Уроки аварии реактора pwr на АЭС три-майл-айленд в США в 1979 г.
Авария на АЭС Три-Майл-Айленд в США. 28 марта 1979. Хронология событий
Пять самых опасных аварий на ядерных объектах в мире | Три-Майл-Айленд. Так называемый «американский Чернобыль» произошел за восемь лет до самой крупной катастрофы в истории мирного атома 28 марта 1979 года. |
Ядерные катастрофы мира. № 8 Авария на АЭС Три-Майл-Айленд | Авария на АЭС — в широком смысле любая неполадка в работе атомной электростанции, связанная с внезапным выходом из строя какой-то техники. |
Авария на АЭС Три-Майл-Айленд | Атомная электростанция Три-Майл-Айленд в штате Пенсильвания прекратила свою работу 20 сентября 2019 года после 45 лет эксплуатации. |
Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года | На станции Три-Майл-Айленд в США были установлены два реактора типа PWR, мощность 802 и 906 МВт соответственно. |
Провокации Киева, или Люди, будьте бдительны! | Авария на АЭС — в широком смысле любая неполадка в работе атомной электростанции, связанная с внезапным выходом из строя какой-то техники. |
Насколько авария в Чернобыле была страшнее других аварий на АЭС?
В течение 10-11 часов радиоактивные вещества выпали на протяжении 300—350 км в северо-восточном направлении от места взрыва по направлению ветра. Более 23 тыс. На этой территории находилось 217 населенных пунктов с более 280 тысячами жителей, ближе всех к эпицентру катастрофы было несколько заводов комбината «Маяк», военный городок и колония заключенных. Для ликвидации последствий аварии привлекались сотни тысяч военнослужащих и гражданского населения, получивших значительные дозы облучения.
В результате события никто не погиб непосредственно от взрывов, однако около 1600 человек погибли от стресса в основном пожилые люди после аварии. Воздействие на окружающую среду также было менее серьезным. Исследование, проведенное в 2013 году в Университете штата Колорадо, показало, что станция Фукусима выпустила около 520 петабеккерелей радиоактивного материала по сравнению с 5300 петабеккерелями, выпущенными Чернобыльской АЭС. В то время как чернобыльская радиация распространилась по всей Европе, большая часть радиации Фукусимы попала в Тихий океан. Корхилл говорит, что на площадке в Фукусиме до сих пор генерируются миллионы галлонов радиоактивной воды, которая в настоящее время хранится в резервуарах, однако команда по очистке «очень хорошо справляется». Три-Майл-Айленд был не таким разрушительным Чернобыль и Фукусима находятся в отдельной категории от Три-Майл-Айленда, который, по словам Корхилл, был «совершенно другим, не столь ужасного масштаба».
Этот инцидент произошел 28 марта 1979 года, когда сбой системы вызвал частичное разрушение реактора на АЭС в Три-Майл-Айленде, недалеко от Гаррисберга, штат Пенсильвания. По сообщениями Всемирной ядерной ассоциации, в результате этого события не было случаев смерти, травм или неблагоприятных последствий для здоровья, хотя некоторые местные жители оспаривали эти выводы. Около 36 000 человек жили в радиусе 5 миль от завода, когда произошло частичное обрушеие. Корхилл говорит, что выброс радиоактивных газов случился на станции, но не попал в окружающую среду.
Тест был проведен 1 марта 1954 года на атолле Бикини на Маршалловых островах. Когда Оружие было взорвано, произошел взрыв, в результате чего был образован кратер диаметром 6500 футов 2000 м и глубиной 250 футов 75 м.
Замок Браво был очень мощным ядерным устройством, с размером в 15 мегатонн, который намного превышал ожидания 4-6 мегатонн. Этот просчет привел к серьезному радиологическому загрязнению, когда-либо вызванному Соединенными Штатами. Что касается эквивалентности тоннажа ТНТ, то замок Браво был примерно в 1200 раз более мощным, чем атомные бомбы, которые были сброшены на Хиросиму и Нагасаки во время Второй мировой войны. Кроме того, радиационное облако загрязнило более семи тысяч квадратных миль окружающего Тихого океана, включая небольшие острова, такие как Ронджерик, Ронгелап и Утирик. Эти острова были эвакуированы, но все же местные жители были подвержены воздействию радиации. Уроженцы с тех пор страдали от врожденных дефектов.
