Удерживать кубиты в нужном состоянии, учитывая количество внешних факторов, крайне сложно — именно поэтому они работают при абсолютном нуле. Но пока до реального взлома всё же невероятно далеко — чтобы взломать код биткоина, нужны десятки миллионов кубитов.
Квантовые компьютеры
Квантовые компьютеры | Наука и жизнь | Фундаментальные принципы кубитов, простое объяснение того, что такое суперпозиция. |
Биты перешли в кубиты: что такое квантовые компьютеры и квантовые симуляторы | Как сообщалось, кубит — единица информации в квантовом компьютере, он отличается от обычного бита тем, что может принимать любое значение между 0 и 1 в процессе вычислений. |
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы | Квантовые вентили управляют состояниями кубитов, позволяя квантовым компьютерам выполнять такие операции, как суперпозиция, запутывание и измерение. |
Инвестиции в квантовые компьютеры: на что стоит обратить внимание
Также у нас есть 25-кубитный компьютер на атомной платформе. Но качество операций лучше на ионной платформе». До конца этого года должны успеть 50 сделать. Посмотрим, может быть, получится и больше», — добавил Юнусов. Квантовые компьютеры в будущем будут использоваться для решения задач, с которыми не могут справиться привычные нам электронные вычислительные машины. Это, например, моделирование природных процессов или очень сложные математические расчеты.
Американский математик и физик венгерского происхождения Иоганн фон Нейман 1903- 1957. Американский физик-теоретик Ричард Филлипс Фейнман 1918-1988. Квантовый бит, или кубит. Состояниям и отвечают, например, направления спина атомного ядра вверх или вниз. Американский математик Питер Шор, специалист в области квантовых вычислений.
Предложил квантовый алгоритм быстрой факторизации больших чисел. Американский математик Лов Гровер, автор квантового алгоритма быстрого поиска в базе данных. Квантовый регистр - цепочка квантовых битов. Одно- или двухкубитовые квантовые вентили осуществляют логические операции над кубитами. Не рискну настаивать, что знаю правильный ответ, но мне точно известен один неверный: это не какая-либо из версий Microsoft Windows. Дело в том, что алгоритм RSA встроен в большинство продаваемых операционных систем, а также во множество других приложений, используемых в различных устройствах - от смарткарт до сотовых телефонов. В частности, имеется он и в Microsoft Windows, а значит, распространен заведомо шире этой популярной операционной системы. Чтобы обнаружить следы RSA, к примеру, в браузере Internet Explorer программе для просмотра www-страниц в сети Интернет , достаточно открыть меню "Справка" Help , войти в подменю "О программе" About Internet Explorer и просмотреть список используемых продуктов других фирм. Вообще, трудно найти известную фирму, работающую в области высоких технологий, которая не купила бы лицензию на эту программу. Почему же алгоритм RSA оказался так важен?
Представьте, что вам необходимо быстро обменяться сообщением с человеком, находящимся далеко. Благодаря развитию Интернета такой обмен стал доступен сегодня большинству людей - надо только иметь компьютер с модемом или сетевой картой. Естественно, что, обмениваясь информацией по сети, вы бы хотели сохранить свои сообщения в тайне от посторонних. Однако полностью защитить протяженную линию связи от прослушивания невозможно. Значит, при посылке сообщений их необходимо зашифровать, а при получении - расшифровать. Но как вам и вашему собеседнику договориться о том, каким ключом вы будете пользоваться? Если послать ключ к шифру по той же линии, то подслушивающий злоумышленник легко его перехватит. Можно, конечно, передать ключ по какой-нибудь другой линии связи, например отправить его телеграммой. Но такой метод обычно неудобен и к тому же не всегда надежен: другую линию тоже могут прослушивать. Хорошо, если вы и ваш адресат заранее знали, что будете обмениваться шифровками, и потому заблаго-временно передали друг другу ключи.
