Новости наукастинг осадков на 2 часа

Нейросетевые методы наукастинга осадков: обзор и апробация существующих решений. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг).

И снова про наукастинг

  • Яндекс научился предсказывать осадки на ближайшие 2 часа
  • 12 самых точных сайтов прогноза погоды
  • Космическая гидрометеорология - прогноз погоды по данным со спутников | Пикабу
  • опчпуфй рпзпдщ

Как мы делали краткосрочный прогноз осадков. Лекция в Яндексе

Система наукастинга позволяет зафиксировать момент зарождения опасного явления и тогда спрогнозировать на два часа траекторию его перемещения, усиления или, наоборот, рассеивания энергии. Прогноз осадков на 2 часа (наукастинг). Сотрудники «Фобоса» предупредили россиян о мощнейшей за шесть лет вспышке на Солнце. Погода в Казахстане 16 февраля: ожидаются сильные морозы, на юго-востоке — осадки. Фобос – последние новости. Сопоставление прогностических и истинных значений продолжительности осадков Заключение Предложено уравнение множественной регрессии для текущего прогноза продолжительности осадков на срок до двух часов.

10 самых точных сервисов прогноза погоды

Погоды Nowcasting — это сверхкраткосрочный прогноз погоды до 2—6 часов с шагом в 5—15 минут, предсказывающий поведение погодных явлений с коротким жизненным циклом. Такой прогноз в той или иной степени сводится к задаче экстраполяции наблюдаемых метеорологических явлений, так как настоящие тяжёлые физические модели для него менее приспособлены и не могут оперативно учитывать быстро меняющие условия. Раз мы говорим о карте осадков, нам интересен источник данных об областях скопления влаги в воздухе, обладающий относительно высокой частотой обновления. Лучше всего для этого подходят метеорологические радары, предоставляющие такую информацию напрямую в виде изображений, и геостационарные спутники, снимки с которых надо предварительно обработать. При этом можно интерпретировать кадр как обычную картинку и свести задачу к работе с видеоизображением.

Рисунок 2. Пример изображений с метеорологического радара. Вверху: пример входных кадров для модели. Внизу: ожидаемые кадры во время предсказания.

Любопытный диалог состоялся в свое время у Сталина и метеорологической службы. Сталин: «Какой процент точности ваших прогнозов? Сталин: «Тогда вам стоит говорить наоборот, и результат будет более точным». Критерии выбора источника прогнозов Благодаря современной науке мы можем узнать холодно или тепло на улице и брать ли с собой зонт, не выходя из дома, какую одежду надевать. Самые точные предсказания — те, что составлены на ближайшие три дня. Если прогнозируемый срок выше трех дней, то можно более-менее точно сориентировать по температуре воздуха, но не по осадкам. При поиске сайта стоит обратить внимание на: Период прогнозирования.

Если он больше семи дней, его нельзя назвать достоверным. Есть источники, способные спрогнозировать метеорологическую обстановку на несколько месяцев вперед. Рассчитывать на то, что это будут точные сведения, также не приходится. Есть ресурсы, которые рассказывают о погоде не только посредством цифр. Раздел «ощущения» поможет понять какую одежду выбрать для выхода на улицу. Два градуса тепла могут ощущаться по-разному в зависимости от наличия ветра, влажности и пр. Многие сайты выпускают мобильные приложения.

Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте.

Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4. Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически?

Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше.

Алгоритмически гораздо лучше находить векторное поле с помощью минимизации. Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают.

Мы долго думали, что же оставить — нейронные сети или алгоритмические вычисления векторного поля. Но всё победил тот самый лазерный меч в Иваново. Когда он висит над вами как дамоклов меч и зануляет вокруг себя все вектора, то облака не могут ни пересечь его, ни двигаться в одном районе с ним. Даже какого-то физического движения на картинке не происходит.

Поэтому в конечном итоге мы пришли к нейронной сети. Сейчас нейронная сеть работает и выдает предсказания, схематически ее архитектура изображена здесь. Она составлена из 12 примерно одинаковых блоков. Каждый блок последовательно строит прогноз по своему горизонту, получая на вход некоторый тензор состояния и последний радарный снимок, последнее предсказание с предыдущего горизонта.

