Реакторы на быстрых нейтронах способны нарабатывать плутоний, которого хватит, чтобы обеспечить собственную работу и при необходимости другие реакторы новым топливом. Более того, реакторы на быстрых нейтронах позволяют реализовать замкнутый топливный цикл, поскольку «сжигается» только уран-238, после переработки (извлечения продуктов деления и добавления новых порций урана-238) топливо можно вновь загружать в реактор. Поскольку реакторы на быстрых нейтронах способны работать на плутонии и, таким образом, позволяют замкнуть ядерный топливный цикл, оптимальным топливом для таких установок является уран-плутониевая смесь. «Росатом» приступил к строительству в России атомного энергоблока с инновационным реактором на быстрых нейтронах БРЕСТ-ОД-300. В Северске началось капитальное строительство линий электропередачи (ЛЭП) для реализации схемы выдачи мощности будущего энергоблока с инновационным реактором на быстрых нейтронах со свинцовым теплоносителем БРЕСТ-ОД-300.
Быстрые нейтроны на земле, под водой и в реакторах Поднебесной: кто этому прокладывал дорогу?
В реакторах на быстрых нейтронах обходятся без замедлителей. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла. На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800. Невольно возникает вопрос, а не отстанет Россия, ныне передовая страна со своим реактором на быстрых нейтронах БН-600, от Индии в области строительства быстрых реакторов?
Multi-Purpose Fast Reactor (MBIR)
Это послужит дальнейшему развитию реакторов на быстрых нейтронах и пониманию, что происходит в радиационных полях с различными материалами». О строительстве уникального энергоблока с реактором на быстрых нейтронах, о неиссякаемом источнике безопасной атомной энергии и о том, почему небольшой сибирский город Северск становится одной из мировых атомных столиц, — в материале «». Исследуем, как работают реакторы на быстрых нейтронах и в чем заключается их преимущество в ядерной энергетике. Реактор на быстрых нейтронах БН-800 Белоярской АЭС был полностью переведен на уран-плутониевое МОКС-топливо. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.
журнал стратегия
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода | В перспективе можно обеспечить им атомную энергетику на тысячелетия вперед, сделав ее безотходной, и тогда реакторы на быстрых нейтронах станут своеобразными вечными двигателями, которые будут снабжать потребителей копеечной электроэнергией. |
Россия создала нейтронный «Прорыв» | Интерфакс: Реактор на быстрых нейтронах БРЕСТ-300 в Томской области может быть введен в 2028-2029 гг., сообщил глава госкорпорации "Росатом" Алексей Лихачев в интервью телеканалу "Россия-24". |
В шаге от безотходной ядерной энергетики | Блок № 4 Белоярской АЭС оснащен реактором на быстрых нейтронах БН-800 установленной электрической мощностью более 800 МВт. |
Радиационные явления в реакторных материалах обсудили в Обнинске | О строительстве уникального энергоблока с реактором на быстрых нейтронах, о неиссякаемом источнике безопасной атомной энергии и о том, почему небольшой сибирский город Северск становится одной из мировых атомных столиц, — в материале «». |
Уральскую АЭС переводят на отработавшее топливо. Физик-ядерщик объяснил минусы такого подхода
Россия запустила модель Реактора будущего или «Секрет» поставок урана в США | Этот проект нужен для отработки технологии реакторов на «быстрых» нейтронах с использованием уранплутониевого топлива. |
Атомный феникс для вечного двигателя — Журнал «Луч»: объединяем жителей атомных городов | Невольно возникает вопрос, а не отстанет Россия, ныне передовая страна со своим реактором на быстрых нейтронах БН-600, от Индии в области строительства быстрых реакторов? |
В шаге от безотходной ядерной энергетики
Генеральный директор «Росатома» Алексей Лихачев считает, что переработка ядерного топлива бесконечное количество раз сделает ресурсную базу атомной энергетики практически неисчерпаемой. Успешная реализация этого проекта позволит нашей стране стать первым в мире носителем атомной технологии, полностью отвечающей принципам устойчивого развития — в экологичности, доступности, надежности и эффективности использования ресурсов», — сказал Алексей Лихачев. Интегральная конструкция и физика реакторной установки позволяют исключить аварии, требующие эвакуации населения. Ранее, к 2023 году, планируют построить комплекс по выпуску топлива, а к 2024 году — модуль переработки облученного топлива. Такие аппараты ранее не строились, то есть это принципиально новые реакторы.