А как быть, например, если вы хотите послать конфиденциальное коммерческое предложение возможному деловому партнеру или купить по кредитной карточке понравившийся товар в новом Интернет-магазине? В 1970-х годах для решения этой проблемы были предложены системы шифрования, использую щие два вида ключей для одного и того же сообщения: открытый не требующий хранения в тайне и закрытый строго секретный. Открытый ключ служит для шифрования сообщения, а закрытый - для его дешифровки. Вы посылаете вашему корреспонденту открытый ключ, и он шифрует с его помощью свое послание. Все, что может сделать злоумышленник, перехвативший открытый ключ, - это зашифровать им свое письмо и направить его кому-нибудь. Но расшифровать переписку он не сумеет. Вы же, зная закрытый ключ он изначально хранится у вас , легко прочтете адресованное вам сообщение. Для зашифровки ответных посланий вы будете пользоваться открытым ключом, присланным вашим корреспондентом а соответствующий закрытый ключ он оставляет себе. Как раз такая криптографическая схема и применяется в алгоритме RSA - самом распространенном методе шифрования с открытым ключом. Причем для создания пары открытого и закрытого ключей используется следующая важная гипотеза.
А вот решить обратную задачу, то есть, зная большое число N, разложить его на простые множители M и K так называемая задача факторизации - практически невозможно! Именно с этой проблемой столкнется злоумышленник, решивший "взломать" алгоритм RSA и прочитать зашифрованную с его помощью информацию: чтобы узнать закрытый ключ, зная открытый, придется вычислить M или K. Для проверки справедливости гипотезы о практической сложности разложения на множители больших чисел проводились и до сих пор еще проводятся специальные конкурсы. Рекордом считается разложение всего лишь 155-значного 512-битного числа. Вычисления велись параллельно на многих компьютерах в течение семи месяцев 1999 года. Если бы эта задача выполнялась на одном современном персональном компьютере, потребовалось бы примерно 35 лет машинного времени! Расчеты показывают, что с использованием даже тысячи современных рабочих станций и лучшего из известных на сегодня вычислительных алгоритмов одно 250-значное число может быть разложено на множители примерно за 800 тысяч лет, а 1000-значное - за 1025! Поэтому криптографические алгоритмы, подобные RSA, оперирующие достаточно длинными ключами, считались абсолютно надежными и использовались во многих приложениях. И все было хорошо до тех самых пор... Оказывается, используя законы квантовой механики, можно построить такие компьютеры, для которых задача факторизации и многие другие!
Согласно оценкам, квантовый компьютер с памятью объемом всего лишь около 10 тысяч квантовых битов способен разложить 1000-значное число на простые множители в течение всего нескольких часов!
Основная проблема при создании квантовых компьютеров — это создание кубитов в большом количестве и их связывание, время жизни всей системы — Как не специалистам, которые интересуются квантовыми компьютерами, понимать, действительно ли новое открытие — шаг вперед для этой отрасли или очередная новость ради кликов? На что обратить внимание? Например, количество кубитов — это показатель? Если совсем не понимаешь, — эти бенчмарки очень поверхностно раскроют суть прогресса, а иногда даже введут в заблуждение. Как, например, с количеством кубитов — на самом деле это хорошо, но не говорит о том, насколько система умеет вычислять и с какой точностью. Для меня важно количество связанных между собой логических кубитов, точность вычисления, время жизни системы и способность вычислять практические алгоритмы. Поэтому кажется, что этим занимается очень ограниченное число организаций.
Не значит ли это, что такие устройства будут работать только в пользу корпораций и государств? И можно писать свои квантовые схемы и считать алгоритмы. Каждый разработчик заинтересован в увеличении количества практических задач, которые можно делать на их квантовом компьютере, поэтому стоимость удешевляется. По количеству инвестиций в сектор можно сделать вывод о том, что прогресс есть. Это косвенный параметр — если сотни инвесторов вкладывают и отрасль растет, это говорит о многом. Видимо, мы близки к решениям, которые станут практическими. Но при этом есть всего 80 организаций, которые делают квантовые компьютеры. Но цифры говорят, что в hardware проинвестировали 1,5 млрд.
И из них львиную долю забрали 12 компаний. Специалисты здесь нужны в квантовой физике, математике, инженеры нарасхват. Интересный факт: советская школа здесь считается сильной. Программа разделена на несколько дорожных карт — квантовые вычисления курирует Росатом , коммуникации РЖД и Центр метрологии и сенсоры Ростех. Например, уже появилась специальная квантовая линия связи между Москвой и Петербургом — это основной протокол квантовой криптографии сегодня. По моим ощущениям, они отстают от мировых компаний на 3—5 лет. Но у них серьезные кадры и подход — они однозначно разработают что-то полезное. Ее уже пытаются регулировать?