Японское рыболовное судно Daigo Fukuryu Maru также вступало в контакт с ядерными осадками, вызывая болезни для всех членов экипажа с одной фатальностью. Рыба, вода и земля были серьезно загрязнены, что сделало замок Браво одним из худших ядерных аварий. Взрыв произвел радиоактивное облако газа в воздух. Десять матросов были убиты в результате инцидента, и 49 человек, как было обнаружено, получили радиационные повреждения с 10 развивающимися лучевыми заболеваниями. Более того, из 2000 человек, участвующих в операциях по очистке, 290 подвергались воздействию высокого уровня радиации по сравнению с нормальными стандартами. Журнал TIME идентифицировал несчастный случай как одну из «худших ядерных катастроф» в мире.
АЭС «Маяк», также известная как Челябинск-40, а позднее «Челябинск-65» является одним из крупнейших ядерных объектов в Российской Федерации. Это неотъемлемая часть российской программы ядерного оружия. За последние 45 лет этот объект испытал 20 или более несчастных случаев, затрагивающих не менее полумиллиона человек. Самая известная авария произошла 29 сентября 1957 года, разоблачая секретные газеты Советов. Неисправность системы охлаждения резервуара, хранящего десятки тысяч тонн растворенных ядерных отходов, привела к химическому неядерному взрыву, имеющему силу, составляющую около 75 тонн тротила 310 гигаджоулей , которая выпустила около 2 миллионов кюри радиоактивности более 15 000 кв.
Этот энергоблок после аварии был остановлен и находится под постоянным наблюдением.
Снимок сделан 22 августа 1980 года. Технические эксперты высказывают предположение, что головка повреждена изнутри. Снимок сделан 3 марта 1999 года. Снимок сделан 17 марта 2007 года. Снимок сделан 19 октября 2005 года. А вы знали, что у нас есть Telegram?
Подписывайтесь, если вы ценитель красивых фото и интересных историй!
10. ТРИ-МАЙЛ-АЙЛЕНД - 28 МАРТА 1979 Г.
- Публикации
- Авария на АЭС Три-Майл-Айленд
- В США будет остановлена АЭС Три-Майл-Айленд
- Крупнейшая в мире авария на атомной станции Три-Майл-Айленд, США, 28 марта 1979 года
- Что еще почитать
СМИ вспомнили аварию на американской АЭС
К катастрофе в Бхопале привели низкий уровень технического обслуживания оборудования, неисправные средства защиты, а также — отсутствие культуры безопасности. Всё это вместе позволило воде проникнуть через неисправные вентили в резервуар с метилизоцианатом, что привело, в результате экзотермической реакции, к образованию смертоносного газа. Американская компания-владелец завода теперь она называется The Dow Chemical Company не очистила место аварии после закрытия завода в 1986 году. Теперь эта задача возложена на местные власти. Катастрофа 1986 года в Чернобыле во многом похожа на аварию в Бхопале. В частности — недостаточным уровнем культуры безопасности. Всё началось ещё на этапе проектирования реактора РБМК реактор большой мощности канального типа , когда, ради экономии, было решено использовать природный уран, а не обогащённый уран-235. Это означало увеличение размеров реактора, что привело к принятию решения о том, что в конструкции реактора не нужен корпус, который имеется у реакторов других типов например — у корпусных водо-водяных энергетических реакторов, ВВЭР. Корпус РБМК оказался бы слишком большим и слишком дорогим.
Но там не было чего-то такого, что не дало бы операторам реактора по собственному усмотрению отключить все эти системы безопасности. В результате то, что должно было стать простым испытанием турбогенератора в режиме выбега что предусматривало использование кинетической энергии, запасённой во вращающемся роторе турбогенератора, для выработки электроэнергии, необходимой для питания циркуляционных насосов в аварийной ситуации , превратилось в катастрофу. Они имеют отношение к реактивности реактора — к количеству нейтронов с определённой скоростью температурой нейтронов , присутствующих в некий момент времени в нейтронном эффективном сечении используемого в реакторе топлива. В случае с ураном-235 необходимы так называемые тепловые нейтроны, но в ходе цепной ядерной реакции производится множество более быстрых нейтронов их называют «быстрыми нейтронами». Быстрые нейтроны могут быть замедлены до состояния тепловых нейтронов с использованием замедлителей нейтронов. Это повышает реактивность реактора. Для снижения реактивности реактора используются поглотители нейтронов , которые могут быть представлены водой и управляющими стержнями, которые часто делают из карбида бора. В большинстве легководных реакторов обычная вода используется и для замедления нейтронов, и для поглощения нейтронов.
