Химики РХТУ разработали новую конфигурацию микрореакторов для фармацевтической и пищевой промышленности. Российская молодёжная научная конференция с международным участием «Проблемы теоретической и экспериментальной химии» проводится ежегодно на базе Института естественных наук и математики УрФУ. Российский химико-технологический университет имени Д. И. Менделеева 16 декабря отметил 100-летний юбилей.
Преподаватели кафедры
Каляев Михаил Владимирович - Санкт-Петербургский государственный университет Капустин Ростислав Вячеславович - Нижегородский государственный технический университет им. Алексеева Капустин Ростислав Вячеславович - Нижегородский государственный технический университет им. Алексеева Карнакова Софья Олеговна - Иркутский институт химии им.
Насосы: производительность, напор, мощность. Высота всасывания. Работа насоса на гидравлическую сеть. Выбор насосов. Контрольная работа «Гидродинамика.
Дано описание приборов и реактивов. Для студентов, изучающих дисциплины «Химическая термодинамика и равновесие», «Электрохимия и кинетика», входящие в модуль «Физическая химия».
Цифровой инжиниринг, на мой взгляд — это самое важное направление для России, которое нужно активно развивать. Решением этой задачи занимаются, например, Передовые инженерные школы, одна из которых работает в Новгородском университете. Как отметил спикер, ещё в советское время системный инжиниринг был хорошо развит в нашей стране в космической, военной и атомной отраслях. Современные реалии требуют, чтобы такой подход был распространён на все сферы промышленности. Нам нужны гении. Инжиниринг, независимо от того, применяется он в нефтяной отрасли, медицине, металлургии и так далее, решает одни и те же задачи.
ВСЕРОССИЙСКАЯ КОНФЕРЕНЦИЯ
Процессы и аппараты Кафедра Процессов и Аппаратов Химической Технологии. РХТУ им. Менделеева. Уважаемые коллеги! Приглашаем Вас принять участие в работе XV Международной конференции «Синтез и применение порфиринов и их аналогов» (ICPC-15). В рамках научного мероприятия российские и зарубежные ученые поделятся последними достижениями в. Оптимизация расписания работы многопродуктовых химико-технологических систем лабораторный практикум: учебное пособие. Физическая химия РХТУ 1776. Новости Экзаменационного центра. Об этом в интервью RT сообщила математик-вычислитель Российского химико-технологического университета имени Менделеева (РХТУ), завкафедрой информационных компьютерных технологий профессор Элеонора Моисеевна Кольцова.
Конференция по катализу в РХТУ
Лаборатории РХТУ им. Д.И. Менделеева: «Электроактивные материалы и химические источники тока». 14.10.2023 • РХТУ • Самые интересные научно-популярные лекции и другие события. Ученые РХТУ им. Д.И. Менделеева и ФосАгро разрабатывают новую линейку биологизированных минеральных удобрений. Харченко Нина Витальевна, РХТУ Биосинтез наночастиц серебра облигатно метилотрофными бактериями Проведен скрининг облигатно метилотрофных микроорганизмов, способных синтезировать стабильные длительное время наночастицы серебра. Лаборатории РХТУ им. Д.И. Менделеева: «Электроактивные материалы и химические источники тока». Учащиеся получают дополнительное образование в Российском химико-технологическом университете им. Менделеева или Томском политехническом университете по направлению «Химическая технология», слушают лекции от экспертов СИБУРа, осваивают штатные.
Российский химико-технологический университет имени Д. И. Менделеева СОВРЕМЕННЫЕ
Инжиниринг, независимо от того, применяется он в нефтяной отрасли, медицине, металлургии и так далее, решает одни и те же задачи. Везде есть системы с огромным количеством элементов, которые взаимодействуют друг с другом, и невозможно моделировать какую-то одну часть отдельно от других. Принимаемые решения должны быть оптимальны для системы в целом. Главным методом здесь является синтетическое мышление. Например, одна из частей системного инжиниринга — работа в междисциплинарных командах. Причём просто собрать вместе людей разных специальностей — ещё не значит создать команду, она должна быть правильно организована.
Аболенская, Н. Антипкин, М. Чаговец, А. Сазонов, М. Чаговец А. Антипкин Н.