Тензор состояния имеет довольно маленькую размерность, всего 32 x 32 на 30 каналов, но сверткой к инволюции мы получаем из него векторное поле, опорные вектора для преобразования thin plate spline. И, наоборот, сверткой к деконволюции мы получаем места, где выпадают осадки. Такая архитектура нейросети учитывает, что в каких-то местах осадки выпадают традиционно. Например, туча, налетевшая на город, прольется с большей вероятностью, чем над лесом, потому что над городом другая атмосфера, микроклимат.

Там, например, попросту теплее. От горизонта к горизонту, от блока к блоку мы передаем состояние, о котором идет речь, и попутно немного меняем его с помощью residual network. Residual — это когда мы сам тензор меняем совсем немного, прибавляя к нему измерения. Обученная часть — дельта от обучаемой части, изменение тензора.

Мы берем запомненное состояние, с помощью деконволюции делаем из него какую-то карту выпадения осадков, складываем их с облаками и двигаем их. Такова нынешняя архитектура сети.

Это позволяет уже в начале весны произвести быстрый пересев озимых в тех регионах, где повреждение сельскохозяйственных культур значительно. Для каких сфер экономики еще важен ваш долгосрочный прогноз? И какие выводы на его основе можно сделать сейчас? Роман Вильфанд: У метеорологов очень плотные отношения с энергетиками. Конечно, мы выпускаем прогнозы на долгие сроки. Но гораздо более важны предупреждения за несколько дней о резком изменении температуры на семь-десять градусов и более, поскольку при резком значительном похолодании ТЭС нужно разогревать заранее.

Это важнейший элемент для деятельности энергетиков. Оптимальным образом используются и прогнозы длительных холодов для одного или нескольких субъектов Российской Федерации. В этом случае поскольку энергия в нашей стране закольцована заранее рассчитывается и реализуется передача энергии из тех регионов, где стоит теплая погода. Синоптики народ скромный. И высокий уровень своей работы характеризуют так: "От потребителей претензий не было". Так вот за последние пять лет рекламаций от энергетиков не поступало. К 2020 году синоптики доведут точность прогнозов температуры до 98 процентов Про синоптиков много есть шуток, смысл которых сводится к тому, что они слишком часто ошибаются. Станут ли прогнозы точнее?

Роман Вильфанд: Да, существует саркастическая фраза, что синоптик ошибается только один раз, но каждый день. За последние два десятилетия качество прогнозов постоянно повышается. Сейчас мы прогнозируем погоду на сутки с успешностью 96 процентов. Так что сегодня эта шутка уже не актуальна. Мы надеемся, что к 2020 году доведем точность прогнозов температуры до 98 процентов. И тогда будет справедливо совсем не ироничное утверждение: "Синоптик ошибается один раз в 50 дней". Но никогда прогноз погоды не будет достоверным на 100 процентов. Весной Гидрометцентр начал делать высокоточные краткосрочные прогнозы, буквально на два часа.

Сейчас в каких территориях их можно сделать? Роман Вильфанд: Это новое направление - наукастинг, который позволяет выпускать прогноз об опасных явлениях погоды на ближайшие несколько часов. В России он пока в стадии становления. Развивать его можно только если территория страны покрыта радарами. Причем радарами с доплеровским эффектом. Очень важны данные грозопеленгаторов. Активно используется спутниковая информация. И конечно же, для наукастинга постоянно совершенствуется мезомасштабная модель атмосферы.

Работа ведется в тесном сотрудничестве с Центральной аэрологической обсерваторией и научно-исследовательским центром "Планета". Сейчас мы только-только выпустили инструкцию, как использовать синоптику радарные данные. И ее еще придется дорабатывать. Еще раз повторю: сейчас стадия эксперимента, но она близка к завершению. Думаю, что со следующего года в Московском регионе, да и не только в Московском, в Центральном федеральном округе эта система заработает.

Арбат, Москва

Развивается новое направление в прогнозировании погоды — наукастинг, позволяющий выпускать сверхкраткосрочный прогноз об опасных явлениях погоды на ближайшие несколько часов. За сегодняшний день в Москве выпадет около 30% месячной нормы осадков. Прогноз осадков на 2 часа (наукастинг).