Как только появится что-то серьезное, — дойдет и до ограничений. Но все опасаются за свои данные. Например, сейчас можно защитить данные квантовым шифрованием и снизить вероятность того, что квантовый компьютер сможет это взломать. Но если кто-то скопировал данные и ждет, пока появится квантовый компьютер, — он сможет их потом расшифровать. Сейчас это и есть основное опасение. Читать далее:.
Волны — это новые мячики Срач о том, реально ли всё это волны или мы просто натянули имевшиеся для волн уравнения и сказали «опа, а вроде подходит» — один из самых громких споров современных физиков. Там рвут глотки и делятся на лагеря, так что давайте не будем и просто примем, что тот же самый мячик может ВЖУХ и быть посчитан как волна. Так нам удобно и всё. Отныне мы состоим не из мячиков, а из таких вот волнушечек, которые как-то между собой интерферируют и получается Олег. Вот прям как звуковые волны накладываются чтобы получилась музыка, так же вот и Олег. Главный же прикол в том, что кроме волн больше нет ничего. Вообще ничего. Никаких скрытых параметров, по крайней мере локальных. Абсолютно любое свойство объекта отныне можно описать одной такой жирной функцией взаимодействия этих волн друг с другом. Как в телевизор приходят радиоволны и получается картинка на экране, так же наши волнушечки могут собраться по какой-то формуле и сделать Олега. Фотоны света отражатся от волн Олега и так его себе видим. Но реален ли сам Олег? Тут лучше не торопиться. Можете вернуться к посту вечером. Суперпозиция — всего лишь вероятность Объясняя, что за фигня такая ваша «суперпозиция», все вспоминают байку с Котом Шредингера, закрытого в коробке со случайно взрывающейся колбой смертельного яда. Страшилка с котом уже лет 50 используется в школьной программе и авторы большей части статей, что я читал, тоже её обожают, даже несмотря на то, что она не даёт читателю никакого понимания как всё это реально можно использовать на практике. Пора прекратить шутить шутку 100-летней давности. Люди в 21 веке могут себе позволить среднее образование и понять тему чуть глубже. Предлагаю поговорить о суперпозиции как будто мы люди с айфонами, а не крепостным правом. Потому вместо кота мы возьмем монетку :D Когда мы раскручиваем или подбрасываем её в воздух — она находится в суперпозиции орла и решки. Да, «как бы» одновременно. Только поймав монетку мы получаем один из результатов нашего измерения. Не поймаем — не узнаем. В чем же драматическая разница с так нелюбимым нами котом? В том, что внутри монетки всегда есть чёткие вероятности её падения орлом или решкой. Но если мы зададимся целью немного «подкрутить» фокус себе на пользу — мы можем сделать монетку из разных сплавов или как-то притягивать одну из сторон магнитом. Отныне всегда, когда слышите про суперпозицию, представляйте себе именно такую подброшенную монетку. Суперпозиция — не загадочный феномен «одновременности», а чёткое и простое отношение двух вероятностей Находясь в «суперпозиции», монетка не просто для нас «как бы одновременно орел и решка», она имеет две вполне стабильные и известные нам вероятности выпадения одного и другого. Всё это уже намного удобнее использовать на практике, не правда ли? Вероятности мы умеем складывать, умножать, творить другие непотребства, в отличии от мертвых котов. Поэтому и дальше, когда мы будем говорить о квантовых битах, про которые все говорят, что они «одновременно 1 и 0», забейте на это и представляйте себе их как монетки. Каждый бит-монетка имеет строгую вероятностью быть прочитанным как 1 и строгую вероятность 0. Компьютер же может управлять этими вероятностями прямо в полёте пока не прочитает сам бит. Прочитали бит — поймали монетку. Очень удобно. Если вы поняли монетки — вы уже наполовину поняли квантовый компьютер, поздравляю. Простите, я должен был использовать этот каламбур. Представим себе, что мы распилили нашу монетку вдоль. Как печеньки Oreo. Получилось две монетки — одна только с орлом, вторая только с решкой. Пустая сторона разреза нас щас не интересует. Не подглядывая где какая, мы подбрасываем обе новых монетки в воздух переводим в суперпозицию, как мы теперь знаем. Монетки начинают вертеться в воздухе и не падают потому что они теоретические! Тут квантовый физик скажет, что между монетками создана запутанность. Русская терминология лажает, потому лучше дополнительно запомнить английское слово — Entanglement. Оно встречается чаще. Всё это означает некую «зависимость», «спутанность» или просто «связь» состояний двух монеток. Как видите, никакой магии пока нет, законы физики мы не нарушали, на митинг не выходили. Мы упаковываем одну из наших новых прикольных крутящихся монеток в коробку и отправляем её своему знакомому в другой город. А еще лучше на другую планету или в соседнюю галактику. Теперь мы оба имеем по монетке, но понятия не имеем орел нам достался или решка. Кажется, пришло время посмотреть. Звучит тупо, да? Вот только Эйнштейн не был доволен такой фигнёй.
