Новости сколько неспаренных электронов у алюминия

Сколько неспаренных электронов у алюминия. Неспаренный электрон Химический элемент – определенный вид атомов, обозначаемый названием и символом. Для определения количества неспаренных электронов в атоме ас нужно рассмотреть электронную конфигурацию атома и заполнение его орбиталей. У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон. Количество неспаренных электронов на внешнем уровне в атомах алюминия делает его реактивным элементом, склонным образовывать химические соединения с другими элементами, чтобы достичь стабильности и заполнения последнего энергетического уровня.

Количество неспаренных электронов в основном состоянии атомов Al

Это состояние атома называется основным. По числу неспаренных электронов можно сказать, что углерод проявляет валентность равную II. Однако такая валентность проявляется только в некоторых соединениях. В органических соединениях и некоторых органических веществах углерод проявляет валентность равную IV. Эта валентность характерна для возбужденного состояния С. Из основного в возбужденное состояние он может переходить при получении дополнительной энергии. Один электрон с s-подуровня переходит на p-подуровень, где есть свободная орбиталь. Атом С способен присоединять и отдавать электроны с образованием ковалентных связей. Валентные возможности азота У азота на валентном энергетическом уровне находится 5электронов: 3 неспаренных и 2 спаренных. Исходя из этого, валентность азота может быть равна III. В возбужденное состоянии атом азота не может переходить.

Однако азот может выступать в качестве донора при образовании ковалентных химических связей, обеспечивая своей электронной паре атом, имеющий свободную орбиталь. В этом случае валентность у азота будет равна IV, причем для азота, как элемента пятой группы, это максимальная валентность. Валентность V он проявлять не способен. Валентные возможности фосфора В отличие от азота, фосфор имеет свободные 3d-орбитали, на которые могут переходить электроны. На внешнем энергетическом уровне находятся 3 неспаренных электрона.

Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6. В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3. Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние. Ответ: 23 Пояснение: Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. Менделеева, являются щелочными металлами , у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние. Атом азота не способен переходить в возбужденное состояние так как заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали. Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1.

При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2. Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2. При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3. Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3. Ответ: 23 Пояснение: Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, то есть это p -элементы. Таким образом искомые элементы — азот и фосфор. Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня.

Ответ: 34 Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5 Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень. Ответ: 13 Пояснение: Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него. Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов. Ответ: 34 До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода. Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3.

Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода. Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь. Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4. Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы.

Внешний электронный уровень атома Al На внешнем уровне атома алюминия находится один электрон, который можно представить следующим образом: Электрон на внешнем уровне атома алюминия обладает одним отрицательным зарядом и находится на энергетически высоком уровне.

Этот электрон может образовывать химические связи с другими атомами, чтобы создать стабильные молекулы. Например, атом алюминия может образовывать связь с тремя атомами кислорода, чтобы создать молекулу оксида алюминия Al2O3. Наличие одного неспаренного электрона на внешнем электронном уровне делает атом алюминия реактивным и способным образовывать связи с другими химическими элементами. Это обуславливает множество физических и химических свойств атома алюминия. Валентность атома Al Валентность атома алюминия Al представляет собой количество электронов, находящихся на его внешнем энергетическом уровне.

В атоме алюминия общий номер электронов равен 13, а его электронная конфигурация имеет следующий вид: 1s2 2s2 2p6 3s2 3p1. На внешнем энергетическом уровне 3-м энергетическом уровне атому алюминия находится 3 электрона. Таким образом, валентность атома Al равна 3. Валентность алюминия определяет его химические свойства и способность образовывать связи с другими атомами.

Менделеева, электронная конфигурация внешнего слоя атома фтора — 3s 2 3p 5. В данном случае в возбужденном состоянии невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2. Менделеева, электронная конфигурация внешнего слоя атома железа — 4s 2 3d 6. В данном случае в возбужденном состоянии также невозможно получить электронную конфигурацию внешнего электронного уровня ns 1 np 2.