В китайской провинции Гуандун после нескольких дней осадков реки вышли из берегов

meteoinfo ru [delete] [delete] прогноз осадков на ближайшие 2 часа. На сайте сервиса можно также найти «погодные новости» из разных регионов России и мира, метеорологические карты и графики, статьи на тему погоды и детский раздел с познавательно-развлекательной информацией.
Цветные осадки: дождь с песком придет на Южный Урал Грозовые дожди в Новгородской области.

наукастинг осадков на 2 часа

Ventusky - Wind, Rain and Temperature Maps За полтора часа в центре Москвы выпала почти треть апрельской нормы осадков, заявила в беседе с РИА Новости ведущий сотрудник Гидрометцентра России Марина Макарова.
Предоставляем метео данные Прогноз осадков на 2 часа (наукастинг). За сутки выпадет около 20,7 мл осадков.
Предоставляем метео данные Такой прогноз называется наукастинг, обычно он делается на ближайшие часы (до 2-6 часов вперед).
Композитная карта Новости от 08.04.2024 10:31.

Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час

Прогноз осадков на 2 часа (наукастинг). Ведущий специалист центра погоды «Фобос» Александр Синенков спрогнозировал резкие перепады температуры воздуха в ряде регионов России. Опасные явления BUFR Отражаемость 1км BUFR Прогноз ICON-EU 1ч сумма осадков Высота ВГО BUFR Дифференциальная отражаемость 1км BUFR Дифференциальная отражаемость 2км BUFR Доплер скорость 1км BUFR Доплер скорость 2км BUFR Доплер скорость 3км BUFR. Usage[edit]. Data extrapolation, including development or dissipation, can be used to find the likely location of a moving weather system. The intensity of rainfall from a particular cloud or group of clouds can be estimated, giving a very good indication as to whether to expect flooding, the swelling of a river. Развивается новое направление в прогнозировании погоды — наукастинг, позволяющий выпускать сверхкраткосрочный прогноз об опасных явлениях погоды на ближайшие несколько часов. Live wind, rain, radar or temperature maps, more than 50 weather layers, detailed forecast for your place, data from the best weather forecast models with high resolution. В отдельных районах менее чем за час выпало свыше 70% месячной нормы осадков.

Новая карта осадков в «Яндекс погоде» — с прогнозом на сутки вперед

В отдельных районах менее чем за час выпало свыше 70% месячной нормы осадков. Продукция региональных краткосрочных прогнозов. Прогноз осадков на 2 часа (наукастинг). Региональные краткосрочные прогнозы. Прогноз осадков на 2 часа (наукастинг).

Предоставляем метео данные

Аристотель в IV веке до нашей эры описал разные природные явления в своей книге «Метеорологика» — и, собственно, дал название науке о погоде. В переводе с древнегреческого это означает «небесные предметы» — поскольку философ считал солнце, звёзды, кометы и дожди явлениями одной природы. Старейшие из дошедших до нас метеорологических записей — это глиняные дощечки из Вавилонии, хранящиеся теперь в Британском музее, в Лондоне. На них записаны различные приметы погоды большей частью связанные с урожаем. Например, такие: «Когда гром гремит в месяце Себат, то появится саранча» или «Когда солнце окружено кругом, то пойдёт дождь». Под кругом имеется в виду солнечное гало, атмосферное оптическое явление — древний признак ухудшения погоды. Гало и на самом деле может означать, что будет дождь, поскольку эта радужная сфера образуется от сверкания кристалликов льда в облаках на высоте около 5 км, которые относятся к плотным тёплым облакам зимой — снежным, летом — дождевым. О погоде много писали астрологи Индии и Китая.

И даже Гиппократ посвятил этой теме отдельный труд. Первым термометром была стеклянная трубка с полым шаром на конце, а другой конец стоял в воде. Он был похож на барометр, только воздух из трубки не откачивался, а служил детектором температуры. Остывая, воздух в шаре сжимался, и вода поднималась, а при её повышении происходило обратное. Показания такого термоскопа зависели не только от температуры, но и от давления, поскольку прибор не был запаян. Нужно было сделать приёмником температуры воду и заключить её в герметический резервуар. Исаак Ньютон пытался вывести и использовать формулы, которые помогут рассчитать погоду на несколько дней вперёд, и некоторые его расчёты до сих пор не потеряли актуальности.

