовки выполняется обычно в виде трех- или четырехэтажной башни, предназначенной для установки промывочных баков, химической лаборатории, служебных и бытовых помещений. Для хранения кислот и щелочей устанавливается не менее чем по две емкости для каждого реагента с учетом месячного запаса. Из складских баков реагенты поступают в баки-мерники, оттуда насосами-дозаторами или эжекторами подаются на регенерацию фильтров. Сточные воды ВПУ поступают либо в баки-нейтрализаторы, либо в схемы их утилизации. Компоновка оборудования должна учитывать возможность дальнейшего расширения установки. При компоновке основного оборудования ВПУ должны быть обеспечены: удобное расположение аппарата, облегчающее работу обслуживающего персонала; полное использование помещения, вентиляция, возможность хорошего естественного освещения.

Осветлители, декарбонизаторы, громоздкие баки располагаются, как правило, на открытом воздухе с применением в необходимых случаях обогрева и теплоизоляции. По способу подключения ионитных фильтров в схемах обессоливания различают коллекторный параллельный и блочный цепочки принципы их соединения рис. При коллекторном способе включения ионитных фильтров исходная вода из общего коллектора параллельными потоками подается к каждому фильтру данной ступени. Фильтрат после фильтров также собирается в общий коллектор и поступает на группу фильтров следующей ступени. Таким образом, ионитные фильтры в схеме соединены параллельно, а ступени обессоливания — последовательно. В коллекторных схемах отдельный фильтр автономен, то есть его состояние работа — резерв — регенерация не определяет состояние группы однородных фильтров. Группа фильтров ступени обрабатывает воду непрерывно, а отдельный фильтр — периодически. Число работающих фильтров в ступени можно изменять в зависимости от требуемой производительности. Частота регенераций отдельных фильтров непосредственно не связана с частотой регенерации в разных ступенях и определяется ионным составом обрабатываемой воды. Схема универсальна, хорошо адаптируется к изменениям состава воды и производительности, надежность ее достаточно высо- 74 ит о ри й БН ТУ кая, экономична по количеству оборудования и расходу ионита, имеет более простые алгоритмы управления, но расход химических реагентов на регенерацию значительно выше, чем в блочной схеме, и при автоматизации требует большого количества датчиков химического контроля.

Схема коллекторного параллельного подключения ионитных фильтров Ре При блочном способе включения в состав каждого блока цепочки входит по одному фильтру соответствующей ступени ионирования, что обеспечивает полный цикл обработки воды по выбранной схеме. В данном случае каждый отдельный фильтр не является самостоятельным и блок работает периодически, имея три основных состояния: работа — резерв — регенерация все фильтры действуют одновременно. ФСД в цепочку не включают. Количество цепочек согласно расчету ВПУ увеличивают на одну резервную. Схемы подключения ионитных фильтров БН ТУ Схема не может адаптироваться к значительному изменению показателей качества воды.

Полнотекстовые электронные издания около 5000 документов Интернет-ресурсы Приобретенные электронные базы данных с онлайн-доступом. Пользуется особой популярностью Зал электронных ресурсов, где обеспечен доступ к ведущим научным мировым и национальным электронным информационным ресурсам виртуального читального зала Национальной библиотеки Беларуси , ЭБД РГБ , Emerald, Ebsco, Интегрум и другим. С августа 2009 г. Одновременно в читальных залах библиотеки могут работать до 700 читателей.

Приоритетные направления деятельности на современном этапе: [1] создание и поддержка ресурсов открытого доступа : институционального репозитория и системы сайтов научных журналов БНТУ; информационно-аналитическая деятельность, связанная с мониторингом и поддержкой публикационной активности исследователей БНТУ библиометрические исследования ; внедрение информационных продуктов и услуг, предоставляемых в результате проведения информационных исследований: определение библиометрических показателей ученых, разработка карты исследователя, анализ и уточнение авторского идентификатора в базах данных научного цитирования, подбор журналов для публикации статьи, консультирование авторов по вопросам регистрации в международных системах идентификации ученых и др.

Студенты-кибернетики СибГМУ прошли стажировку в одном из лучших инженерных вузов Беларуси

Белорусский национальный технический. Почти 200 студентов и старшеклассников из Санкт-Петербурга и Архангельска приняли участие в фестивале установки российских операционных систем с использованием свободного. В рейтинге институциональных репозиториев (Institutional Repositories) репозиторий БНТУ расположился на 23-м месте среди 4508 других ресурсов. Научная библиотека БНТУ (Белорусского национального технического университета) – это крупнейшая вузовская библиотека Республики Беларусь технического профиля, с. На фото: заместитель директора БГАНТД кевич и директор филиала БНТУ «МГАСК» ович в процессе подписания. Методическое пособие для студентов заочного отделения технических специальностей», авторы: Рыжкина Р.В., Шульгина И.Г., Минск: БНТУ, 2009 (печатный вариант).

Похожие новости:

Оцените статью
Добавить комментарий