А это значит, что если реактивность реактора возрастает, повышается скорость закипания воды, что увеличивает количество пара. Появление пара означает ухудшение возможностей замедления нейтронов, а это, в свою очередь, приводит к уменьшению количества имеющихся тепловых нейтронов, что создаёт цикл отрицательной обратной связи. Это — то, что называется отрицательным паровым коэффициентом реактивности. Собственно говоря, в РБМК графит тоже использовался в роли замедлителя нейтронов. Хотя это позволяло применять природный уран, это ещё и означало то, что РБМК работал с положительным паровым коэффициентом реактивности. Когда вода в контуре охлаждения реактора закипала и в ней возникали пузырьки, её возможности по поглощению нейтронов ухудшались, а эффект замедления нейтронов не менялся, что создавало возможность возникновения бесконтрольной ядерной реакции. Эта неоднозначная особенность была признана приемлемой, так как она позволяла реакторам РБМК выдавать тепловую мощность, значительно превышающую ту, которую обеспечивали западные реакторы того времени. Предполагалось, что у хорошо обученного персонала не будет проблем с управлением реактором РБМК.
Мы знали, что делать в случае выхода реакции из-под контроля. Но закрытось обеих стран не давала возможности обмениваться ценнейшей информацией. В обеих наших странах ученых-атомщиков правительства гнали нещадно: мол, электричество стране нужно, хотя на самом деле не хотели уступать друг другу эту бессмысленную гонку, забывая о безопасности. Особенно ясно я это понял после общения с Андреем Сахаровым. Это было в один из моих первых приездов в СССР. Его только-только выпустил из ссылки Горбачев. На приеме в посольстве я подошел к нему и представился. Завязался разговор. Он очень четко обозначил проблему безопасности атомной энергетики и выдвинул несколько тезисов. По одному из них мы стали спорить.
Он был уверен, что безопасность станции возрастет на порядок, если ее «прятать» под землей, как это делают японцы. Я доказывал, что сейсмическая активность, движение земной коры делают эту идею рискованной. Проспорили весь вечер, забыв обо всем. Потрясающего ума был человек! А вообще Чернобыль во мне что-то надломил. При президенте Буше-старшем я сам попросился в отставку, ушел в экспертный Совет по международным связям. Был примерно в 50 странах — везде, где есть АЭС и где их хотели бы иметь. Последним моим делом было инспектирование безопасности чешской АЭС, причем по заказу обеспокоенных австрийцев. Смысл моего заключения был таким: спите, австрийцы, спокойно». Прожив всю жизнь в Вашингтоне, вместе с супругой Люсиндой вырастив троих детей и выйдя на пенсию, Гарольд Дантон переехал в глубинку — тихий город Ноксвилл на реке Теннесси.
Безлюдная улица города Голдсборо, Пенсильвания 31 марта 1979 года. Часть населения этого города уехала подальше от аварийной АЭС, те же, кто не смог или не захотел уехать, старались не выходить на улицу без особой необходимости. Власти утверждали, что в результате этой аварии жители 16-километровой зоны вокруг АЭС получили эквивалентную дозу облучения не более 100 миллибэр, что составляет примерно одну треть от годовой дозы облучения, получаемой американцами за счет естественного фонового излучения. Расплавившееся ядерное топливо все-таки не смогло прожечь корпус реактора, но радиоактивная вода просочилась в бетон защитной оболочки, и удалить это радиоактивное загрязнение оказалось практически невозможно. Снимок сделан 11 февраля 1980 года. Этот энергоблок после аварии был остановлен и находится под постоянным наблюдением. Снимок сделан 22 августа 1980 года. Технические эксперты высказывают предположение, что головка повреждена изнутри. Снимок сделан 3 марта 1999 года.