Такой движется «не спеша» — примерно с той же скоростью, что и молекулы газа например, воздуха при комнатной температуре. Более тяжелое ядро 238U предпочитает «картошку погорячее», то есть раскалывается быстрым нейтроном, энергия которого сравнима с энергией стремительно движущихся частиц горячего газа. В цепной реакции деления ядер рождаются быстрые нейтроны, а в природе намного больше урана-238, ядра которого любят «горячую картошку».
В теории, большинство промышленных реакторов должно работать на быстрых нейтронах и тяжелых изотопах урана. В реальности все ровно наоборот. Затем его превращают в топливо и опускают в активную зону реактора.
Когда начинается реакция деления, рождаются быстрые нейтроны. Их замедляют, чтобы инициировать следующие расколы ядер. Замедлителем в современных реакторах выступает вода.
Она же является теплоносителем, поэтому реакторы называются водо-водяными. Какое вещество можно сделать теплоносителем в реакторе на быстрых нейтронах и уране-238? Простая в обращении и доступная вода не подойдет: она замедлит нейтроны, и тяжелый изотоп урана откажется вступать в реакцию деления.
Атомщики нашли решение — жидкие металлы: они не влияют на скорость нейтронов, зато прекрасно проводят тепло. Белоярская АЭС. Фото с сайта wikipedia.
Если взглянуть на мировой опыт, то впервые реактор на МОКС-топливе построили французы. Французский реактор "Феникс". Сейчас МОКС-топливо используют во французских реакторах на тепловых нейтронах, но его доля не превышает трети активной зоны.
На повторную переработку облученные ТВС не направляют, такая возможность только изучается. В Японии в 1995 году на "Мондзю" через четыре месяца после пуска произошла крупная утечка натрия. Потом 15 лет ремонта, перезапуск и ещё одна авария.
С тех пор реактор не работает, планов строить другой нет. В Великобритании завод построили в 1997 году, но он так и не вышел на проектную мощность, а в 2011 году было принято решение о его остановке. Большая часть времени и денег ушла на проект завода и внесение бесчисленных правок.
В Волгодонске отгрузили реактор на быстрых нейт... В Волгодонске отгрузили реактор на быстрых нейтронах Дата публикации: 21 апр 2022 г. Элементы многоцелевого исследовательского реактора на быстрых нейтронах МБИР отправлены из Волгодонска в Димитроград на место постоянной сборки.
«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом
В 2014 году начали с обычного урана, в январе прошлого года после очередной перегрузки доля МОКС-топлива выросла до трети, а в январе этого года — до двух третей. В конце июня в реактор загрузили последнюю треть топлива, а в сентябре наконец его запустили, сообщает АиФ. У урана есть два изотопа, но топливный из них только один — уран-235. Остальное идет в отход, и в итоге образуется плутоний — искусственный топливный элемент, который является делящимся веществом. Раньше его отправляли либо на склад, либо военным, — объясняет технологию глава «Атоминфо-Центра» Александр Уваров. А сейчас данный плутоний вернули в реактор, впервые выведя его на номинальную мощность.
Росатом неоднократно заявлял, что открыт для взаимовыгодного сотрудничества в данном проекте со всеми заинтересованными сторонами, поэтому и возникла идея сформировать на базе МБИРа Международный центр исследований. Росатом предложил зарубежным партнерам уникальную возможность — принять участие в создании исследовательской инфраструктуры, которая нацелена на решение актуальных научных задач в обоснование инновационных реакторных концепций и будет отвечать всем передовым требованиям. Универсальная исследовательская установка с высоким нейтронным потоком не может быть реализована в малом масштабе или на модульной основе, таким образом, высокая стоимость — неизбежный фактор. Данный факт приводит к идее, продвигаемой МАГАТЭ, а именно к региональным «центрам коллективного пользования», в рамках которых один реактор может обслуживать потребности многих стран. Участвуя в проекте, международные партнеры смогут получить доступ к уникальному инструменту, которого нет больше нигде в мире, и при этом минимизировать и оптимизировать свои расходы. Текущий год стал отправной точкой для проведения работ по созданию МЦИ. Росатом уже подписал два международных меморандума о сотрудничестве и планирует до конца года подписать еще несколько. Таким образом, будет сформирован круг ключевых участников, которые смогут активно влиять на развитие проекта и условия участия в нем. В 2016 г. В 2017 г.