Одна из задач Десятилетия — рассказать, какими научными именами и достижениями может гордиться наша страна. В течение всего Десятилетия при поддержке государства будут проходить просветительские мероприятия с участием ведущих деятелей науки, запускаться образовательные платформы, конкурсы для всех желающих и многое другое.
Участники обсудили современные направления дизайна и синтеза макрогетероциклов, методы изучения свойств краун-соединений, порфиринов и фталоцианинов, а также методы их супрамолекулярной сборки. Генеральным спонсором конференции выступила компания ООО «Сайнтифик», занимающаяся поставкой научно-исследовательского и контрольного оборудования в России. От компании-спонсора с приветственным словом к участникам конференции выступил генеральный директор Овсянников Александр Николаевич, который пожелал ученым плодотворной работы и прорывных результатов. От Менделеевского университета с пленарными докладами выступил ряд докладчиков.
Физическая химия
Перед вами очередной выпуск межвузовского сборника научных трудов «Физико-химические аспекты изучения кластеров, наноструктур и наноматериалов». За период его издания, несмотря на ряд трудностей организационного характера, ни разу не нарушалась периодичность, то есть сборник регулярно выпускался в конце каждого календарного года и в нем публиковались все одобренные редколлегией статьи с размещением соответствующей информации об этих публикациях в Российской электронной библиотеке. Редколлегия постоянно стремится к повышению как научного уровня данного издания, так и качества его оформления. К настоящему времени РИНЦ сборника 0,406 за 2014 год превышает соответствующие показатели многих академических научных журналов.
В 2015 году мы существенно расширили состав редколлегии, включив в него известных российских и зарубежных специалистов, прямо или косвенно связанных с нанонаукой и нанотехнологией. Прежде всего, следует отметить академика РАН А. Русанова, ведущего российского специалиста в области физики межфазных явлений и коллоидной химии, вице-президента Российского химического общества им.
Профессор Дж. Каптай является вице-директором Института нанотехнологии Мишкольц, Венгрия. Профессор Р.
Андриевский — один из ведущих российских экспертов по разработкам, проектам и научным изданиям в области нанотехнологии, редактор переводов ряда зарубежных монографий в этой области. Как мы уже отмечали в предыдущих выпусках сборника, нанонаука и нанотехнология не возникли на пустом месте: структура и свойства малых частиц давно уже привлекали внимание физиков, химиков, биологов и технологов. Несомненна и тесная взаимосвязь между нанонаукой и физикой границ раздела фаз.
Учитывая это, редколлегия по-прежнему ориентируется на междисциплинарный характер данного издания, объединяющего по тематике статей фундаментальные и прикладные аспекты нанонауки и нанотехнологии. В прошлом году нами был издан пятый, юбилейный выпуск данного сборника. В 1974 году, то есть 40 лет назад, японским физиком Норио Танигути, был предложен термин «нанотехнология» применительно к процессам создания полупроводниковых структур с точностью до 1 нм с помощью сфокусированных ионных пучков, эпитаксии и других методов.
Еще одно знаменательное событие, связанное с появлением термина «нанонаука», относится к 2004 году. В 2003 году правительство Великобритании обратилось в Королевское научное общество с просьбой высказать мнение о необходимости развития нанотехнологий, оценить преимущества и проблемы, которые может вызвать их развитие. Такой доклад под названием «Нанонаука и нанотехнологии: возможности и неопределенности» появился в июле 2004 года, и именно в нем впервые были даны отдельно определения нанонауки и нанотехнологии.
Это событие примечательно прежде всего тем, что уже тогда научные эксперты хорошо осознавали, что развитие нанотехнологий, то есть современных наукоемких технологий, предусматривающих контроль структуры и процессов на нанометровом уровне, невозможно без всестороннего научного исследования свойств как отдельных наночастиц, так и наносистем. И этот прогноз полностью оправдался: в настоящее время активно развиваются как прикладные аспекты нанотехнологии, так и ее фундаментальные аспекты, изучение которых объединяется термином «нанонаука». Редколлегия приглашает к дальнейшему сотрудничеству наших прежних авторов, а также новых авторов, работы которых прямо или косвенно связаны с нанонаукой и нанотехнологией.