Оба инцидента имели зоны эвакуации порядка 30 километров, и в каждом из них более 100 000 человек покинули свои дома. Чернобыльская авария была худшей из ядерных в мире Стоит принять во внимание, что жители Три-Майл-Айленд вернулись домой, в конечном итоге, но жители Припяти — нет. Сегодня в Чернобыле все еще есть зона отчуждения площадью более 1500 квадратных километров, которая ограничивает доступ туристов. Но там живет несколько семей, и людям старше 18 разрешено ее посещать, однако большая часть территории все еще загрязнена. Зона отчуждения Фукусимы намного меньше: около 200 квадратных километров. Большая часть из 200 000 эвакуированных вернулась обратно, но 43 000 человек все еще остаются за ее пределами, не желая возвращаться. Чернобыльская авария — безусловно, худшая из всех. Комбинация взрыва, который выпустил радиацию в воздух, и огня, который распространил эти радиоактивные частицы на многие километры, просто ужасна. До сих пор можно поймать «огромную дозу радиации», например, в реакторе номер пять — о таком инциденте рассказывает Корхилл. Хотя студенты в ее туре хотели найти источник радиации, Корхилл решила проявить осторожность.
АВАРИЯ НА АЭС ТРИ-МАЙЛ-АЙЛЕНД
Срабатывание предохранительных устройств бака-барботера также не осталось незамеченным, но персонал никак не связал это событие с продолжительной утечкой из первого контура [33] , приписав его скачку давления при кратковременном срабатывании электромагнитного клапана в самом начале аварии [34]. В эксплуатационной документации был определён перечень признаков течи из первого контура [35] , одни из них действительно имели место, например падение давления в реакторной установке, повышение температуры под гермооболочкой и наличие воды на её нижнем уровне. Однако операторов привело в замешательство отсутствие симптомов, которые они считали ключевыми: не было снижения уровня в компенсаторе давления он, наоборот, возрастал , также не было сигнализации о повышенном уровне радиации в атмосфере гермооболочки возможно, порог срабатывания датчика был некорректно установлен. Таким образом, даже зная о наличии воды в помещениях гермооболочки, персонал не смог адекватно определить источник её происхождения [36] [37]. Разрушение активной зоны[ править править код ] Конечное состояние активной зоны реактора: 1 — вход 2-й петли B; 2 — вход 1-й петли А; 3 — каверна; 4 — верхний слой обломков топливных сборок; 5 — корка вокруг центра активной зоны; 6 — затвердевший расплав; 7 — нижний слой обломков топливных сборок; 8 — вероятный объём расплава, который стёк вниз; 9 — разрушенные гильзы внутриреакторного контроля; 10 — отверстие в выгородке активной зоны; 11 — слой затвердевшего расплава в полостях выгородки; 12 — повреждения плиты блока защитных труб Прибывший в 6 часов утра персонал следующей смены, благодаря свежему взгляду, смог наконец определить состояние электромагнитного клапана компенсатора давления [38] [25]. Установив тем самым факт продолжительной потери теплоносителя, операторы должны были приступить к ликвидации аварии, запустив систему аварийного охлаждения, однако по неустановленным причинам это действие не было незамедлительно выполнено [22] [40] [41]. Около 06:30 началось быстрое окисление оболочек твэлов в верхней части активной зоны за счёт пароциркониевой реакции с образованием водорода. Образовавшаяся расплавленная смесь из топлива, стали и циркония стекала вниз и затвердевала на границе кипения теплоносителя [43]. Ближе к 7 часам утра кипящий теплоноситель покрывал уже менее четверти высоты активной зоны [44].
Не имея в своём распоряжении приборов, позволявших определить уровень жидкости непосредственно в корпусе реактора [45] , и не осознавая нехватку теплоносителя, операторы попытались возобновить принудительное охлаждение активной зоны. Были предприняты попытки запуска каждого из четырёх главных циркуляционных насосов. В результате верхняя часть активной зоны, состоящая из серьёзно повреждённых твэлов, потеряла устойчивость и просела вниз, сформировав каверну пустое пространство под блоком защитных труб БЗТ [43]. На этот раз было принято принципиальное решение: не мешать автоматической работе систем безопасности, пока не будет полного понимания состояния реакторной установки [55]. С этого момента процесс разрушения активной зоны был остановлен [48]. Возобновление охлаждения реактора[ править править код ] Реакторная установка находилась в состоянии, которое не было учтено при её создании. В распоряжении персонала не было инструментов, позволявших контролировать и ликвидировать подобные аварии. Все последующие действия эксплуатирующей организации носили импровизационный характер и не были основаны на заранее просчитанных сценариях.