Эта установка станет самым крупным не только в России, но и во всем мире специализированным ядерным реактором для проведения научных исследований. Стоит напомнить, что подавляющее большинство материаловедческих исследовательских реакторов в мире введено в строй более 40 лет назад, то есть парк исследовательских реакторов сильно устарел. Международное научное сообщество начинает испытывать дефицит в современных крупных исследовательских реакторах, которые необходимы для развития технологий «Generation 4», а также продления сроков действующих реакторов АЭС и повышения их эффективности. К 2020-2025 гг. Димитровград, Ульяновская область. В России создание нового Многоцелевого быстрого исследовательского реактора МБИР ведется в рамках утвержденной правительством Федеральной целевой программы «Ядерные энерготехнологии нового поколения на период 2010-2015 годов и на перспективу до 2020 года». Суть программы заключается в формировании новой технологической платформы ядерной энергетики, в основе которой переход на замкнутый ядерный топливный цикл с реакторами, работающими на быстрых нейтронах. Быстрые реакторы, или реакторы на быстрых нейтронах - это реакторы с жидкометаллическим натрий, свинец, сплав свинца и висмута теплоносителем. Именно быстрые реакторы, в которых есть избыток нейтронов, позволяют одновременно гарантировать исключение тяжелых аварий на АЭС, и окончательное решить проблемы отработавшего топлива ОЯТ путем сжигания минорных актинидов. Основное предназначение МБИРа — в проведении массовых реакторных испытаний инновационных материалов и макетов элементов активных зон для ядерно-энергетических систем «Generation 4» или Поколения 4 , включая реакторы на быстрых нейтронах с замыканием топливного цикла и тепловые реакторы малой и средней мощности.
Спустя год произошла полная перегрузка реактора МОКС-топливом. Во время планово-предупредительного ремонта на энергоблоке также был осуществлен капитальный ремонт главного циркуляционного насоса, техобслуживание и ремонт насосов теплообменников, парогенераторов и турбогенератора. В ходе ППР специалисты также выполнили эксплуатационный контроль металла и сварных соединений трубопроводов, испытали системы контроля герметичности оболочек с использованием метрологической сборки.
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году
В России завершается сборка мощнейшего «суперреактора» на быстрых нейтронах | В нем реакторы на быстрых и на тепловых нейтронах будут работать совместно, обмениваясь топливом. |
"Росатом" начнет испытания топлива для "реактора будущего" на Белоярской АЭС в 2023 году | Именно этот инновационный реактор на быстрых нейтронах стал настоящей мировой сенсацией, когда первым на планете целый год вырабатывал энергию на МОКС-топливе. |
Мировой прорыв: уникальный реактор скоро заработает в Сибири | Многоцелевой быстрый реактор будущего В России в рамках комплексной программы развития атомной науки, техники и технологий активно строят МБИР — Многоцелевой научно-исследовательский реактор четвертого поколения на быстрых нейтронах. |
Multi-Purpose Fast Reactor (MBIR) | | Физико-энергетический институт остается лидером в разработке и формировании реакторов на быстрых нейтронах. |
"Росатом" испытает топливо для "реактора будущего" на Белоярской АЭС - 13.12.2022, ПРАЙМ | Несмотря на это, сегодня 10 реакторов типа РБМК-1000 все еще работают в России. |
Ядерный спор: Ученый и "Росатом" разошлись в вопросе о развитии отрасли