Уже в XVII веке учёным было очевидно, что погода «делается» с помощью движения холодных и тёплых воздушных масс, которые встречаются между собой, всегда образуют в месте встречи возмущение атмосферы и двигаются вроде в более-менее предсказуемых направлениях. Но раз на раз не приходится — формула по-прежнему даёт сбои. Эффект бабочки, или Почему метеорологи ошибаются с прогнозами Главная проблема, как раньше, так и сейчас, состоит в изменениях, которые с этими массами или атмосферными фронтами происходят после их смешения. Они меняют и температуру, и плотность, а, значит, и двигаться начинают немного иначе. В начале ХХ века считалось, что при смешении воздушных масс холодный фронт наступает на тёплый, а на их границе обычно выпадают осадки. Название атмосферным фронтам дал норвежский ученый Якоб Бьёркнес — он писал свою работу во время Первой мировой войны. С появлением радаров и спутников стало понятно, что движение вихревое или турбулентное и взаимное влияние воздушных потоков настолько сложное, что никаких чётких фронтов в этом движении нет.

По сути, это бесконечное и хаотическое смешивание и закручивание воздушных струй.

Нужно обязательно отметить, что вся эта работа — и по развитию современной наблюдательной сети, и по созданию системы раннего предупреждения, — в изложении кажется стройной легкой, логичной. Мне бы не хотелось, чтобы создавалось такое ощущение. Предстоит очень напряженная работа с появлением вопросов, заранее неочевидных. Например, на этапе создания градиентных наблюдений могут возникнуть юридические проблемы. Разработка модели высокого разрешения требует наличия очень детального описания городской топографии в цифровом виде и многое другое. Понятно, что при выполнении пионерских работ могут возникать неожиданные преграды. Но эта многоаспектная работа настолько социально значима и настолько профессионально интересна, что она должна быть завершена за два года. Можете рассказать о ней?

Каковы распределения температур в глубине? На одном и том же поле почвы имеют разный состав. Важно понять, насколько эффективны приборы, насколько репрезентативны данные для описания всего поля. Еще целый ряд аспектов возникает: существует спутниковая информация, которая дает полное покрытие по всему Земному шару, а мы используем только станции. Но спутниковая информация имеет погрешности, ошибки. Стоит задача калибровки спутниковой информации по этим натурным данным, чтобы, откалибровав, распространить ее на значительную территорию. Но эта калибровка не может быть выполнена раз и навсегда. При следующем пролете спутника над этой территорией ее нужно произвести снова. Здесь у нас будет не менее сильная, просто одна из пионерских, работ Кстати говоря, для нашей службы очень важны всевозможные схемы интерпретации спутниковой информации.

Можно получить максимально полное представление о том, что происходит на полях: засушлива почва или нет, условия вегетации соответствую норме или не совсем, находится ли растение в подавленном состоянии, ну и т. Эти аспекты очень важны методически и в последующем для оценки урожая. Не везде ведь сейчас хватает метеостанций. Решить эту задачу, например, в рамках Российского метеорологического общества, которое планируется создать? Для того чтобы вести наблюдения, человеку нужно получить лицензию. И все. На самом деле, я-то позитивно отношусь к людям, волонтерам, которые готовы вести наблюдения и передавать эту информацию. Но объективно для достоверного описания состояния атмосферы есть ряд сложностей. Есть "большие данные", big data.

Это очень актуальная проблема: у миллионов людей в гаджетах, есть устройства, где можно измерить температуру, давление. С какой степенью доверия относиться к этим данным? Наши-то данные постоянно проверяются. Это большой методический вопрос, который обсуждается во всем метеорологическом мире. Для того чтобы использовать наблюдения, нужно, чтобы они велись методически правильно. Ошибка большая в наблюдениях влечет за собой большую ошибку в прогнозе. Можно сфотографировать зарождение смерча в отдаленном районе, который не фиксировали. Если для смерча созданы условия, значит, в атмосфере существует сильная неустойчивость. Мгновенно все метеорологи должны насторожиться.

Но вдруг снимки — фейк?

Третий компонент наукастинга — алгоритм применения векторного поля. Здесь наука умеет довольно многое. Мы взяли за основу thin plate spline transform — преобразование картинки, которое представляет ее в виде тонкой резиновой пластины и растягивает некоторые места. Мы параметризуем это преобразование всего несколькими опорными векторами, а все остальные вектора движения внутри картинки восстанавливаем сплайновой интерполяцией. Такая технология используется, например, в восстановлении движения по последнему кадру из видео. Известная научная работа. Вооружившись полученными знаниями, мы начали пытаться строить прогноз.