Из Википедии — свободной энциклопедии
- Международная гонка кубитов
- Как работает квантовый компьютер: простыми словами о будущем
- Квантовый бит — QMLCourse
- Сердце квантовых компьютеров - как создаются кубиты?
- Что такое кубит
- В Канаде создали альтернативную архитектуру кубита со встроенной защитой от ошибок вычислений
Физик Алексей Устинов о российских кубитах и перспективах их использования
Кубит | это... Что такое Кубит? | Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. |
В России создан первый сверхпроводящий кубит | В то время как кубиты имеют четыре значения, в нейронных сетях их несравненно больше, а образуемые ими структуры намного разнообразнее, чем entanglement. |
Квантовый Компьютер Как устроен? Как программировать? Уже? [ДЛИННОПОСТ] | Пикабу | За последние двадцать лет количество кубитов в квантовых процессорах увеличилось с одного-двух до сотни (в зависимости от технологической платформы). |
Технологии квантовых компьютеров в 2022: достижения, ограничения
Вопреки ожиданиям, современные квантовые компьютеры не очень большие — размером примерно с холодильник но есть еще коробка с электроникой размером с комод. А вот детально они устроены гораздо сложнее привычных компьютеров. Обычно они состоят из: Квантовой системы. Технологии могут отличаются, но в основном роль кубитов играют либо ионы с разными уровнями энергии, либо сверхпроводящие цепи с разными колебательными состояниями, либо топологические кубиты например, майорановские частицы. Некоего кластера, в котором находятся кубиты и в котором они будут как можно дольше стабильны. Кластеры обычно охлаждают до температуры, близкой к абсолютному нулю, или стабилизируют с помощью химических компонентов. Цель — защитить кубиты от любых внешних помех. Устройства для передачи сигналов кубитам, чтобы манипулировать их состоянием.
Часто это делают с помощью микроволновых импульсов или лазерного света с определенной длиной волны. Обычного компьютера, который в рамках программы будет передавать кубитам инструкции алгоритм для решения конкретных задач. Сам принцип работы квантового компьютера еще сложнее, для его объяснения нужно вводить множество терминов типа туннелирования, эффекта Джозефсона, куперовских пар и так далее, при этом всегда будет вероятность неверного объяснения принципов в конце концов, мы не ученые. Поэтому, чтобы не усложнять материал, просто покажем несколько изображений разных квантовых компьютеров: Left Right Кто делает квантовые компьютеры? Определенные амбиции есть у Alibaba, Taiwan Semiconductor и ряда других игроков. Последние, кстати, говорят, что обладают самым быстрым коммерческим квантовым компьютером в мире — модель Advantage предполагает 5000 кубитов, каждый из которых может соединяться с другими 15 разными способами. Несмотря на довольно большое число разработчиков мы упомянули компании преимущественно из США, но есть другие , у вас дома вряд ли когда-нибудь появится квантовый компьютер.
Технология десятилетиями оставалась просто концепцией как раз потому, что кванты очень чувствительны к любым воздействиям, то есть могут коллапсировать даже от небольших помех — и это проблема. Вряд ли вы захотите жить в вакууме. Но воспользоваться мощью таких компьютеров вы, скорее всего, сможете. Компании постепенно выходят на рынок облачных квантовых вычислений, то есть позволяют удаленно взаимодействовать со своими системами: писать для них программы и алгоритмы, вести расчеты. Опция есть у IBM и Microsoft.
Кто и что в итоге доказал?
Сегодня мощнейшие суперкомпьютеры планеты с героическим усилием всё еще могут продемонстрировать малую долю мощности квантовых компьютеров. Но сам факт того, что в компьютерной гонке обычный и квантовый компьютер сравнялись, заставляет предположить, что очень скоро кое-кто вырвется вперед. Будь у Google процессор не на 53 кубита, а на 60, для проверки результатов компании IBM понадобилось бы уже 30 суперкомпьютеров Summit. А на проверку 70 кубитов нужен суперкомпьютер величиной с огромный город. Есть ли какая-то научная ценность в бодании двух технологических гигантов? Является ли формальное «квантовое превосходство», пока что не применимое к жизни, важной вехой?