Сообщалось также, что "в рамках проекта "Прорыв" будет отработана новая технология ядерной энергетики будущего — полное замыкание ядерного топливного цикла". Скорая реакция источников, близких к "Росатому," в формате: "правительство России согласилось с предложенным "Росатомом" календарным планом настоящей атомной технической революции, которая позволит ей окончательно закрепить за собой роль лидера высоких технологий" говорит о том, что это событие - отнюдь не рядовое. Ведь что бы ни говорили представители атомного лобби о мнимой дешевизне атомного киловатта, капитальные затраты на реализацию этой программы существенны - к примеру, стоимость строительства одной только Курской АЭС-2 это четыре двухблочных АЭС с водо-водяным энергетическим реактором ВВЭР-1300, см. Что дадут "быстрые нейтроны" в ближайшей перспективе? Привычный нам мир держится на углеводородной энергетике — львиная доля электричества, которую мы потребляем, получена путем сжигания нефти и газа. Однако запасы углеводородов на планете ограничены, их, по разным оценкам, хватит еще на 40—60 лет, а спад в добыче нефти и газа по некоторым оценкам может начаться уже с 2020 года. Так что вопрос о том, как жить дальше, с каждым годом становится все острее, а работы по поиску энергетической альтернативы — все масштабней. Если не считать возможности использования энергии ветра и Солнца, до последнего времени науке было известно всего две такие возможности: извлечение энергии за счет деления ядер тяжелых элементов, или при слиянии ядер самых легкого — водорода — с образованием ядра атома гелия.
К сожалению, обе эти возможности весьма опасны — ведь в первой, по существу, приходится приручать атомный взрыв, во второй — термоядерную реакцию, которая питает звезды и пугает нас водородной бомбой. В мире существует два класса ядерных реакторов: на медленных нейтронах водо-водяные, сокращенно ВВЭР, большой мощности канальные, или РБМК, на тяжелой воде и с шаровой засыпкой и газовым контуром и на быстрых нейтронах. Реакторы на быстрых нейтронах кардинально отличаются от всех остальных: плотность тепловыделения в них в несколько раз больше, поэтому в качестве теплоносителя там приходится использовать жидкий натрий или свинец вместо воды. При работе такого реактора происходит очень интенсивное выделение нейтронов, которые поглощаются слоем урана-238, расположенного вокруг активной зоны.
Технологии переработки облученного топлива так же важны для атомной энергетики будущего, как и новые реакторы и ранее не существовавшие виды топлива. Именно они помогут сделать атомную энергетику не только экономически доступной и безопасной, но и практически безотходной в своей производственной цепочке и жизненном цикле.
И, таким образом, эта замкнутая система станет практически независимой от внешних поставок сырья». Идеи о замыкании ядерного топливного цикла были высказаны советским физиком Александром Лейпунским еще на заре атомной промышленности. А теперь наша страна открывает всему миру новую эру в использовании атомной энергии: экономически эффективной, абсолютно безопасной и экологически чистой. Президент Российской академии наук Александр Сергеев считает, что «строительство БРЕСТа знаменует собой начало новой эпохи в мировой ядерной энергетике». Строительство комплекса должно завершиться к 2030 году. А в будущем установка может стать даже объектом экспорта.
В реализации проекта принимают участие более 30 организаций и более полутора тысяч ученых, инженеров и конструкторов. Главная заслуга принадлежит именно людям, которые трудились над созданием уникального проекта. Именно ОДЭК является примером, когда резерв ученых и инженеров советского времени нашел свое проявление в современном времени, — с гордостью говорит Вячеслав Першуков. Экоэнергетика «Прорыв» стал первым в мире атомной энергетики проектом, где сохраняются ресурсы планеты.
Или закинули в топку космического корабля брикеты, через несколько лет достали их, стряхнули сажу от сгоревшей упаковки, обернули в новую — и снова заправили ими двигатель. Как скоро эти мечты станут реальностью? Пока неизвестно. Но именно по такому принципу на Белоярской АЭС в Свердловской области уже целый год работает реактор.