Как уже отмечалось в предисловиях к предыдущим выпускам, мы хорошо осознаем, что нанонаука и нанотехнология не возникли на пустом месте в указанные выше юбилейные годы. Многие аспекты нанонауки серьезно изучались и ранее специалистами в области физики межфазных явлений, физики микрогетерогенных систем и коллоидной химии. Мы будем рады опубликовать работы по указанным выше направлениям науки и другим междисциплинарным направлениям.
Вашему вниманию предлагается очередной, юбилейный выпуск данного сборника: в этом году он издается в пятый раз без какого-либо перерыва, несмотря на ряд трудностей организационного характера. Импакт-фактор данного издания в 2011 году он составлял 0,175 по данным РИНЦ сравним с импакт-факторами ряда отечественных и зарубежных научных журналов. В полной мере оправдался наш замысел, связанный с возможностью публикации статей, отвечающих разным областям знаний, включая физику, химию, биологию и технические науки.
Этот замысел отражен и в данном выпуске: в нем много интересных и, надеемся, полезных для читателей статей, в том числе междисциплинарного характера. Двадцать лет назад отношение к нанотехнологии и нанонауке этот термин был введен зарубежными авторами для обозначения научных основ нанотехнологии было явно неоднозначным: от иронии до неоправданно больших надежд. В частности, представители коллоидной химии высказывали мнение, что нанонаукой стали называть то, чем они всю жизнь занимались.
С одной стороны, это действительно так: основы физики межфазных явлений и дисперсных систем действительно входят во все курсы коллоидной химии. С другой стороны, главными объектами исследований для коллоидной химии являются коллоидные растворы, а другие типы дисперсных систем, например аэрозоли и, тем более, интегральные электронные схемы, являются для нее далеко не основными объектами. Есть еще одно соображение, оправдывающее выделение нанонауки как самостоятельной дисциплины: появились принципиально новые экспериментальные методы исследования наносистем, включая зондовую микроскопию.
И к настоящему времени в полной мере оправдался прогноз Р. Фейнмана, сделанный еще в 1959 году в его известной статье «Внизу полным-полно места» «There is plenty of space at the bottom». В этой статье было в частности предсказано появление новых экспериментальных методов изучения явлений на наноразмерных масштабах, в ней же отмечались возможные трудности развития нанотехнологии, связанные, в частности, с много большим разбросом в свойствах по сравнению с соответствующими макроскопическими объектами.
Тем не менее, Р. Фейнман сделал в данной работе оптимистический прогноз, который в полной мере оправдывается в наши дни. Приглашаем вас к дальнейшему сотрудничеству, ждем новых интересных работ в области нанонауки и нанотехнологии.
Многие прогнозы и проекты конца 20-го столетия, связанные с развитием нанотехнологии, к сожалению, не оправдались. Это касается, в частности, нанороботов и выращивания чипов в пробирках. Тем не менее, налицо ряд несомненных достижений как в области нанонауки, так и в области нанотехнологии.
Среди достижений 2012 года, можно отметить создание нанолазеров, разработку компанией IBM транзисторов на углеродных нанотрубках, создание ряда устройств на основе графена.
А это [подписание соглашения] будет плодотворным продолжением и будет иметь плодотворный результат", - в свою очередь отметил и. Менделеева в Ташкенте Батыр Нурматов.
В 2021 году международная промышленная выставка "Иннопром", с 2010 года проводящаяся в России, впервые прошла за рубежом - в Узбекистане. Четвертая международная выставка "Иннопром.
Возможность регулировать гидродинамику процесса позволяет достигать требуемой точности реакции. Кроме того, использование микрофлюидных поточных реакторов позволяет эффективно использовать производственные и лабораторные площади, масштабировать процессы за счет компактности и модульности конструкции. Однако такие реакторы сложны в изготовлении: для их производства требуются достаточно сложные расчеты.
Особенности изучения нуклеиновых кислот 0:03:04 3. Реология как наука 0:05:17 2. Вязкоупругое поведение 0:18:55 3.
Релаксационные явления в полимерах 0:23:29 4.... Работа биологической системы на молекулярном уровне. Гидрофобные взаимодействия. In Lab 5G - смертельная опасность. Это безумие уже начинается - помешенных на "прогрессе", 5G, WI-FI лентяев всё больше, и они будут злиться от этого... Лазер Лекция 1 00:00:10 1.