Первое решение, которое пришло в голову, — просто обучить несколько нейросетей так, чтобы первая нейросеть предсказывала ситуацию на радаре через 10 минут, вторая — через 20 минут, третья — через 30. Требование было следующим: предсказывать радарные данные где-то на два часа вперед. Предсказания получались вот такие. Примерно тогда же, когда мы обучили 12 нейросетей, у нас появилась возможность визуализировать данные на карте. Посмотрев на скачущие облака, менеджеры сказали: это мы выпускать точно не будем. Один из них сказал: конечно, я понимаю, что это максимизирует вероятность чего-то там, но пользователю такое не объяснить — в жизни облака так не скачут. Во время следующей итерации мы решили считать только векторное поле и умножать опорные вектора на 2 и 3, чтобы получить перенос не на 10, а на 20 минут и 30 минут соответственно. На ближних горизонтах результаты выглядели довольно прилично, но чем дальше, тем чаще с краю появлялись артефакты.

Оказалось, что в векторном поле слишком большие вектора разрывают thin plate spline, и у нас появляется второе зеркальное отражение нашей картинки. Потом отражения сливаются. На ближних горизонтах артефакт не был заметен, но на дальних проявлялся очень сильно. Из ниоткуда возникало облако. Третьим решением стало последовательное применение одного и того же преобразования thin plate spline к одной картинке. С одной стороны, оно способствовало накоплению ошибок. Это было первое реально работающее решение, которое мы показывали при внутреннем бета-тесте. Нейросеть получала на вход шесть радарных снимков за последний час, несколькими свертками приводила их к тензору из 16 векторов 4 x 4.

Cплайновое преобразование восстанавливалось по векторам и последовательно применялось к картинке для получения каждого следующего горизонта прогноза. Решение довольно хорошо себя показало, но оставался единственный вопрос: зачем нужна нейросеть? Если красные свертки — единственная часть, которую мы обучаем, почему бы нам не вычислить векторное поле самостоятельно, алгоритмически? Так что четвертое решение, которое заметно улучшило результат, использовало явную минимизацию loss-функции. Мы искали векторное поле, которое бы одинаково хорошо приближало переход на 10 минут в последний час. От —60 минут до —50, потом до —40 и т. Мы применяли это векторное поле к t0, чтобы получить прогноз на 10 минут дальше. Алгоритмически гораздо лучше находить векторное поле с помощью минимизации.

Оно быстрее работает, не требует обучения. Самое интересное — оно не требует всех данных. Можно пропустить какие-то данные — а радары довольно часто запаздывают.

Кстати, обычно смотрят на ласточек... На сим пока всё, на этом откланиваюсь... Кстати, не забудьте взять зонтик!..

рПЗПДБ Ч НЙТЕ

Live wind, rain, radar or temperature maps, more than 50 weather layers, detailed forecast for your place, data from the best weather forecast models with high resolution. Новости от 08.04.2024 10:31. Прогноз осадков на 2 часа (наукастинг). последние новости сегодня в Москве. есть сайт метеовести это погодного центра фобос, ну и разумеется данные гидрометцентров РФ и РТ, у рф центра есть крутой раздел наукастинг 2 часа, там можно за дождями, снегом следить. наукастинг – сроком до двух часов.

Опрос: подписки Mail.ru

  • Синоптик Вильфанд: около 30% месячной нормы осадков выпало в Москве за час
  • Предоставление данных о погоде - ООО "ДАНИО-пресс"
  • Бушующая «Ольга». Что принесет россиянам новый циклон?
  • ТЕХНО — Современный оракул
  • Анализ группы
  • В Росгидромете назвали точную дату наступления весны

Как мы делали краткосрочный прогноз осадков. Лекция в Яндексе

наукастинг осадков на 2 часа Совместная технология детерминистского наукастинга и сверхкраткосрочного прогноза осадков на основе экстраполяции данных.
Search code, repositories, users, issues, pull requests... 022. Прогноз осадков на два часа — Алексей Преображенский.

Похожие новости:

Оцените статью
Добавить комментарий