О том, что за топливо там используют и почему его называют «вечным», мы поговорили с руководителем отдела технологий топлива для быстрых и газовых реакторов АО «ВНИИНМ» Андреем Давыдовым. По мнению специалистов, это знаковое для всего мира событие, которое дало старт энергетике будущего. ВВЭР-1200 — мощь и безопасность: рассказываем об одном из самых распространённых реакторов в мире — В стандартных водо-водяных энергетических реакторах ВВЭР используется обогащённый уран-235, потому что тот, который выкопали из шахты, для ВВЭР не годится. А вот МОКС-топливо — это уранплутониевый оксид, который практически не горит, поэтому его можно использовать снова и снова. Для его производства подойдёт либо природный уран, которого в сотни раз больше, чем искусственно полученного изотопа, либо обеднённый — то есть отходы от технологии обогащения урана, которых и у нас в стране, и во всём мире накоплено огромное количество. Правда, использовать МОКС-топливо можно только в реакторах на быстрых нейтронах. Для справки Почти все реакторы на планете — тепловые, и работают они на изотопе уран-235. В них тепловыделяющие элементы твэлы отдают в воду большое количество тепла в процессе деления нейтронов.
Примерно раз в пять лет твэлы нужно заменять. Их деактивируют, а опасные элементы отправляют в спецхранилище для отработавшего ядерного топлива ОЯТ. Такой принцип работы называют открытым ядерным топливным циклом ОЯТЦ. Быстрые же реакторы работают в условиях замкнутого ядерного топливного цикла ЗЯТЦ. В таком цикле из ОЯТ выделяют немного веществ, которые требуют захоронения, а остальное можно использовать повторно. В МОКС-топливе есть ещё один важный компонент — плутоний. Его у нас тоже очень много — ведь он копится в любом ядерном топливе при работе реактора. И когда мы перерабатываем отработавшее топливо, то извлекаем из него плутоний.
За ядерным топливом будущее? Этот материал представляет собой отличный энергетический источник — собственно, в МОКС-топливе он выступает основным энерговыделителем. Когда работает быстрый реактор, плутоний делится, отдаёт свою энергию натрию, а тот преобразует её в электричество. Но это ещё не всё.
Конструкция БРЕСТ-300 обеспечивает так называемую естественную безопасность: на этом реакторе невозможна авария из-за неконтролируемого выброса нейтронов, приводящего к цепным реакциям, например в случае разгона реактора по мощности. Реактор такого типа с электрической мощностью 300 МВт уже начали возводить в Северске Томская область. Вокруг него будет построен комплекс, который позволит решать задачи регенерации топлива. И все процессы создания замкнутого топливного цикла будут сосредоточены в одном месте. Когда в рамках проекта БРЕСТ-300 задача по замыканию ядерного топливного цикла будет успешно решена, Россия получит практически неисчерпаемый источник энергии.
Параллельно будет решена задача по выводу ядерных отходов из топливного цикла без нарушения естественного радиационного баланса Земли. Проектируемый топливный цикл проекта БРЕСТ-300 обеспечит возврат ровно того же количества радиации, которое извлечена из земных недр. Теоретически эта задача российскими учеными просчитана. Дело за практикой. В 1945 году Энрико Ферми сказал, что страна, которая первой разработает реактор на быстрых нейтронах, получит значительное преимущество в использование атомной энергии. Россия первой запустила реактор на быстрых нейтронах с полным циклом использования МОКС-топлива, которое позволяет использовать неисчерпаемые запасы природного урана. Это дает нашей стране неоспоримый долгосрочный приоритет в энергетическом обеспечении промышленного роста.
"Росатом" надеется ввести реактор "БРЕСТ" в 2028-2029 гг
На Белоярской АЭС после планово-предупредительного ремонта (ППР) включили в сеть энергоблок № 4 с реактором на быстрых нейтронах БН-800. Россия продолжила работу с реакторами на быстрых нейтронах единственная в мире. "Росатом" завершил передачу 25 тонн высокообогащенного урана для первого китайского реактора на быстрых нейтронах. При выстраивании двухкомпонентной атомной энергетики с замыканием ядерного топливного цикла то, что не знали куда деть, становится ценнейшим сырьем – реакторы на быстрых нейтронах «питаются» тем, что остается после работы обычных реакторов. Но картина решительно меняется при рассмотрении широкомасштабного внедрения ядерных реакторов на быстрых нейтронах и замыкании топливного цикла.