"Фосагро" и филиал РХТУ подписали соглашение о подготовке кадров для химпрома Узбекистана
Российский химико-технологический университет (РХТУ) им. Д. И. Менделеева начнет сотрудничать с Пермским научно-образовательным центром мирового уровня «Рациональное недропользование» (НОЦ). ИНТЕРФАКС – Российский химико-технологический университет им. Д.И. Менделеева (РХТУ) и Институт физической химии и электрохимии имени А.Н. СтудИзба» ВУЗы» РТУ МИРЭА» Преподаватели РТУ МИРЭА» Кафедра физической химии имени Я.К. Сыркина (ФХ).
Ученые РХТУ имени Менделеева нашли способ повысить качество очистки сточных вод
Руководимая им в течение 16 лет кафедра физической и коллоидной химии отличалась высоким уровнем научных исследований, методики преподавания и подготовки научных кадров. Среди первых сотрудников кафедры следует упомянуть доцента В. И, Назарова и ассистента З. Под руководством Н. Пескова на кафедре начали свою работу доц. Прейс Александрова , асс.
Цюрупа и аспирант С. С 1933 года приступили к работе на кафедре доц. Горбачев, А. Борк и Е. Осенью 1940 года после смерти Н.
Пескова кафедра разделилась на две части: кафедру физической химии под руководством профессора П. Ребиндера с 1940 года по осень 1941 года и кафедру коллоидной химии под руководством профессора Е. В ноябре 1941 года по инициативе Сергея Васильевич Горбачева в институте организуется лаборатория по производству взрывчатых веществ. Несмотря на тяжелейшие условия все работают самоотверженно и сплоченно - продукция лаборатории отправляется непосредственно на фронт. В 1943 г.
Горбачева его докторская диссертация была посвящена фазовым превращениям и теории возникновения новой фазы , при этом он совмещает обязанности и заместителя директора института по научной и учебной работе. Несмотря на большие трудности военного и послевоенного времени отсутствие посуды, реактивов, аппаратуры , небольшой коллектив кафедры работает дружно и плодотворно. Научные интересы кафедры концентрируются на проблемах электрохимии: создается и развивается т. Сталина, выделяется два миллиона рублей для создания образцовой физико-химической лаборатории, отвечающей всем современным требованиям высшей школы по подготовке высококвалифицированных инженеров-химиков. Создание лаборатории поручают С.
Весь коллектив кафедры с огромным подъемом берется за это трудное и почетное дело. В 1950 году кафедре выделяют новое помещение - весь второй этаж Красного корпуса института и три комнаты третьего этажа. В этих помещениях сотрудники кафедры в короткий срок оборудуют семь новых физико-химических лабораторий, оснащенных современной для того времени техникой. Душой всего дела по созданию лаборатории был С. Допоздна горел свет в его кабинете, и допоздна шли к нему сотрудники.
Обсуждалось все: проекты коммуникаций, расстановка лабораторных столов, мебели, освещения, облицовка стен керамической плиткой, закупка и пуск нового оборудования. Активное участие в создании лабораторий принимали все сотрудники кафедры: Е. Киселева, М. Карапетьянц, Е. Старостенко, Н.
Хомутов, В. Михайлов, И. Касаткина, О. Хачатурян, С. Большую помощь в этом трудном деле оказывали лаборанты О.
Николаева и О. В сентябре 1951 года распахнули двери для приема студентов 3-го курса всех факультетов семь лабораторий: лаборатория кинетики реакций в растворах доцент Н. Хомутов и ассистент Е. Старостенко ; лаборатория термохимии доцент М. Карапетьянц ; лаборатория газовых реакций ассистент А.
Касаткина ; лаборатория электрохимии ассистент О. Стрельцов ; лаборатория спектров и электронной микроскопии доценты Е. Киселева, С. Авербух, ассистент Г. В 1963 г.
Горбачева, много раз переизданное и переведенное на ряд языков мира. Одновременно с созданием физико-химических лабораторий и практикума на кафедре проводится большая методическая работа: в конце 50-х годов доцентами Е. Киселевой, Г. Каретниковым и И. Кудряшовым издано учебное пособие "Сборник примеров и задач по физической химии".
Профессорами С.