Азот — элемент главной подгруппы пятой группы и второго периода Периодической системы, и электронная конфигурация внешнего слоя атома азота — 2s 2 2p 3. Определите, для атомов каких из указанных в ряду элементов возможен переход в возбужденное состояние. Ответ: 23 Пояснение: Рубидий и цезий — элементы главной подгруппы первой группы Периодической системы Д. Менделеева, являются щелочными металлами, у атомов которых на внешнем энергетическом уровне расположен один электрон. Поскольку s -орбиталь для атомов данных элементов является внешней, невозможен перескок электрона с s — на p -орбиталь, и следовательно, не характерен переход атома в возбужденное состояние. Атом азота не способен переходить в возбужденное состояние так как заполняемым у него является 2-й энергетический уровень и на этом энергетическом уровне отсутствуют свободные орбитали. Алюминий — элемент главной подгруппы третьей группы Периодической системы химических элементов, электронная конфигурация внешнего слоя атома алюминия — 3s 2 3p 1. При переходе атома алюминия в возбужденное состояние происходит перескок электрона с 3s- на 3p- орбиталь, и электронная конфигурация атома алюминия становится 3s 1 3 p 2.

Углерод — элемент главной подгруппы четвертой группы Периодической системы, электронная конфигурация внешнего слоя атома углерода — 2s 2 2p 2. При переходе атома углерода в возбужденное состояние происходит перескок электрона с 2s- на 2p- орбиталь, и электронная конфигурация атома углерода становится 2s 1 2p 3. Определите, атомам каких из указанных в ряду элементов соответствует электронная конфигурация внешнего электронного слоя ns 2 np 3. Ответ: 23 Пояснение: Электронная конфигурация внешнего электронного слоя ns 2 np 3 говорит о том, что заполняемым у искомых элементов является p подуровень, то есть это p -элементы. Таким образом искомые элементы — азот и фосфор. Определите, атомы каких из указанных в ряду элементов имеют сходную конфигурацию внешнего энергетического уровня. Ответ: 34 Среди перечисленных элементов сходную электронную конфигурацию имеют бром и фтор. Электронная конфигурация внешнего слоя имеет вид ns 2 np 5 Определите, атомы каких из указанных в ряду элементов имеют полностью завершенный второй электронный уровень.

Ответ: 13 Пояснение: Заполненный 2-й электронный уровень имеет благородный газ неон, а также любой химический элемент, расположенный в таблице Менделеева после него. Определите, у атомов каких из указанных в ряду элементов для завершения внешнего энергетического уровня не достает 2 электронов. Ответ: 34 До завершения внешнего электронного уровня 2 электрона недостает p -элементам шестой группы. Напомним, что все p -элементы расположены в 6-ти последних ячейках каждого периода. Определите, атомы каких из указанных в ряду элементов в возбужденном состоянии имеют электронную формулу внешнего энергетического уровня ns 1 np 3. Среди указанных элементов 4 электрона на внешнем уровне имеют только атомы кремния и углерода. Электронная конфигурация внешнего энергетического уровня данных элементов в основном состоянии имеет вид ns 2 np 2 , а в возбужденном ns 1 np 3 при возбуждении атомов углерода и кремния происходит распаривание электронов s-орбитали и один электрон попадает на свободную p -орбиталь. Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют электронную формулу внешнего энергетического уровня ns 2 np 4.

Количество электронов на внешнем электронном уровне для элементов главных подгрупп всегда равно номеру группы. Таким образом, электронную конфигурацию ns 2 np 4 среди указанных элементов имеют атомы селена и серы, так как данные элементы расположены в VIA группе. Определите, атомы каких из указанных в ряду элементов в основном состоянии имеют только один неспаренный электрон.

Список тестов

  • Ал сколько неспаренных электронов на внешнем уровне
  • Сколько неспаренных электронов в основном состоянии у атомов группы Ал?
  • Количество неспаренных электронов
  • 1. Электронная конфигурация алюминия
  • ЕГЭ ПО ХИМИИ. ЗАДАНИЕ № 1. СТРОЕНИЕ АТОМА

Неспаренный электрон. Неспаренный электрон Атом алюминия в основном состоянии содержит

1 неспаренный электрон. Число неспаренных электронов — 1. «В пределах одного энергетического подуровня количество неспаренных электронов должно быть максимально возможным, и все неспаренные электроны должны находится в одинаковых спиновых состояниях». В возбужденном состоянии они содержат три неспаренных электрона, которые, находясь в sp2-гибридизации, участвуют в образовании трех ковалентных связей. Сколько валентных электронов содержит ион алюминия (Al 3+)? Количество неспаренных электронов равно разности между общим числом электронов на внешнем энергетическом уровне и числом электронов, которые могут быть спарены со всеми другими электронами.