Безуспешность попыток запуска главных циркуляционных насосов привела к пониманию того, что в первом контуре имелись области, занятые паром [56] , однако в конструкции реакторной установки не существовало устройств для дистанционного выпуска этих парогазовых пробок. Исходя из этого, было принято решение поднять давление в первом контуре до 14,5 МПа для того чтобы сконденсировать имеющийся пар. Если бы эта стратегия принесла успех, то, по мнению эксплуатирующего персонала, контур оказался бы заполнен водой и в нём бы установилась естественная циркуляция теплоносителя [57]. Кроме того, в контуре имелось большое количество неконденсирующихся газов, прежде всего, водорода. Отсутствие признаков эффективного теплоотвода через парогенераторы вынудило персонал отказаться от данной стратегии. С другой стороны, работа насосов системы аварийного охлаждения позволила к 11:00 частично заполнить первый контур до уровня выше активной зоны [59]. Теоретически, запуск в это время главных циркуляционных насосов мог иметь успех, так как в контуре уже имелся значительный запас теплоносителя, но персонал находился под впечатлением предыдущих неудачных запусков и новой попытки предпринято не было [57]. Единственным эффективным способом охлаждения активной зоны в это время являлась подача холодной борированной воды насосами аварийного охлаждения в реактор и сброс нагретого теплоносителя через отсечной клапан компенсатора давления.
Однако такой способ не мог применяться постоянно. Запас борированной воды был ограничен, а частое использование отсечного клапана грозило его поломкой. Дополнительно ко всему, среди персонала уже не было уверенности в полном заполнении активной зоны водой. Все это подталкивало эксплуатирующую организацию к поиску альтернативных методов охлаждения реактора [60].
Большое количество радиоактивных веществ было выброшено в атмосферу, и сильное радиоактивное облако распространилось на большом расстоянии. Хотя официально о количестве жертв и масштабах аварии не сообщалось, сейчас известно, что в результате Кыштымской аварии погибли десятки людей, а радиация поразила тысячи жителей близлежащих населенных пунктов. Уиндскейлский пожар, Великобритания. Рейтинг: 5 авария Уиндскейлский пожар - это авария, произошедшая 10 октября 1957 года на ядерном объекте в Великобритании. Пожар начался из-за короткого замыкания в вентиляционной системе урановой шахты, и быстро распространился на большой площади. В результате сильного задымления и выброса радиоактивных веществ в воздух, радиация поразила около 200 работников, и была засекречена на долгое время. Официально о количестве жертв не сообщалось, но сейчас известно, что несколько человек погибли, а тысячи получили различные заболевания, связанные с длительным воздействием радиации. Три-майл-айленд, США. Рейтинг: 5 авария Три-майл-айленд - это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США. В результате сбоя в охлаждающей системе реактора произошло частичное расплавление топлива, что привело к выбросу в атмосферу небольшого количества радиоактивных веществ. По официальным данным, несколько человек получили лучевую болезнь.
Сработала система аварийного охлаждения реактора — в активную зону начала подаваться вода, которая из-за не закрывшегося клапана через барботер также поступала в гермооболочку. Первая грубая ошибка операторов. Несмотря на то, что реактор был практически пуст, приборы показывали, что в нем слишком много воды, а поэтому операторы постепенно отключили все аварийные насосы, закачивающие воду в первый контур. Операторы, наконец, обнаружили, что аварийные насосы второго контура не работают, но их запуск не особо исправил ситуацию. Вплоть до 6. В результате активная зона реактора, лишенная охлаждения, начала в прямом смысле слова плавиться, хотя цепная ядерные реакции уже были остановлены. Перегрев был обусловлен распадом высокоактивных продуктов деления урана именно из-за этого ядерный реактор не может быть остановлен сразу, в одно мгновение. Лишь в 6. Однако насосы аварийного охлаждения, остановленные двумя часами ранее, по разным причинам удалось запустить лишь в 7. Казалось бы, авария предотвращена, и теперь можно спокойно заниматься полной остановкой реактора. Однако уже днем 28 марта выяснилось, что в корпусе реактора образовался огромный водородный пузырь, который мог в любую секунду вспыхнуть и взорваться — такой взрыв на АЭС привел бы к страшной катастрофе. Но откуда взялся этот водород? Он образовался из-за реакции раскаленного циркония с раскаленным же водяным паром, который буквально распадался на атомы кислорода и водорода. Кислород окислял цирконий, а свободный водород скапливался под крышкой реактора — так и образовался взрывоопасный пузырь. Вечером, в 19. Вплоть до 2 апреля операторы работали над удалением из-под крышки реактора водорода — эта операция увенчалась успехом, и опасность неуправляемого развития аварии была полностью устранена. Интересно, что в 6.