Они имеют меньший размер по сравнению с обычными емкостными реакторами, позволяют достичь существенно большей эффективности производственного процесса и безопасны. При этом важно, что наши химики-технологи и инженеры не копируют зарубежные технологии, а предлагают новые, улучшенные конструкционные решения. Следующие этапы — это лицензирование, внедрение и масштабирование вместе с нашими отраслевыми партнерами», — отметил Илья Воротынцев, исполняющий обязанности ректора РХТУ. Такие реакторы используются в производстве современных фармацевтических препаратов, причем милиструктурный реактор проточного типа производительностью 10 тысяч тонн в год способен заменить более 20 реакторов периодического действия.
Как отметил спикер, ещё в советское время системный инжиниринг был хорошо развит в нашей стране в космической, военной и атомной отраслях. Современные реалии требуют, чтобы такой подход был распространён на все сферы промышленности. Нам нужны гении.
Инжиниринг, независимо от того, применяется он в нефтяной отрасли, медицине, металлургии и так далее, решает одни и те же задачи. Везде есть системы с огромным количеством элементов, которые взаимодействуют друг с другом, и невозможно моделировать какую-то одну часть отдельно от других. Принимаемые решения должны быть оптимальны для системы в целом.
К 2024 году на площадке в Тушино мы планируем открыть Долину Менделеева. Это проект, который реализуется в рамках создания инновационных научно-технологических центров. Долина Менделеева — логичное продолжение нашей инфраструктуры. Здесь под одной крышей будет объединено научное сообщество и индустрия. В РХТУ имени Менделеева самый большой набор химиков-технологов в нашей стране по направлениям, связанным с радиохимией и высокоэнергетическими соединениями пороха, твердое ракетное топливо, взрывчатые вещества , мы готовим 64 процента кадров для страны. С каждым годом растет число стратегических партнеров.
Очень мощный толчок Менделеевскому университету придало участие в советском Атомном проекте — в этом году как раз отмечается 75-летие атомной промышленности, университет в создании атомного щита страны сыграл большую роль. О чем-то уже можно говорить, о чем-то еще нет. Что касается технологии выделения урана, циркония, гафния — это заслуга Менделеевского университета. Технология производства тяжелой воды тоже была создана здесь. В послевоенные годы в структуре вуза был открыт новый инженерный физико-химический факультет, там готовили специалистов для атомной промышленности. На Базе-10 в Челябинской области, сейчас известной как комбинат «Маяк», вырабатывался первый отечественный плутоний. Первыми сотрудниками Базы-10 стали выпускники Менделеевского университета. Сейчас мы развиваем радиохимию, радиоэкологию, создаем радиофармпрепараты. ГК «Росатом» — наш стратегический партнер.
Здесь под одной крышей будет объединено научное сообщество и индустрия Химическая отрасль в СССР развивалась очень активно. Уже тогда мы были среди ведущих экспортеров химической продукции. Много технологий было разработано РХТУ — это технологии производства неорганических кислот, технологии производства мономеров и полимеров и много других технологий, отвечающих вызовам того времени. Не планируете возродить этот проект? Например, капитан команды КВН, выпускник факультета промышленной экологии, телеведущий, сценарист, бард Михаил Марфин. Он поддерживает связь с университетом, приходит к нам на мероприятия. Дал предварительное согласие тренировать нашу новую команду КВН, очень активную и амбициозную. Был момент, когда команды КВН в вузе не было, но он позади. Очень надеюсь, что Михаил Марфин нам поможет.
Насколько тесны связи вуза с сообществом выпускников? У нас есть база выпускников, и мы формируем внутри вуза такую структуру, которая развернула бы взаимодействие с выпускниками на системной основе, потому что понимаем, что роль выпускника в жизни университета очень важна. Как этот разрыв — если он есть — минимизировать? Химия — наука экспериментальная, и без работы с веществом, без работы в лаборатории ее очень трудно понять и полюбить. Наш университет активно участвует в школьном образовании. Технология производства тяжелой воды тоже была создана здесь На нашей московской площадке мы реализуем проекты департамента образования и науки Москвы — Университетские субботы. Наши профессора читают лекции и проводят мастер-классы по химии и химической технологии. Другой формат — инженерные классы: у нас есть ряд школ-партнеров, где мы курируем обучение химии. Наш большой проект в этом направлении — детский технопарк «Менделеев-центр».
Это специально созданная инфраструктура внутри университета, которая помогает школьникам познавать азы химии. В составе технопарка четыре лаборатории: «Менделеев. Технологии», «Менделеев.