Строение атома алюминия

Галлий, индий и таллий относятся к редким элементам. Вследствие близости ионных радиусов галлий сопутствует алюминию в бокситах, а таллий — калию в алюмосиликатах. Полученный оксид алюминия растворяют в расплавленном криолите Na3AlF6. Под действием выделяющегося кислорода графитовый анод выгорает, при этом образуется значительное количество вредных веществ — углекислого и угарного газов, углеводородов и их фторпроизводных. На производство 1т металла расходуется около 550 кг анода. Несмотря на это, другого более удобного материала для анода пока не найдено. Алюминиевые сплавы дуралюмин, силумин, авиаль с высокими прочностными, жаростойкими, антикоррозионными характеристиками широко используют в авиационной и космической технике, автомобиле- и судостроении, а также для изготовления химической аппаратуры, электрических кабелей. При хранении на воздухе таллий быстро темнеет, так как покрывается пленкой оксида. Строение таких веществ объясняют на основе представлений о трехцентровых двухэлектронных связях В—В—В. Алюминий, галлий и индий взаимодействуют с неметаллами О2, N2, S, галогенами Х2 и др. Возникающая гальваническая пара Al—Hg также вносит вклад в увеличение скорости реакции.

Как определить количество неспаренных электронов на внешнем уровне? Сколько неспаренных электронов на внешнем уровне в атоме Ал Атом алюминия Ал имеет атомный номер 13, что означает, что у него есть 13 электронов. Для определения количества неспаренных электронов на внешнем уровне необходимо знать электронную конфигурацию элемента. Электронная конфигурация алюминия: 1s2 2s2 2p6 3s2 3p1 Из этой конфигурации видно, что на внешнем уровне алюминия находится 3 электрона. При этом, у атома алюминия нет неспаренных электронов на внешнем уровне. Это означает, что атом алюминия может образовывать три связи с другими атомами, чтобы заполнить свой внешний энергетический уровень и достичь более стабильной конфигурации. Таким образом, свойства алюминия и его способность образовывать соединения в значительной степени определяются его электронной конфигурацией на внешнем энергетическом уровне. Сколько их играется в химических реакциях? В химических реакциях неспаренные электроны на внешнем уровне играют важную роль. Они позволяют атомам образовывать связи друг с другом и образовывать структуры различных молекул.

Поскольку алюминий находится в третьем энергетическом уровне, он имеет 8 электронов в своем первом энергетическом уровне и 5 электронов во втором энергетическом уровне. Поскольку алюминий имеет три электрона в своем втором энергетическом уровне, а первые два электрона во втором энергетическом уровне спарены, остается только один неспаренный электрон.

Свойства Алюминий — серебристый металл, обладающий высокой электропроводностью и пластичностью. Элемент при комнатной температуре легко соединяется с кислородом, образуя на поверхности оксидную плёнку, защищающую металл от коррозии. Образование плёнки препятствует реакции с водой, концентрированными азотной и серной кислотами, поэтому алюминиевая тара подходит для перевозки этих кислот.

Оксид алюминия. Для снятия оксидной плёнки используют соли аммония, горячие щёлочи, сплавы ртути. После разрушения оксидной плёнки алюминий вступает в реакцию со многими неметаллами и соединениями.

Сколько неспаренных электронов у алюминия. Неспаренный электрон

Строение атома алюминия Неспаренные электроны атома алюминия. Для определения количества неспаренных электронов в атоме алюминия, следует рассмотреть электронную конфигурацию.
Электроны на внешнем уровне алюминия Сколько валентных электронов содержит ион алюминия (Al 3+)?
Число неспаренных электронов в атоме алюминия равно. Неспаренный электрон. Теория по заданию Укажите число неспаренных электронов на внешнем уровне алюминия в его основном и, 69057420211224, Индекс цен — измеритель соотношения между стоимостью определенного набора товаров и услуг для данного периода времени и.

Сколько неспаренных электронов в основном состоянии атома алюминия?

  • Электронное строение атома алюминия
  • Электронное строение атома алюминия
  • Атомы и электроны
  • Атомы и электроны, подготовка к ЕГЭ по химии

Электроотрицательность. Степень окисления и валентность химических элементов

Сколько неспаренных электронов содержится в алюминии? Химическая Электронная конфигурация Электронная конфигурация. 1 неспаренный электрон. Это неспаренный электрон, свободная пара электронов и еще два электрона на связи с кислородом – всего пять.