И когда вообще ждать от этого всего практической пользы? Предположим, Google все-таки достиг квантового превосходства — что конкретно это доказывает и кто вообще в сомневался в том, что квантовое исчисление мощнее двоичного? Чем полезен квантовый компьютер? Давайте начнем с практической пользы. Протокол , который я разработал пару лет назад, использует для генерации случайных битов такой же процесс выборки, как и в эксперименте Google. Сам по себе он не впечатляет, но дело в том, что даже убежденному скептику можно продемонстрировать случайность битов, обеспеченную квантовой интерференцией.
Надежная случайность битов необходима для шифрования, например, в случае с криптовалютами с доказательством доли владения Proof-of-stake, или PoS — экологичными альтернативами биткоина. Google, кстати недавно купил права на этот протокол. Симуляция квантовых процессов природы. Еще одно практическое применение потребует больше кубитов и более высокое качество работы — как раз сейчас техногиганты спешат обогнать друг друга в конструировании такого устройства. Это небольшие квантовые компьютеры, которые смогут симулировать квантовые процессы химических веществ и материалов, помогая ученым в их исследованиях. Симуляция квантовой механики, превосходящая количество амплитуд в реальности за счет компьютера, равного по мощности самой природе, — о таком применении говорил Ричард Фейнман в начале 1980-х годов, когда создал концепцию квантового компьютера.
Это всё еще самое важное применение этой технологии, которое поможет в разработке чего угодно: от аккумуляторов и солнечных батарей до удобрений и лекарств. Достижение невероятных мощностей. Еще одна веха будущего — квантовое исправление ошибок. В теории эта технология позволит удерживать кубиты в правильном состоянии без помех в течение длительного периода времени. Исследователи полагают, что квантовое исправление ошибок в итоге позволит квантовым компьютерам вырасти от пары сотен кубитов до машин с миллионами или миллиардами кубитов, что сделает мечту Фейнмана реальностью.
Так, один куквинт кудит в пяти состояниях заменяет два классических двухкубитовых вентиля и один вспомогательный уровень, что было показано в работе на примере запуска квантового алгоритма Гровера для поиска по неупорядоченной базе данных. По словам заведующего лабораторией квантовых информационных технологий НИТУ МИСИС Алексея Фёдорова, куквинт хорош тем, что его состояние позволяет уменьшить количество физических носителей в виде кубитов и упростить декомпозицию многокубитных вентилей гейтов — сложных операций с кубитами. В итоге в квантовой системе можно сократить число двухчастичных гейтов, которые в работе используют две физические системы. В представленном на страницах Entropy примере специалисты показали, как можно реализовать модель декомпозиции обобщенного вентиля Тоффоли обобщенную на n-кубитов версию вентиля контролируемое НЕ. С помощью этого алгоритма можно построить любую обратимую классическую логическую схему, например, классический процессор.