Персонал понял, что аварийная питательная вода не поступает в парогенераторы, задвижки открыли и началось её поступление. То обстоятельство, что подача питательной воды в парогенераторы была прервана на 8 минут, само по себе не могло привести к серьёзным последствиям, но прибавило замешательства в действия персонала и отвлекло их внимание от опасных последствий заедания в открытом положении импульсного клапана в системе компенсации давления. Также в это время было замечено срабатывание предохранительных мембран на барботёре из-за превышения в нём давления, в результате чего пар с высокими параметрами стал поступать в помещения гермооболочки. Операторы на щите управления выключили их, всё ещё не понимая, что в помещениях гермообъёма большое количество воды. Также в это время было замечена ещё одна странность — концентрация жидкого поглотителя, борной кислоты , в контуре сильно снизилась и, несмотря на полностью погружённые регулирующие стержни , начали расти показания приборов контроля нейтронного потока. Снижение концентрации борной кислоты также было последствием сильной течи. Операторы приступили к экстренному вводу бора, чтобы не допустить повторной критичности реактора, что было частично правильным решением, но не решающим главную проблему, которая до сих пор не была определена. Операторы выключили насосы, чтобы предотвратить их разрушение или повреждение трубопроводов первого контура. Принудительная циркуляция теплоносителя прекратилась. Можно отметить, что отключение циркуляционных насосов в первом контуре реакторов с водой под давлением не должно приводить к прекращению циркуляции теплоносителя, должна продолжаться естественная циркуляция. Однако под крышкой реактора на этот момент накопился парогазовый пузырь, наличие которого вкупе с геометрическим расположением активной зоны и парогенераторов в конструкции данной ядерной установки воспрепятствовало возникновению естественной циркуляции в первом контуре. Операторы закрыли отсечной клапан на линии импульсного клапана, заклинившего в открытом положении. Истечение теплоносителя из первого контура прекратилось. К счастью, разрешение не было получено, вошедшие туда люди могли погибнуть. К управляющему энергоблоком персоналу пришло первое понимание масштаба аварии. Однако она успела накрыть активную зону, предотвращая её дальнейшее разрушение, но это была лишь временная мера. Блочный щит управления вторым энергоблоком станции спустя несколько дней после аварии, идёт работа по её ликвидации. Весь последующий день они пытались это сделать, но фактически эти действия не имели успеха и лишь незначительное количество воды из гидроёмкостей попало в активную зону.
Авария на Три-Майл-Айленде
Авария на АЭС Три-Майл-Айленд — Президент Джимми Картер покидает АЭС Три-Майл-Айленд после личного визита 1 апреля 1979 года. Авария на АЭС Три-Майл-Айленд (англ. Three Mile Island accident) — одна из крупнейших аварий в истории ядерной энергетики. Объект: АЭС «Три-Майл-Айленд», США Дата: март 1979 года Что произошло: в результате серии сбоев в работе оборудования и ошибок операторов на одном из энергоблоков произошло расплавление активной зоны реактора. На АЭС «Три-Майл Айленд» использовались водо-водяные реакторы с двухконтурной системой охлаждения, эксплуатировались два энергоблока, мощностью 802 и 906 МВт, авария произошла на блоке номер два (TMI-2) 28 марта 1979 года примерно в 4:00. это одна из самых известных аварий в ядерной энергетике, произошедшая 28 марта 1979 года на одной из ядерных электростанций США.
Произошла крупнейшая в США авария на атомной электростанции
- На американской АЭС произошла авария
- PIPL • 28 марта 1979 года авария на АЭС Три-Майл-Айленд в США. Хронология событий
- Провокации Киева, или Люди, будьте бдительны!
- Авария на АЭС Три-Майл-Айленд
- Катастрофа на Три-Майл-Айле
- Знаменитая АЭС «Три-Майл-Айленд» наконец прекращает свою работу
Ядерная авария на АЭС «Три-Майл-Айленд», 1979
Самым серьезным инцидентом в атомной энергетике США стала авария на АЭС Тримайл-Айленд в штате Пенсильвания, произошедшая 28 марта 1979 года. Но, анализируя в последующие годы причины аварии на американской АЭС Три-Майл-Айленд, специалисты отмечали: при худшем сценарии развития событий мог быть уничтожен целый штат Пенсильвания. АЭС Три-Майл-Айленд, которой суждено было стать местом самой серьёзной аварии в американской атомной отрасли, была заложена в 1968 году, а спустя шесть лет первый её энергоблок был пущен в эксплуатацию.