Химия ЕГЭ разбор 1 задания ( Количество неспаренных электронов на внешнем слое)

«В пределах одного энергетического подуровня количество неспаренных электронов должно быть максимально возможным, и все неспаренные электроны должны находится в одинаковых спиновых состояниях». 1 неспаренный электрон. Атом алюминия состоит из положительно заряженного ядра (+13), вокруг которого по трем оболочкам движутся 13 электронов. Неспаренные электроны в атоме алюминия влияют на его химические свойства и. и неспаренных электронов у атома станет уже четыре. Сколько неспаренных электронов у алюминия. Неспаренный электрон. Как определить количество неспаренных электронов.

ЕГЭ ПО ХИМИИ. ЗАДАНИЕ № 1. СТРОЕНИЕ АТОМА

Валентность алюминия: все о цифрах и возможных комбинациях Сколько неспаренных электронов у алюминия. Неспаренный электрон Химический элемент – определенный вид атомов, обозначаемый названием и символом.
Количество неспаренных электронов Электронное строение нейтрального атома алюминия в основном состоянии.
Задание №1 ЕГЭ по химии • СПАДИЛО 3. Ниже приведены их квантовые числа (N - главное, L - орбитальное, M - магнитное, S - спин).

Электроотрицательность. Степень окисления и валентность химических элементов

сколько неспаренных электронов у алюминия. Алюминий имеет три неспаренных электрона. Оно указывает на количество электронов, которые имеют неспаренные спины, то есть направления магнитного момента электрона. Чтобы найти количество неспаренных электронов, следует обратить внимание на. электронов в их электронных формулах: литий углерод фтор алюминий сера.

Ал сколько неспаренных электронов на внешнем уровне

Только атомы образовавшие химические связи могут характеризоваться понятием валентности. Число валентных электронов или число общих электронных пар определяет валентность. Понятие валентности сопряжено со степенью окисления и часто совпадает с его значением. Пример 1 Чем определяются, какие факторы влияют Валентность атома определяется количеством валентных электронов: атомы главных подгрупп содержат валентные электроны, расположенные на орбиталях s- и p-типов; атомы побочных подгрупп помимо атомов лантаноидов и актиноидов , имеют валентные электроны на s-орбиталях внешнего и d-орбиталях предпоследнего слоев. Атомы могут иметь основное и возбужденное состояние, из-за чего большинство химических элементов имеют переменную валентность. В основном состоянии валентность зависит от неспаренных электронов последнего иногда и предпоследнего энергетических уровней. Обычное состояние фиксируется в Периодической таблице Менделеева. Пример 2 Например, валентность углерода в основном состоянии равна II из-за двух неспаренных электронов на 2p-орбитали. Дополнительная энергия, которую может получать атом, приводит его в возбужденное состояние.

В таком случае уже соединенные электроны могут распариваться и участвовать в образовании новых связей. Валентность повышается. Пример 3 Валентность углерода в возбужденном состоянии может повышаться до четырех, так как в таком состоянии у него распариваются 2s-электроны. В формуле возбужденное состояние атома обозначается звездочкой. Определение валентности элемента по электронно-графическим формулам Для определения количества электронов на энергетических уровнях необходимо полагаться на номер и место химического элемента в Периодической системе Д. Определив количество электронов, необходимо распределить их по свободным орбиталям в порядке заполнения по шкале энергии: Источник: ppt-online. Орбитали разных уровней могу размещать в своих свободных ячейках разное количество электронов: s- орбиталь — 2 электрона; d- орбиталь — 10 электронов; f- орбиталь — 14 электронов. По количеству электронов, оставшихся неспаренными в ячейках, можно узнать валентность атомов химических элементов.

Электронные формулы обычно записываются не полностью, а в кратком варианте, указывая только крайние электронные уровни каждого слоя. Можно сформулировать следующие закономерности электронного строения атома: высшая валентность атома элемента соответствует номеру его группы; номер периода указывает на количество энергетических уровней; порядковый номер химического элемента — на количество его электронов. Селен, углерод, фосфор, сера, азот, хлор и другие примеры Рассмотрим заполнение электронных уровней на примерах.

Неспаренные электроны могут образовывать сильные химические связи с другими атомами и участвовать в создании химических соединений. Количество неспаренных электронов в атоме может оказывать существенное влияние на его химические свойства и реакционную способность. Изучение и понимание атомного спина и его влияния на неспаренные электроны является важной задачей в физике и химии. Это позволяет более точно описывать поведение и свойства атомов и молекул, а также разрабатывать новые материалы и химические соединения с желаемыми свойствами.