Мы не знаем точно, в каком именно состоянии находится кубит, пока не решим его измерить. Запутано, правда? Благодаря кубитам со сложными задачами, на решение которых даже суперкомьютеру нужны недели, квантовый справится за считанные минуты. Какие задачи может решать квантовый компьютер Кубиты помогают быстро обрабатывать данные, поэтому их применение почти безгранично: Медицина Квантовые технологии уже применяют для ускоренной разработки, тестирования лекарств и диагностики некоторых заболеваний на ранней стадии. Например, FAR Biotech исследует биоактивные молекулы и белки и новые структурные классы, которые невозможно было бы обнаружить без мощных квантовых компьютеров. Свои исследования компания направляет на борьбу с онкозаболеваниями. В теории в будущем квантовые вычисления откроют новые горизонты в генной инженерии, помогут создавать новые лекарства и моделировать ДНК. Прогнозирование От финансового сектора до прогноза погоды — кубиты просчитывают множество переменных в разы быстрее, чем обычные компьютеры. Это значит, что прогнозы станут точнее, можно будет определить скорость ветра, температуру, влажность, движение облачных масс за секунды. Криптография В 1994 году Питер Шор разработал квантовый алгоритм разложения числа на простые множители. В теории с его помощью компьютеры смогут взломать любые шифры — это прорыв в области криптографии и одновременно большой риск. Любые пароли, если технологию используют злоумышленники, не будут иметь значения — машина получит доступ к любой кредитке, разложив число на два простых множителя. Но для взлома понадобятся мощности, которых пока квантовые компьютеры не достигли. В ближайшие десятилетия, чтобы обеспечить конфиденциальность, ученым придется придумать новые методы шифрования и квантовой криптографии. Искусственный интеллект Volkswagen применяет квантовые компьютеры для разработки беспилотных автомобилей на основе искусственного интеллекта, а Сбер вместе с другими технологичными компаниями будут развивать квантовые технологии для вычислений в ИИ, которые пригодятся в медицине, финансовой сфере, обработке данных и прогнозировании. Квантовые компьютеры в России и мире: какие модели уже есть и в чем проблема широкого применения Первый работающий экспериментальный компьютер протестировали в 2001 году — им стал 7-битный образец компании IBM. С тех пор началась квантовая гонка и борьба за квантовое превосходство. Квантовое превосходство — способность квантовых компьютеров решать задачи, на которые у обычных уйдут годы. Самый мощный квантовый компьютер в России пока содержит 16 кубитов. Разработка есть на различных платформах, в том числе на ионном процессоре. С помощью машины запущен алгоритм моделирования молекулы.
Технологии квантовых компьютеров в 2022: достижения, ограничения
Рассказываем, как появился первый квантовый компьютер, сколько кубитов в современных процессорах и какие задачи они могут решать. Нужно создать кубиты и квантовую запутанность между ними, уметь их контролировать, строить вентили на их базе. Кубит — это система, которая может быть представлена квантовой точкой, атомом, молекулой, сверхпроводником, частицой света. Кубиты в квантовом компьютере расположены не слишком далеко, однако именно запутанность связывает их в единую, согласованно реагирующую систему.
Кубит и суперпозиция
- Кульбит кубита. Новейший сверхкомпьютер может победить рак или погубить мир
- Технологии квантовых компьютеров в 2022: достижения, ограничения | Quantum Crypto
- Количество кубитов в квантовых компьютерах — это обман. Вот почему
- Что такое квантовый "рубильник"
Что такое кубит?
К 2024 году планируется построить квантовые компьютеры, состоящие из 30-100 кубитов, в зависимости от используемой технологии. Кубит может хранить намного больше информации, чем классический бит. Кубит (q-бит, кьюбит; от quantum bit) — квантовый разряд или наименьший элемент для хранения информации в квантовом компьютере. Как и бит, кубит допускает два собственных состояния, обозначаемых и (обозначения Дирака). Настоящий уровень развития технологий позволяет создать большое количество кубитов, сложность возникает с устойчивостью такой системы.
Революция в ИТ: как устроен квантовый компьютер и зачем он нужен
Квантовые компьютеры. Почему их еще нет, хотя они уже есть? | Куби́т — наименьшая единица информации в квантовом компьютере (аналог бита в обычном компьютере), использующаяся для квантовых вычислений. |
Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес | В 2013 году мы произвели первичные измерения полученных в Германии кубитов (кубит – элемент сверхпроводниковой микросхемы, сделанный из сверхпроводника – тонких пленок алюминия). |
От бита к кубиту. Создание квантовых компьютеров сулит необыкновенные перспективы | Два кубита можно запутать между собой — тогда они всегда будут выдавать противоположный друг другу результат. |
Квантовые компьютеры: путь от фантастики до реальности и их влияние на науку и бизнес | Обычные компьютеры работают на битах, квантовые — на кубитах, то есть используют принципы элементарных частиц, которые позволяют экспоненциально наращивать вычислительную мощность. |
Количество кубитов в квантовых компьютерах — это обман. Вот почему
Кубиты образуются в квантовом компьютере с использованием квантово-механических свойств отдельных атомов, субатомных частиц или сверхпроводящих электрических цепей. Эта машина способна проводить очень сложные и длительные вычисления за счет встроенной в кубиты системы коррекции ошибок. Они могут работать, как обычные кубиты, так и как кудиты, представляющие собой расширенную версию кубитов.
Миссия выполнима?
- Квантовые компьютеры: как они работают — и как изменят наш мир - Hi-Tech
- Что такое кубиты и как они помогают обойти санкции?
- В погоне за миллионом кубитов
- Квантовые компьютеры: как они работают — и как изменят наш мир