28 марта 1979 года авария на АЭС Три-Майл-Айленд в США. Хронология событий
Из поврежденных тепловыделяющих элементов начали выходить высокоактивные продукты деления. Вода первого контура стала еще более радиоактивной. Температура внутри корпуса реактора превысила четыреста градусов, и указатели на пульте управления зашкалили. ЭВМ, следившая за температурой в активной зоне, начала выдавать сплошные вопросительные знаки и выдавала их в течение последующих одиннадцати часов... В ночь с 28 на 29 марта в верхней части корпуса реактора начал образовываться газовый пузырь. Активная зона разогрелась до такой степени, что из-за химических свойств циркониевой оболочки стержней произошло расщепление молекул воды на водород и кислород. Пузырь объемом около 30 метров кубических, состоявший главным образом из водорода и радиоактивных газов — криптона, аргона, ксенона и других, — сильно препятствовал циркуляции охлаждающей воды, поскольку давление в реакторе значительно возросло. Но главная опасность заключалась в том, что смесь водорода и кислорода могла в любой момент взорваться то, что произошло в Чернобыле. Сила взрыва была бы эквивалентна взрьгау трех тонн тринитротолуола, что привело бы к неминуемому разрушению корпуса реактора.
В другом случае смесь водорода и кислорода могла проникнуть из реактора наружу и скопилась бы под куполом защитной оболочки. Если бы она взорвалась там, все радиоактивные продукты деления попали бы в атмосферу что произошло в Чернобыле. Уровень радиации внутри защитной оболочки достиг к тому времени 30 тысяч бэр в час, что в 600 раз превышало смертельную дозу. Кроме того, если бы пузырь продолжал увеличиваться, он постепенно вытеснил бы из корпуса реактора всю охлаждающую воду и тогда температура поднялась бы настолько, что расплавился бы уран. В ночь на 30 марта объем пузыря уменьшился на 20 процентов, а 2 апреля он составлял всего лишь 1,4 метра кубического. Чтобы окончательно ликвидировать пузырь и устранить опасность взрыва, техники применили метод так называемой дегазации воды... Он обратился к населению с просьбой «спокойно и точно» соблюдать все правила эвакуации, если в этом возникнет необходимость.
Он образовался из-за реакции раскаленного циркония с раскаленным же водяным паром, который буквально распадался на атомы кислорода и водорода. Кислород окислял цирконий, а свободный водород скапливался под крышкой реактора — так и образовался взрывоопасный пузырь.
Вечером, в 19. Вплоть до 2 апреля операторы работали над удалением из-под крышки реактора водорода — эта операция увенчалась успехом, и опасность неуправляемого развития аварии была полностью устранена. Интересно, что в 6. Как выяснилось позже, это спасло людей от неминуемой гибели — к тому времени радиационный фон в помещениях гермооболочки превышал норму в сотни раз! А уже 1 апреля на станцию Три-Майл-Айленд с визитом прибыл сам президент США Джимми Картер, который успокоил людей и рассказал, что никакой опасности нет. И если верить официальным данным, то опасности действительно не было, но волнение людей, возникшее из-за аварии, понять можно. АЭС Три-Майл-Айленд Поcледствия аварии Удивительно, но авария на АЭС Три-Майл-Айленд не имела серьезных последствий для здоровья людей и экологии, однако она оказала самое серьезное влияние на умы людей и американскую ядерную энергетику. Но, несмотря на это, все работы по устранению последствий аварии были завершены лишь к 1993 году! Разрушения активной зоны.
Температура в реакторе во время аварии достигала 2200 градусов, в результате расплавилось около половины всех компонентов активной зоны. В абсолютных цифрах это составляет почти 62 тонны. Радиоактивное загрязнение. Из атомного реактора вытекло большое количество радиоактивной воды, в результате чего уровень радиоактивности в помещениях гермооболочки более чем в 600 раз превысил норму. Некоторое количество радиоактивных газов и пара попало в атмосферу, и в результате каждый житель 16-километровой зоны вокруг АЭС получил облучение не больше, чем во время сеанса флюорографии. Самого опасного — выбросов в атмосферу и воду высокоактивных нуклидов — удалось избежать, поэтому местность осталась «чистой».