Эффекты спин-орбитального взаимодействия Это взаимодействие оказывает существенное влияние на энергетический уровень электронов, приводя к разщеплению одинаковых орбитальных состояний на два или более подуровней с разными энергиями. Эффекты спин-орбитального взаимодействия могут быть рассмотрены в рамках теории возмущений, а также являются важными для объяснения различных оптических, электронных и магнитных свойств атомов. Например, спин-орбитальное взаимодействие играет ключевую роль в формировании сродственности атомов к химическим элементам и определяет их электронные конфигурации. Оно также может приводить к аномальному магнитному моменту атомов или ионов, которые не согласуются с магнитным моментом электрона или ядра.

У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон: … ns1 — электронное строение внешнего энергетического уровня щелочных металлов Металлы IA группы — s-элементы. Рассмотрим характеристики элементов IA группы: Название.

Некоторые примеси резко повышают хрупкость металла, поэтому используется очищенный материал. Al — сильно пластичный легкий металл с низкой температурой плавления. Обладает высокой ковкостью и электропроводностью. На воздухе он покрывается оксидной пленкой поэтому практически не подвергается коррозии. Благодаря этому он используется при изготовлении проводов и корпусов машинной техники. Получение алюминия и цинка Основной способ получения металлов — выделение их из состава руды. Для этого используется наиболее богатая металлом горная порода. Алюминий получают из боксита. Этот процесс состоит из трех этапов: Добыча горной породы; Обогащение увеличение концентрации метала за счет очистки от примесей ; Выделение чистого вещества путем электролиза. Получение цинка производится несколькими методами — электролитическим так же как и Al и пирометаллургический. Химические свойства алюминия и цинка Оба вещества способны реагировать как обычные металлы. Так же, есть ряд специфических реакций.

Сколько неспаренных электронов на внешнем уровне у атома алюминия?

Сколько спаренных и неспаренных електроннов в алюминию??? Трудности с пониманием предмета? Чтобы посчитать число неспаренных электронов, нужно построить графическую формулу. Решение Азот и сера – неметаллы, они образуют устойчивые анионы (которым соответствует конфигурация ближайшего инертного газа). У всех металлов IA группы на внешнем энергетическом уровне, на s-подуровне в основном состоянии есть один неспаренный электрон.

Определение атома Al

  • сколько неспаренных электронов у алюминия
  • Валентность алюминия: все о цифрах и возможных комбинациях
  • Атомы алюминия: количество неспаренных электронов на внешнем уровне
  • Сколько спаренных и неспаренных електроннов в алюминию? - Химия
  • сколько неспареных электронов у Фосфора и Алюминия?
  • Сколько электронов в основном состоянии у AL: особенности исследования

Число неспаренных электронов в атоме алюминия. Неспаренный электрон. Теория по заданию

В условии нас спрашивают про пять электронов — значит выбираем элементы из пятой группы — азот и фосфор! Ответ: 12.

В большинстве случае валентность равна числу неспаренных электронов внешнго энергетического уровня атома элемента. Достаточно часто число неспаренных электронов увеличивается в процессе возбуждения атома, когда электрон с электронной пары на внешнем уровне переходит на свободную орбиталь, вследствие чего элементы могут иметь переменную валентность.

Таким образом, валентность зависит от структуры внешнего электронного уровня элемента: наличия свободных орбиталей, спаренных и неспаренных электронов и общего количества внешних электронов. Задание 2 Почему численное значение валентности не всегда совпадает с числом электронов на наружном энергетическом уровне? В некоторых случаях не все внешние электроны могут участвовать в образовании связей, а только неспаренные электроны, в виду отсутствия в электронной оболочке таких атомов свободных орбиталей и не возможности электронов распариваться. Задание 3 Почему максимальная валентность элементов 2-го периода не может быть больше четырёх?

Отправляя форму, Вы принимаете Условия использования и даёте Согласие на обработку персональных данных Отправить заявку Подготовка к Единому Государственному экзамену по химии 2021 г. Дорогие друзья! Если Вы готовитесь к ЕГЭ по химии, то можете воспользоваться этим курсом. Курс является бесплатным и предназначен для самообучения.

Курс состоит из разделов, каждый из которых соответствует вопросам ЕГЭ. Названия разделов Вы можете увидеть в левом, навигационном меню. В каждом разделе есть соответствующие тренировочные онлайн-тесты для закрепления знаний. Прежде чем приступить к изучению курса, предлагаю пройти вводное тестирование.

Похожие новости:

Оцените статью
Добавить комментарий