РХТУ им.Менделеева и ИФХЭ РАН будут совместно разрабатывать новые адсобренты
Перед выполнением работы студенты проходят первичный опрос у преподавателя, ведущего работу допуск к работе. По результатам первичного опроса каждому студенту в маршрутный лист выставляется оценка качества подготовки к работе. Если при первичном опросе выявлена неготовность студента к работе, не позволяющая поставить минимальную оценку 1 балл , студент не допускается к выполнению работы, о чём делается запись в маршрутном листе. Такой студент имеет возможность выполнить данную работу в выделенные дополнительные дни после необходимой подготовки к работе и допуска преподавателем. После выполнения работы и оформления отчёта в лабораторном журнале происходит защита работы данным студентом с преподавателем, допустившим его к работе. Защита работы завершается проставлением оценки качества выполнения и защиты работы и суммарного балла за данную работу в маршрутном листе.
Подробное математическое описание - для начальных и заключительных стадий спекания.
Для упрощения описания, в большинстве случаев в качестве исходной системы принимается модель, предполагающая контакт двух сферических частиц в точке. Иные случаи контакта твердых частиц неправильной формы рассматриваются особо. Установить зависимость времени, необходимого для достижения заданной степени припекания, от линейного размера частиц при данном механизме переноса вещества в область контактного перешейка; 2. Установить изменение относительной роли различных механизмов с изменением линейного размера частиц. Модель, в которой выполняется условие согласованного перемещения зерен, может быть представлена в виде двух свободных зерен, на границе между которыми расположена пора. Вследствие поглощения поры границей происходит сближение центров тяжести этих зерен.
На этой стадии понятие «пора» лишено содержания и кинетика уплотнения в основном определяется процессами, происходящими в месте контакта частиц. В этом случае роль играет не только структурное состояние, но и геометрия частиц.
Возможность делать такие реакторы в нашей стране существенно расширит спектр возможностей по производству важных фармацевтических препаратов и других ценных химических соединений», — рассказал руководитель проекта Михаил Шишанов, доцент кафедры химической технологии природных энергоносителей и углеродных материалов РХТУ. Микрофлюидные реакторы используются в работе со специальной химией, что подразумевает производство опасных или дорогостоящих соединений — например, ряда сложных фармацевтических препаратов. Возможность регулировать гидродинамику процесса позволяет достигать требуемой точности реакции. Кроме того, использование микрофлюидных поточных реакторов позволяет эффективно использовать производственные и лабораторные площади, масштабировать процессы за счет компактности и модульности конструкции.
Обработка полученных экспериментальных данных и расчетные задачи выполняются на установленных в практикуме компьютерах. В 2013 году в рамках реализации «Программы развития МГУ» для практикума по физической химии было приобретено новое оборудование, включая современные хроматографы «Кристалл 400», автоматизированные калориметры сгорания JK-BC-600, потенциостаты «Ellins» и др. С целью активного использования новой аппаратуры в учебном процессе коллективом преподавателей и сотрудников практикума был разработан комплекс новых экспериментальных задач по термодинамике, кинетике и электрохимии, а также модернизирована часть поставленных ранее задач с учетом возможностей приобретенного оборудования. В течение ряда последних лет эти задачи успешно применялись для обучения как студентов химического факультета МГУ, так и других естественных факультетов. Ежегодно практические работы по физической химии выполняют около 400 студентов: химический факультет — 7 групп общего потока и 5 спецгрупп, всего около 200 человек; факультет почвоведения — около 60 человек; геологический факультет — порядка 30 человек; биологический факультет — около 90 человек; факультет фундаментальной физико-химической инженерии — порядка 45 человек. Работа в практикуме по физической химии предполагает, что перед выполнением практической работы студент должен проработать теоретическое введение к задаче и ответить на вопросы, касающиеся теории и методики выполнения задачи. После окончания измерений, которые практически во всех задачах проводятся в цифровом формате, полученные экспериментальные данные обрабатываются студентом с помощью компьютерных программ. Результаты расчета сравниваются со справочными данными. После этого студенту предлагается ответить на вопросы и выполнить расчетные задания, способствующие углубленному пониманию материала.
С 2008 года заведующим практикумом является доц. Работу практикума по физической химии обеспечивают к. Белова, к. Монякина, ведущие инженеры А.