Так случилось и на этот раз, поэтому рост давления на реакторе замедлился. Тем не менее, спустя 9 секунд включилась аварийная защита реактора, так как давление достигло 17 МПа. Температура упала, а объем воды стал уменьшаться. Давление наоборот, стало резко падать. Падение давления до 12 МПа должно было привести к закрытию клапана барботёра, но этого не случилось. При этом пульт оператора показывал, что клапан закрыт. На деле оказалось, что сигнал на пульте управления означает не закрытие клапана барботёра, а отключение его от электричества. Так что, теплоотвод уже спустя минуту полностью прекратился. Но уровнемер давал некорректные показания и падение давления в реакторе продолжалось из-за некомпенсированной течи. Это привело давление к точке насыщения, когда из воды стали появляться пузырьки пара, еще больше увеличивая неверные показания уровнемера. Тогда операторы стали сливать воду также через дренажную линию первого контура реактора. Операторы поняли, что вода в парогенератор не поступает и открыли эти задвижки. Отсутствие воды в парогенераторе в течение восьми минут не могло сильно навредить реактору, но отвлекло персонал, который решил, что проблема на реакторе решена. Хотя датчик температуры показывал превышение 100 градусов, операторы посчитали это остаточным разогревом от сброса пара в начале инцидента, что считалось нормой.
АЭС Три-Майл-Айленд Поcледствия аварии Удивительно, но авария на АЭС Три-Майл-Айленд не имела серьезных последствий для здоровья людей и экологии, однако она оказала самое серьезное влияние на умы людей и американскую ядерную энергетику. Но, несмотря на это, все работы по устранению последствий аварии были завершены лишь к 1993 году! Разрушения активной зоны. Температура в реакторе во время аварии достигала 2200 градусов, в результате расплавилось около половины всех компонентов активной зоны. В абсолютных цифрах это составляет почти 62 тонны. Радиоактивное загрязнение. Из атомного реактора вытекло большое количество радиоактивной воды, в результате чего уровень радиоактивности в помещениях гермооболочки более чем в 600 раз превысил норму. Некоторое количество радиоактивных газов и пара попало в атмосферу, и в результате каждый житель 16-километровой зоны вокруг АЭС получил облучение не больше, чем во время сеанса флюорографии. Самого опасного — выбросов в атмосферу и воду высокоактивных нуклидов — удалось избежать, поэтому местность осталась «чистой». Крах атомной энергетики США. Психология людей и «китайский синдром». По просто удивительному стечению обстоятельств за две недели до аварии на большие экраны вышел фильм «Китайский синдром», повествующий о катастрофе на АЭС. Жаргонный термин «китайский синдром», придуманный в 1960-х годах физиками-ядерщиками, означает аварию, при которой топливо в реакторе плавится и прожигает защитную оболочку. Так что нет ничего странного в том, что после реальной аварии поднялась паника, и никакие уверения высокопоставленных чиновников, включая самого президента США, не могли окончательно успокоить людей. Второй энергоблок закрыт, внутренняя часть реактора полностью вынута и утилизирована, а за площадкой ведется наблюдение. Станция будет работать до 2034 года. Интересно, что в 2010 году турбогенератор аварийного второго энергоблока был продан, снят и по частям перевезен на атомную станцию Shearon Harris штат Северная Каролина, США , где занял место в новом энергоблоке.
Крупные аварии на атомных электростанциях: до Чернобыля и после
Но авария на Три-Майл-Айленд фактически остановила расширение отрасли, что заставило американцев обратить внимание на развитие альтернативных источников и изменить свою международную энергетическую политику. Авария на Три-Майл-Айленде произошла в результате частичного расплавления реактора энергоблока 2 (ТМИ-2) в Пенсильвании. Ядерная авария Авария на Три-Майл-Айленд была частичным расплавлением реактора номер 2 АЭС Три-Майл-Айленд (TMI -2) в округе Дофин, штат Пенсильвания, недалеко от.
Публикации
- Авария на АЭС Три-Майл-Айленд
- Авария на Чернобыле унесла больше жизней, чем авария на Фукусиме
- «Американскому Чернобылю» приписывали катастрофу для Китая
- Топ-5 крупнейших радиационных катастроф и аварий, которые потрясли мир |