Multi-Purpose Fast Reactor (MBIR)
ЯРДы позволят прорваться в дальний космос, освоить пояс астероидов и другие планеты. У человечества осталось совсем немного времени и свободного урана, его дефицит нарастает с каждым годом. Если его сжечь на Земле в ближайшее столетие, у нас не останется энергии, чтобы вырваться из «колыбели». В этом и заключается глубинный смысл «Прорыва». Пока наши солдаты и офицеры сражаются за независимость нашей Родины, за ее границы и саму человечность, попранную западным миром, наши ядерщики сражаются за будущее не только России, но и всего человечества. Единственная держава, которая способна справиться с этой умопомрачительной задачей — Россия. Важно понимать, что это давно уже не вопрос теоретической науки, он перешел в сугубо практическую — инженерную — плоскость. Наши инженеры знают, как замкнуть топливный цикл. Эта победа особенно важна в эти дни, поскольку наши ядерщики заложили еще один камень в фундамент нашего энергетического могущества.
Когда мы прорвемся, то станем неуязвимыми извне. Это понимают наши враги, и — я сейчас смелую мысль выскажу, но я ее обязан высказать — не исключено, что это одна из причин, почему они развязали войну. Наши воины защищают не только нашу границу и наших граждан, они обороняют в том числе и «Прорыв».
В частности, реактор БН-800 в 2022 году был переведен на промышленное смешанное оксидное уран-плутониевое МОКС-топливо. Другой вид уран-плутониевого топлива для быстрых реакторов — нитридное СНУП-топливо, оно будет использоваться в первом инновационном реакторе со свинцовым теплоносителем БРЕСТ-ОД-300 строится в Северске в рамках отраслевого проекта "Прорыв". В случае с МОКС-топливом у нас отработана вся технология производства и накапливается опыт эксплуатации БН-800 с полной загрузкой активной зоны уран-плутониевым топливом. В ходе исследований постепенно достигается все более высокая глубина выгорания ядерного топлива.
Это единственные в своем роде промышленные реакторы, которые относятся к классу «размножителей». Запасов этих изотопов примерно в 100 раз больше, чем запасов «обычного» энергетического урана-235. Реактор-размножитель из некогда «мусорного» обедненного урана-238 нарабатывает плутоний-239, который можно использовать как высокоэнергетическое ядерное топливо повторно — для розжига смеси из бедных изотопов. Но даже не это самое замечательное свойство новых реакторов. Дело в том, что размножители способны нарабатывать ядерное топливо в количестве, превышающем потребности самого реактора. С сугубо практической точки зрения мы можем получить топлива больше, чем загрузили.
Закон сохранения энергии при этом не нарушается. Иными словами, Россия сделала еще один важный шаг к созданию «вечного двигателя», пока на уровне эксперимента. Его должны построить к 2026 году. К 2035 году российская атомная энергетика может стать двухкомпонентной, то есть она будет состоять из «тепловых» и «быстрых» реакторов. Это и есть тот самый ЗЯТЦ — «замкнутый ядерный топливный цикл». У нас может появиться безотходная атомная энергетика.
Даже если реактор будет поврежден и рабочий носитель выйдет наружу, он просто медленно вытечет, охладится и застынет, сам собой закупорив повреждение во внешнем контуре. Никаких радиационных ужасов, вроде катастрофы на Чернобыльской АЭС, уже не будет. В перспективе КПД может вырасти еще больше, если вместо паровой турбины к реактору будет подключена газовая турбина с замкнутым циклом. В-третьих, реакторы на быстрых турбинах, благодаря особенностям своей конструкции, сами воспроизводят ядерное топливо. Внутри БРЕСТ уран-238 будет поглощать свободные нейтроны и превращаться в изотоп другого химического элемента — в плутоний-239. А это, к слову, начинка для ядерного оружия.
При оптимальных условиях при делении одного ядра урана-235 можно будет получить 1,25 ядра нового оружейного плутония-239 из урана-238. Звучит фантастически. Заметим, что Российская Федерация в области подобных передовых энергетических технологий реально находится впереди планеты всей. Ни США, ни Франция, ни Япония, начав эксперименты с жидким натрием в качестве носителя в реакторах на быстрых нейтронах, так и не смогли добиться их устойчивой работы.
Российские атомщики совершили «Прорыв» за всё человечество
Получение лицензии Ростехнадзора позволит перейти к следующему этапу испытаний: можно будет провести комплексные тесты оборудования всех производственных участков полной цепочки изготовления тепловыделяющих сборок БРЕСТ-ОД-300 с использованием обеднённого урана. В его основе два ключевых компонента — обеднённый уран и плутоний, извлекаемый из облучённого ядерного топлива.
Производство и внедрение такого топлива позволит увеличить ресурс атомных электростанций, утилизировать накопленные запасы обеднённого урана, перерабатывать облучённые элементы для производства свежего топлива вместо их хранения, а также радикально сократить образование ядерных отходов и их активность.
А это, как мы знаем, тоже ядерное топливо, основа всего ядерного оружия в современном мире. В идеале на каждое разделившееся ядро урана-235 мы можем получить 1,25 ядра нового плутония-239, который чудесным образом возник прямо в реакторе из «бросового» урана-238, непригодного для обычного деления. Конечно, идеальную картинку в реальном реакторе получить невозможно. Нейтроны активно захватываются ядрами других элементов, присутствующих в активной зоне: осколками деления, теплоносителем и замедлителем, стержнями управления и защиты, часть нейтронов просто вылетает из активной зоны. Поэтому в современных реакторах на легкой воде, например упомянутых ВВЭР, коэффициент размножения топлива составляет 0,5—0,7.
Хотя, что интересно, нужный нам плутоний-239 в них тоже образуется, пусть и не так быстро. Энергоблок БРЕСТ за счет своей конструкции, особого расположения топливных элементов, использования слабо активируемого свинцового теплоносителя позволяет получить коэффициент воспроизводства топлива гораздо выше единицы — по расчетам, до 1,2, что уже очень близко к теоретическому пределу.
При этом он химически пассивен при контакте с воздухом или водой, поэтому исключены возможные взрывы при нештатной разгерметизации контура реактора. Это чрезвычайно важно для безопасности современной ядерной энергетики.
Даже если реактор будет поврежден и рабочий носитель выйдет наружу, он просто медленно вытечет, охладится и застынет, сам собой закупорив повреждение во внешнем контуре. Никаких радиационных ужасов, вроде катастрофы на Чернобыльской АЭС, уже не будет. В перспективе КПД может вырасти еще больше, если вместо паровой турбины к реактору будет подключена газовая турбина с замкнутым циклом. В-третьих, реакторы на быстрых турбинах, благодаря особенностям своей конструкции, сами воспроизводят ядерное топливо.
Внутри БРЕСТ уран-238 будет поглощать свободные нейтроны и превращаться в изотоп другого химического элемента — в плутоний-239. А это, к слову, начинка для ядерного оружия. При оптимальных условиях при делении одного ядра урана-235 можно будет получить 1,25 ядра нового оружейного плутония-239 из урана-238. Звучит фантастически.
Росатом делает значительный шаг вперед в трансмутации отходов уранового топлива
Специальный модуль создает ядерное топливо, затем оно поступает в энергоблок «Брест-ОД-300» на быстрых нейтронах, а после переработки то же самое топливо возвращается обратно в реактор, и снова по кругу. Здесь были выдвинуты и реализованы идеи создания реакторов на быстрых нейтронах и реакторов с прямым преобразованием ядерной энергии в электрическую. Реактор на быстрых нейтронах БН-800 Белоярской АЭС был полностью переведен на уран-плутониевое МОКС-топливо.
«Росатом» начал строить первый в мире атомный энергоблок с безотходным циклом
Сообщается, что отечественные реакторы на быстрых нейтронах ранее загружались обычным урановым топливом, т. к. отрабатывали на них натриевые технологии. Заметим, что и быстрые нейтроны появились в Поднебесной не без участия России. Раньше в российские реакторы на быстрых нейтронах загружали обычное урановое топливо, так как на них отрабатывали натриевые технологии.